mm/slub.c: wrap kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL
kmem_cache->cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is set, so wrap it with config CONFIG_SLUB_CPU_PARTIAL will save some space on 32bit arch. This patch wraps kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL and wraps its sysfs too. Link: http://lkml.kernel.org/r/20170502144533.10729-4-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
a93cf07bc3
commit
e6d0e1dcf5
@ -86,7 +86,9 @@ struct kmem_cache {
|
||||
int size; /* The size of an object including meta data */
|
||||
int object_size; /* The size of an object without meta data */
|
||||
int offset; /* Free pointer offset. */
|
||||
#ifdef CONFIG_SLUB_CPU_PARTIAL
|
||||
int cpu_partial; /* Number of per cpu partial objects to keep around */
|
||||
#endif
|
||||
struct kmem_cache_order_objects oo;
|
||||
|
||||
/* Allocation and freeing of slabs */
|
||||
@ -131,6 +133,17 @@ struct kmem_cache {
|
||||
struct kmem_cache_node *node[MAX_NUMNODES];
|
||||
};
|
||||
|
||||
#ifdef CONFIG_SLUB_CPU_PARTIAL
|
||||
#define slub_cpu_partial(s) ((s)->cpu_partial)
|
||||
#define slub_set_cpu_partial(s, n) \
|
||||
({ \
|
||||
slub_cpu_partial(s) = (n); \
|
||||
})
|
||||
#else
|
||||
#define slub_cpu_partial(s) (0)
|
||||
#define slub_set_cpu_partial(s, n)
|
||||
#endif // CONFIG_SLUB_CPU_PARTIAL
|
||||
|
||||
#ifdef CONFIG_SYSFS
|
||||
#define SLAB_SUPPORTS_SYSFS
|
||||
void sysfs_slab_release(struct kmem_cache *);
|
||||
|
69
mm/slub.c
69
mm/slub.c
@ -1829,7 +1829,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
stat(s, CPU_PARTIAL_NODE);
|
||||
}
|
||||
if (!kmem_cache_has_cpu_partial(s)
|
||||
|| available > s->cpu_partial / 2)
|
||||
|| available > slub_cpu_partial(s) / 2)
|
||||
break;
|
||||
|
||||
}
|
||||
@ -3404,6 +3404,39 @@ static void set_min_partial(struct kmem_cache *s, unsigned long min)
|
||||
s->min_partial = min;
|
||||
}
|
||||
|
||||
static void set_cpu_partial(struct kmem_cache *s)
|
||||
{
|
||||
#ifdef CONFIG_SLUB_CPU_PARTIAL
|
||||
/*
|
||||
* cpu_partial determined the maximum number of objects kept in the
|
||||
* per cpu partial lists of a processor.
|
||||
*
|
||||
* Per cpu partial lists mainly contain slabs that just have one
|
||||
* object freed. If they are used for allocation then they can be
|
||||
* filled up again with minimal effort. The slab will never hit the
|
||||
* per node partial lists and therefore no locking will be required.
|
||||
*
|
||||
* This setting also determines
|
||||
*
|
||||
* A) The number of objects from per cpu partial slabs dumped to the
|
||||
* per node list when we reach the limit.
|
||||
* B) The number of objects in cpu partial slabs to extract from the
|
||||
* per node list when we run out of per cpu objects. We only fetch
|
||||
* 50% to keep some capacity around for frees.
|
||||
*/
|
||||
if (!kmem_cache_has_cpu_partial(s))
|
||||
s->cpu_partial = 0;
|
||||
else if (s->size >= PAGE_SIZE)
|
||||
s->cpu_partial = 2;
|
||||
else if (s->size >= 1024)
|
||||
s->cpu_partial = 6;
|
||||
else if (s->size >= 256)
|
||||
s->cpu_partial = 13;
|
||||
else
|
||||
s->cpu_partial = 30;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* calculate_sizes() determines the order and the distribution of data within
|
||||
* a slab object.
|
||||
@ -3562,33 +3595,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
|
||||
*/
|
||||
set_min_partial(s, ilog2(s->size) / 2);
|
||||
|
||||
/*
|
||||
* cpu_partial determined the maximum number of objects kept in the
|
||||
* per cpu partial lists of a processor.
|
||||
*
|
||||
* Per cpu partial lists mainly contain slabs that just have one
|
||||
* object freed. If they are used for allocation then they can be
|
||||
* filled up again with minimal effort. The slab will never hit the
|
||||
* per node partial lists and therefore no locking will be required.
|
||||
*
|
||||
* This setting also determines
|
||||
*
|
||||
* A) The number of objects from per cpu partial slabs dumped to the
|
||||
* per node list when we reach the limit.
|
||||
* B) The number of objects in cpu partial slabs to extract from the
|
||||
* per node list when we run out of per cpu objects. We only fetch
|
||||
* 50% to keep some capacity around for frees.
|
||||
*/
|
||||
if (!kmem_cache_has_cpu_partial(s))
|
||||
s->cpu_partial = 0;
|
||||
else if (s->size >= PAGE_SIZE)
|
||||
s->cpu_partial = 2;
|
||||
else if (s->size >= 1024)
|
||||
s->cpu_partial = 6;
|
||||
else if (s->size >= 256)
|
||||
s->cpu_partial = 13;
|
||||
else
|
||||
s->cpu_partial = 30;
|
||||
set_cpu_partial(s);
|
||||
|
||||
#ifdef CONFIG_NUMA
|
||||
s->remote_node_defrag_ratio = 1000;
|
||||
@ -3975,7 +3982,7 @@ void __kmemcg_cache_deactivate(struct kmem_cache *s)
|
||||
* Disable empty slabs caching. Used to avoid pinning offline
|
||||
* memory cgroups by kmem pages that can be freed.
|
||||
*/
|
||||
s->cpu_partial = 0;
|
||||
slub_set_cpu_partial(s, 0);
|
||||
s->min_partial = 0;
|
||||
|
||||
/*
|
||||
@ -4915,7 +4922,7 @@ SLAB_ATTR(min_partial);
|
||||
|
||||
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%u\n", s->cpu_partial);
|
||||
return sprintf(buf, "%u\n", slub_cpu_partial(s));
|
||||
}
|
||||
|
||||
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
|
||||
@ -4930,7 +4937,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
|
||||
if (objects && !kmem_cache_has_cpu_partial(s))
|
||||
return -EINVAL;
|
||||
|
||||
s->cpu_partial = objects;
|
||||
slub_set_cpu_partial(s, objects);
|
||||
flush_all(s);
|
||||
return length;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user