From ecf5b72d5f66af843f189dfe9ce31598c3e48ad7 Mon Sep 17 00:00:00 2001 From: Christoph Hellwig Date: Fri, 11 Sep 2020 11:49:19 +0200 Subject: [PATCH] ia64: Remove perfmon perfmon has been marked broken and thus been disabled for all builds for more than two years. Remove it entirely. Cc: Anant Thazhemadam Signed-off-by: Christoph Hellwig Enthusiastically-ACKed-by: Al Viro Signed-off-by: Tony Luck Link: https://lore.kernel.org/r/20200911094920.1173631-1-hch@lst.de --- arch/ia64/Kconfig | 9 - arch/ia64/configs/bigsur_defconfig | 1 - arch/ia64/configs/generic_defconfig | 1 - arch/ia64/configs/gensparse_defconfig | 1 - arch/ia64/configs/tiger_defconfig | 1 - arch/ia64/configs/zx1_defconfig | 1 - arch/ia64/include/asm/processor.h | 10 - arch/ia64/include/asm/switch_to.h | 10 +- arch/ia64/kernel/Makefile | 3 +- arch/ia64/kernel/irq_ia64.c | 7 - arch/ia64/kernel/perfmon.c | 6703 ------------------------- arch/ia64/kernel/process.c | 53 - arch/ia64/kernel/ptrace.c | 24 - arch/ia64/kernel/smpboot.c | 8 - arch/ia64/kernel/syscalls/syscall.tbl | 2 +- arch/ia64/lib/Makefile | 1 - arch/ia64/lib/carta_random.S | 55 - arch/ia64/oprofile/Makefile | 1 - arch/ia64/oprofile/init.c | 12 +- arch/ia64/oprofile/perfmon.c | 99 - 20 files changed, 4 insertions(+), 6998 deletions(-) delete mode 100644 arch/ia64/kernel/perfmon.c delete mode 100644 arch/ia64/lib/carta_random.S delete mode 100644 arch/ia64/oprofile/perfmon.c diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig index 5b4ec80bf586..c4c409273389 100644 --- a/arch/ia64/Kconfig +++ b/arch/ia64/Kconfig @@ -362,15 +362,6 @@ config ARCH_PROC_KCORE_TEXT config IA64_MCA_RECOVERY tristate "MCA recovery from errors other than TLB." -config PERFMON - bool "Performance monitor support" - depends on BROKEN - help - Selects whether support for the IA-64 performance monitor hardware - is included in the kernel. This makes some kernel data-structures a - little bigger and slows down execution a bit, but it is generally - a good idea to turn this on. If you're unsure, say Y. - config IA64_PALINFO tristate "/proc/pal support" help diff --git a/arch/ia64/configs/bigsur_defconfig b/arch/ia64/configs/bigsur_defconfig index f3ba813a5b80..2ae6d9a32a8d 100644 --- a/arch/ia64/configs/bigsur_defconfig +++ b/arch/ia64/configs/bigsur_defconfig @@ -11,7 +11,6 @@ CONFIG_SMP=y CONFIG_NR_CPUS=2 CONFIG_PREEMPT=y # CONFIG_VIRTUAL_MEM_MAP is not set -CONFIG_PERFMON=y CONFIG_IA64_PALINFO=y CONFIG_EFI_VARS=y CONFIG_BINFMT_MISC=m diff --git a/arch/ia64/configs/generic_defconfig b/arch/ia64/configs/generic_defconfig index cb267a07c57f..19a0809cbacc 100644 --- a/arch/ia64/configs/generic_defconfig +++ b/arch/ia64/configs/generic_defconfig @@ -18,7 +18,6 @@ CONFIG_IA64_CYCLONE=y CONFIG_SMP=y CONFIG_HOTPLUG_CPU=y CONFIG_IA64_MCA_RECOVERY=y -CONFIG_PERFMON=y CONFIG_IA64_PALINFO=y CONFIG_KEXEC=y CONFIG_CRASH_DUMP=y diff --git a/arch/ia64/configs/gensparse_defconfig b/arch/ia64/configs/gensparse_defconfig index 7e25f2f031b6..69322bf27aa3 100644 --- a/arch/ia64/configs/gensparse_defconfig +++ b/arch/ia64/configs/gensparse_defconfig @@ -17,7 +17,6 @@ CONFIG_NR_CPUS=512 CONFIG_HOTPLUG_CPU=y CONFIG_SPARSEMEM_MANUAL=y CONFIG_IA64_MCA_RECOVERY=y -CONFIG_PERFMON=y CONFIG_IA64_PALINFO=y CONFIG_EFI_VARS=y CONFIG_BINFMT_MISC=m diff --git a/arch/ia64/configs/tiger_defconfig b/arch/ia64/configs/tiger_defconfig index 3f486d5bdc2d..bb510e9cc2f5 100644 --- a/arch/ia64/configs/tiger_defconfig +++ b/arch/ia64/configs/tiger_defconfig @@ -21,7 +21,6 @@ CONFIG_HOTPLUG_CPU=y CONFIG_PERMIT_BSP_REMOVE=y CONFIG_FORCE_CPEI_RETARGET=y CONFIG_IA64_MCA_RECOVERY=y -CONFIG_PERFMON=y CONFIG_IA64_PALINFO=y CONFIG_KEXEC=y CONFIG_EFI_VARS=y diff --git a/arch/ia64/configs/zx1_defconfig b/arch/ia64/configs/zx1_defconfig index 261e98e1f5fe..b43acc978541 100644 --- a/arch/ia64/configs/zx1_defconfig +++ b/arch/ia64/configs/zx1_defconfig @@ -10,7 +10,6 @@ CONFIG_NR_CPUS=16 CONFIG_HOTPLUG_CPU=y CONFIG_FLATMEM_MANUAL=y CONFIG_IA64_MCA_RECOVERY=y -CONFIG_PERFMON=y CONFIG_IA64_PALINFO=y CONFIG_CRASH_DUMP=y CONFIG_EFI_VARS=y diff --git a/arch/ia64/include/asm/processor.h b/arch/ia64/include/asm/processor.h index 95a2ec37400f..2d8bcdc27d7f 100644 --- a/arch/ia64/include/asm/processor.h +++ b/arch/ia64/include/asm/processor.h @@ -280,15 +280,6 @@ struct thread_struct { __u64 map_base; /* base address for get_unmapped_area() */ __u64 rbs_bot; /* the base address for the RBS */ int last_fph_cpu; /* CPU that may hold the contents of f32-f127 */ - -#ifdef CONFIG_PERFMON - void *pfm_context; /* pointer to detailed PMU context */ - unsigned long pfm_needs_checking; /* when >0, pending perfmon work on kernel exit */ -# define INIT_THREAD_PM .pfm_context = NULL, \ - .pfm_needs_checking = 0UL, -#else -# define INIT_THREAD_PM -#endif unsigned long dbr[IA64_NUM_DBG_REGS]; unsigned long ibr[IA64_NUM_DBG_REGS]; struct ia64_fpreg fph[96]; /* saved/loaded on demand */ @@ -301,7 +292,6 @@ struct thread_struct { .map_base = DEFAULT_MAP_BASE, \ .rbs_bot = STACK_TOP - DEFAULT_USER_STACK_SIZE, \ .last_fph_cpu = -1, \ - INIT_THREAD_PM \ .dbr = {0, }, \ .ibr = {0, }, \ .fph = {{{{0}}}, } \ diff --git a/arch/ia64/include/asm/switch_to.h b/arch/ia64/include/asm/switch_to.h index 9011e90a6b97..a5a4e09468fa 100644 --- a/arch/ia64/include/asm/switch_to.h +++ b/arch/ia64/include/asm/switch_to.h @@ -31,16 +31,8 @@ extern struct task_struct *ia64_switch_to (void *next_task); extern void ia64_save_extra (struct task_struct *task); extern void ia64_load_extra (struct task_struct *task); -#ifdef CONFIG_PERFMON - DECLARE_PER_CPU(unsigned long, pfm_syst_info); -# define PERFMON_IS_SYSWIDE() (__this_cpu_read(pfm_syst_info) & 0x1) -#else -# define PERFMON_IS_SYSWIDE() (0) -#endif - #define IA64_HAS_EXTRA_STATE(t) \ - ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \ - || PERFMON_IS_SYSWIDE()) + ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID)) #define __switch_to(prev,next,last) do { \ if (IA64_HAS_EXTRA_STATE(prev)) \ diff --git a/arch/ia64/kernel/Makefile b/arch/ia64/kernel/Makefile index 1a8df6669eee..81901c5e5426 100644 --- a/arch/ia64/kernel/Makefile +++ b/arch/ia64/kernel/Makefile @@ -10,7 +10,7 @@ endif extra-y := head.o vmlinux.lds obj-y := entry.o efi.o efi_stub.o gate-data.o fsys.o ia64_ksyms.o irq.o irq_ia64.o \ - irq_lsapic.o ivt.o pal.o patch.o process.o perfmon.o ptrace.o sal.o \ + irq_lsapic.o ivt.o pal.o patch.o process.o ptrace.o sal.o \ salinfo.o setup.o signal.o sys_ia64.o time.o traps.o unaligned.o \ unwind.o mca.o mca_asm.o topology.o dma-mapping.o iosapic.o acpi.o \ acpi-ext.o @@ -21,7 +21,6 @@ obj-$(CONFIG_IA64_PALINFO) += palinfo.o obj-$(CONFIG_MODULES) += module.o obj-$(CONFIG_SMP) += smp.o smpboot.o obj-$(CONFIG_NUMA) += numa.o -obj-$(CONFIG_PERFMON) += perfmon_default_smpl.o obj-$(CONFIG_IA64_CYCLONE) += cyclone.o obj-$(CONFIG_IA64_MCA_RECOVERY) += mca_recovery.o obj-$(CONFIG_KPROBES) += kprobes.o diff --git a/arch/ia64/kernel/irq_ia64.c b/arch/ia64/kernel/irq_ia64.c index 6fff934150eb..46e33c5cb53d 100644 --- a/arch/ia64/kernel/irq_ia64.c +++ b/arch/ia64/kernel/irq_ia64.c @@ -40,10 +40,6 @@ #include #include -#ifdef CONFIG_PERFMON -# include -#endif - #define IRQ_DEBUG 0 #define IRQ_VECTOR_UNASSIGNED (0) @@ -627,9 +623,6 @@ init_IRQ (void) "irq_move"); } #endif -#ifdef CONFIG_PERFMON - pfm_init_percpu(); -#endif } void diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c deleted file mode 100644 index 0dc3611e7971..000000000000 --- a/arch/ia64/kernel/perfmon.c +++ /dev/null @@ -1,6703 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-only -/* - * This file implements the perfmon-2 subsystem which is used - * to program the IA-64 Performance Monitoring Unit (PMU). - * - * The initial version of perfmon.c was written by - * Ganesh Venkitachalam, IBM Corp. - * - * Then it was modified for perfmon-1.x by Stephane Eranian and - * David Mosberger, Hewlett Packard Co. - * - * Version Perfmon-2.x is a rewrite of perfmon-1.x - * by Stephane Eranian, Hewlett Packard Co. - * - * Copyright (C) 1999-2005 Hewlett Packard Co - * Stephane Eranian - * David Mosberger-Tang - * - * More information about perfmon available at: - * http://www.hpl.hp.com/research/linux/perfmon - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include - -#include "irq.h" - -#ifdef CONFIG_PERFMON -/* - * perfmon context state - */ -#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */ -#define PFM_CTX_LOADED 2 /* context is loaded onto a task */ -#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */ -#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */ - -#define PFM_INVALID_ACTIVATION (~0UL) - -#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */ -#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */ - -/* - * depth of message queue - */ -#define PFM_MAX_MSGS 32 -#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail) - -/* - * type of a PMU register (bitmask). - * bitmask structure: - * bit0 : register implemented - * bit1 : end marker - * bit2-3 : reserved - * bit4 : pmc has pmc.pm - * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter - * bit6-7 : register type - * bit8-31: reserved - */ -#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */ -#define PFM_REG_IMPL 0x1 /* register implemented */ -#define PFM_REG_END 0x2 /* end marker */ -#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ -#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ -#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */ -#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */ -#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ - -#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END) -#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END) - -#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY) - -/* i assumed unsigned */ -#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) -#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) - -/* XXX: these assume that register i is implemented */ -#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) -#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) -#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR) -#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL) - -#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value -#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask -#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0] -#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0] - -#define PFM_NUM_IBRS IA64_NUM_DBG_REGS -#define PFM_NUM_DBRS IA64_NUM_DBG_REGS - -#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0) -#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling) -#define PFM_CTX_TASK(h) (h)->ctx_task - -#define PMU_PMC_OI 5 /* position of pmc.oi bit */ - -/* XXX: does not support more than 64 PMDs */ -#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) -#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) - -#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) - -#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) -#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) -#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) -#define PFM_CODE_RR 0 /* requesting code range restriction */ -#define PFM_DATA_RR 1 /* requestion data range restriction */ - -#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v) -#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v) -#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info) - -#define RDEP(x) (1UL<<(x)) - -/* - * context protection macros - * in SMP: - * - we need to protect against CPU concurrency (spin_lock) - * - we need to protect against PMU overflow interrupts (local_irq_disable) - * in UP: - * - we need to protect against PMU overflow interrupts (local_irq_disable) - * - * spin_lock_irqsave()/spin_unlock_irqrestore(): - * in SMP: local_irq_disable + spin_lock - * in UP : local_irq_disable - * - * spin_lock()/spin_lock(): - * in UP : removed automatically - * in SMP: protect against context accesses from other CPU. interrupts - * are not masked. This is useful for the PMU interrupt handler - * because we know we will not get PMU concurrency in that code. - */ -#define PROTECT_CTX(c, f) \ - do { \ - DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \ - spin_lock_irqsave(&(c)->ctx_lock, f); \ - DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \ - } while(0) - -#define UNPROTECT_CTX(c, f) \ - do { \ - DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \ - spin_unlock_irqrestore(&(c)->ctx_lock, f); \ - } while(0) - -#define PROTECT_CTX_NOPRINT(c, f) \ - do { \ - spin_lock_irqsave(&(c)->ctx_lock, f); \ - } while(0) - - -#define UNPROTECT_CTX_NOPRINT(c, f) \ - do { \ - spin_unlock_irqrestore(&(c)->ctx_lock, f); \ - } while(0) - - -#define PROTECT_CTX_NOIRQ(c) \ - do { \ - spin_lock(&(c)->ctx_lock); \ - } while(0) - -#define UNPROTECT_CTX_NOIRQ(c) \ - do { \ - spin_unlock(&(c)->ctx_lock); \ - } while(0) - - -#ifdef CONFIG_SMP - -#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number) -#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++ -#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION() - -#else /* !CONFIG_SMP */ -#define SET_ACTIVATION(t) do {} while(0) -#define GET_ACTIVATION(t) do {} while(0) -#define INC_ACTIVATION(t) do {} while(0) -#endif /* CONFIG_SMP */ - -#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) -#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner) -#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx) - -#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g) -#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) - -#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) - -/* - * cmp0 must be the value of pmc0 - */ -#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL) - -#define PFMFS_MAGIC 0xa0b4d889 - -/* - * debugging - */ -#define PFM_DEBUGGING 1 -#ifdef PFM_DEBUGGING -#define DPRINT(a) \ - do { \ - if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ - } while (0) - -#define DPRINT_ovfl(a) \ - do { \ - if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ - } while (0) -#endif - -/* - * 64-bit software counter structure - * - * the next_reset_type is applied to the next call to pfm_reset_regs() - */ -typedef struct { - unsigned long val; /* virtual 64bit counter value */ - unsigned long lval; /* last reset value */ - unsigned long long_reset; /* reset value on sampling overflow */ - unsigned long short_reset; /* reset value on overflow */ - unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */ - unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */ - unsigned long seed; /* seed for random-number generator */ - unsigned long mask; /* mask for random-number generator */ - unsigned int flags; /* notify/do not notify */ - unsigned long eventid; /* overflow event identifier */ -} pfm_counter_t; - -/* - * context flags - */ -typedef struct { - unsigned int block:1; /* when 1, task will blocked on user notifications */ - unsigned int system:1; /* do system wide monitoring */ - unsigned int using_dbreg:1; /* using range restrictions (debug registers) */ - unsigned int is_sampling:1; /* true if using a custom format */ - unsigned int excl_idle:1; /* exclude idle task in system wide session */ - unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */ - unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */ - unsigned int no_msg:1; /* no message sent on overflow */ - unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */ - unsigned int reserved:22; -} pfm_context_flags_t; - -#define PFM_TRAP_REASON_NONE 0x0 /* default value */ -#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */ -#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */ - - -/* - * perfmon context: encapsulates all the state of a monitoring session - */ - -typedef struct pfm_context { - spinlock_t ctx_lock; /* context protection */ - - pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */ - unsigned int ctx_state; /* state: active/inactive (no bitfield) */ - - struct task_struct *ctx_task; /* task to which context is attached */ - - unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */ - - struct completion ctx_restart_done; /* use for blocking notification mode */ - - unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */ - unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */ - unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */ - - unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */ - unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */ - unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */ - - unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */ - - unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */ - unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */ - unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */ - unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */ - - pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */ - - unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */ - unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */ - - unsigned long ctx_saved_psr_up; /* only contains psr.up value */ - - unsigned long ctx_last_activation; /* context last activation number for last_cpu */ - unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */ - unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */ - - int ctx_fd; /* file descriptor used my this context */ - pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */ - - pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */ - void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */ - unsigned long ctx_smpl_size; /* size of sampling buffer */ - void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */ - - wait_queue_head_t ctx_msgq_wait; - pfm_msg_t ctx_msgq[PFM_MAX_MSGS]; - int ctx_msgq_head; - int ctx_msgq_tail; - struct fasync_struct *ctx_async_queue; - - wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */ -} pfm_context_t; - -/* - * magic number used to verify that structure is really - * a perfmon context - */ -#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops) - -#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context) - -#ifdef CONFIG_SMP -#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v) -#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu -#else -#define SET_LAST_CPU(ctx, v) do {} while(0) -#define GET_LAST_CPU(ctx) do {} while(0) -#endif - - -#define ctx_fl_block ctx_flags.block -#define ctx_fl_system ctx_flags.system -#define ctx_fl_using_dbreg ctx_flags.using_dbreg -#define ctx_fl_is_sampling ctx_flags.is_sampling -#define ctx_fl_excl_idle ctx_flags.excl_idle -#define ctx_fl_going_zombie ctx_flags.going_zombie -#define ctx_fl_trap_reason ctx_flags.trap_reason -#define ctx_fl_no_msg ctx_flags.no_msg -#define ctx_fl_can_restart ctx_flags.can_restart - -#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0); -#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking - -/* - * global information about all sessions - * mostly used to synchronize between system wide and per-process - */ -typedef struct { - spinlock_t pfs_lock; /* lock the structure */ - - unsigned int pfs_task_sessions; /* number of per task sessions */ - unsigned int pfs_sys_sessions; /* number of per system wide sessions */ - unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */ - unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */ - struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ -} pfm_session_t; - -/* - * information about a PMC or PMD. - * dep_pmd[]: a bitmask of dependent PMD registers - * dep_pmc[]: a bitmask of dependent PMC registers - */ -typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); -typedef struct { - unsigned int type; - int pm_pos; - unsigned long default_value; /* power-on default value */ - unsigned long reserved_mask; /* bitmask of reserved bits */ - pfm_reg_check_t read_check; - pfm_reg_check_t write_check; - unsigned long dep_pmd[4]; - unsigned long dep_pmc[4]; -} pfm_reg_desc_t; - -/* assume cnum is a valid monitor */ -#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) - -/* - * This structure is initialized at boot time and contains - * a description of the PMU main characteristics. - * - * If the probe function is defined, detection is based - * on its return value: - * - 0 means recognized PMU - * - anything else means not supported - * When the probe function is not defined, then the pmu_family field - * is used and it must match the host CPU family such that: - * - cpu->family & config->pmu_family != 0 - */ -typedef struct { - unsigned long ovfl_val; /* overflow value for counters */ - - pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */ - pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */ - - unsigned int num_pmcs; /* number of PMCS: computed at init time */ - unsigned int num_pmds; /* number of PMDS: computed at init time */ - unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */ - unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */ - - char *pmu_name; /* PMU family name */ - unsigned int pmu_family; /* cpuid family pattern used to identify pmu */ - unsigned int flags; /* pmu specific flags */ - unsigned int num_ibrs; /* number of IBRS: computed at init time */ - unsigned int num_dbrs; /* number of DBRS: computed at init time */ - unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */ - int (*probe)(void); /* customized probe routine */ - unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */ -} pmu_config_t; -/* - * PMU specific flags - */ -#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */ - -/* - * debug register related type definitions - */ -typedef struct { - unsigned long ibr_mask:56; - unsigned long ibr_plm:4; - unsigned long ibr_ig:3; - unsigned long ibr_x:1; -} ibr_mask_reg_t; - -typedef struct { - unsigned long dbr_mask:56; - unsigned long dbr_plm:4; - unsigned long dbr_ig:2; - unsigned long dbr_w:1; - unsigned long dbr_r:1; -} dbr_mask_reg_t; - -typedef union { - unsigned long val; - ibr_mask_reg_t ibr; - dbr_mask_reg_t dbr; -} dbreg_t; - - -/* - * perfmon command descriptions - */ -typedef struct { - int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); - char *cmd_name; - int cmd_flags; - unsigned int cmd_narg; - size_t cmd_argsize; - int (*cmd_getsize)(void *arg, size_t *sz); -} pfm_cmd_desc_t; - -#define PFM_CMD_FD 0x01 /* command requires a file descriptor */ -#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */ -#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */ -#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */ - - -#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name -#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) -#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) -#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) -#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) - -#define PFM_CMD_ARG_MANY -1 /* cannot be zero */ - -typedef struct { - unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */ - unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */ - unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */ - unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */ - unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */ - unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */ - unsigned long pfm_smpl_handler_calls; - unsigned long pfm_smpl_handler_cycles; - char pad[SMP_CACHE_BYTES] ____cacheline_aligned; -} pfm_stats_t; - -/* - * perfmon internal variables - */ -static pfm_stats_t pfm_stats[NR_CPUS]; -static pfm_session_t pfm_sessions; /* global sessions information */ - -static DEFINE_SPINLOCK(pfm_alt_install_check); -static pfm_intr_handler_desc_t *pfm_alt_intr_handler; - -static struct proc_dir_entry *perfmon_dir; -static pfm_uuid_t pfm_null_uuid = {0,}; - -static spinlock_t pfm_buffer_fmt_lock; -static LIST_HEAD(pfm_buffer_fmt_list); - -static pmu_config_t *pmu_conf; - -/* sysctl() controls */ -pfm_sysctl_t pfm_sysctl; -EXPORT_SYMBOL(pfm_sysctl); - -static struct ctl_table pfm_ctl_table[] = { - { - .procname = "debug", - .data = &pfm_sysctl.debug, - .maxlen = sizeof(int), - .mode = 0666, - .proc_handler = proc_dointvec, - }, - { - .procname = "debug_ovfl", - .data = &pfm_sysctl.debug_ovfl, - .maxlen = sizeof(int), - .mode = 0666, - .proc_handler = proc_dointvec, - }, - { - .procname = "fastctxsw", - .data = &pfm_sysctl.fastctxsw, - .maxlen = sizeof(int), - .mode = 0600, - .proc_handler = proc_dointvec, - }, - { - .procname = "expert_mode", - .data = &pfm_sysctl.expert_mode, - .maxlen = sizeof(int), - .mode = 0600, - .proc_handler = proc_dointvec, - }, - {} -}; -static struct ctl_table pfm_sysctl_dir[] = { - { - .procname = "perfmon", - .mode = 0555, - .child = pfm_ctl_table, - }, - {} -}; -static struct ctl_table pfm_sysctl_root[] = { - { - .procname = "kernel", - .mode = 0555, - .child = pfm_sysctl_dir, - }, - {} -}; -static struct ctl_table_header *pfm_sysctl_header; - -static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); - -#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v) -#define pfm_get_cpu_data(a,b) per_cpu(a, b) - -static inline void -pfm_put_task(struct task_struct *task) -{ - if (task != current) put_task_struct(task); -} - -static inline unsigned long -pfm_protect_ctx_ctxsw(pfm_context_t *x) -{ - spin_lock(&(x)->ctx_lock); - return 0UL; -} - -static inline void -pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) -{ - spin_unlock(&(x)->ctx_lock); -} - -/* forward declaration */ -static const struct dentry_operations pfmfs_dentry_operations; - -static int pfmfs_init_fs_context(struct fs_context *fc) -{ - struct pseudo_fs_context *ctx = init_pseudo(fc, PFMFS_MAGIC); - if (!ctx) - return -ENOMEM; - ctx->dops = &pfmfs_dentry_operations; - return 0; -} - -static struct file_system_type pfm_fs_type = { - .name = "pfmfs", - .init_fs_context = pfmfs_init_fs_context, - .kill_sb = kill_anon_super, -}; -MODULE_ALIAS_FS("pfmfs"); - -DEFINE_PER_CPU(unsigned long, pfm_syst_info); -DEFINE_PER_CPU(struct task_struct *, pmu_owner); -DEFINE_PER_CPU(pfm_context_t *, pmu_ctx); -DEFINE_PER_CPU(unsigned long, pmu_activation_number); -EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); - - -/* forward declaration */ -static const struct file_operations pfm_file_ops; - -/* - * forward declarations - */ -#ifndef CONFIG_SMP -static void pfm_lazy_save_regs (struct task_struct *ta); -#endif - -void dump_pmu_state(const char *); -static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); - -#include "perfmon_itanium.h" -#include "perfmon_mckinley.h" -#include "perfmon_montecito.h" -#include "perfmon_generic.h" - -static pmu_config_t *pmu_confs[]={ - &pmu_conf_mont, - &pmu_conf_mck, - &pmu_conf_ita, - &pmu_conf_gen, /* must be last */ - NULL -}; - - -static int pfm_end_notify_user(pfm_context_t *ctx); - -static inline void -pfm_clear_psr_pp(void) -{ - ia64_rsm(IA64_PSR_PP); - ia64_srlz_i(); -} - -static inline void -pfm_set_psr_pp(void) -{ - ia64_ssm(IA64_PSR_PP); - ia64_srlz_i(); -} - -static inline void -pfm_clear_psr_up(void) -{ - ia64_rsm(IA64_PSR_UP); - ia64_srlz_i(); -} - -static inline void -pfm_set_psr_up(void) -{ - ia64_ssm(IA64_PSR_UP); - ia64_srlz_i(); -} - -static inline unsigned long -pfm_get_psr(void) -{ - unsigned long tmp; - tmp = ia64_getreg(_IA64_REG_PSR); - ia64_srlz_i(); - return tmp; -} - -static inline void -pfm_set_psr_l(unsigned long val) -{ - ia64_setreg(_IA64_REG_PSR_L, val); - ia64_srlz_i(); -} - -static inline void -pfm_freeze_pmu(void) -{ - ia64_set_pmc(0,1UL); - ia64_srlz_d(); -} - -static inline void -pfm_unfreeze_pmu(void) -{ - ia64_set_pmc(0,0UL); - ia64_srlz_d(); -} - -static inline void -pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) -{ - int i; - - for (i=0; i < nibrs; i++) { - ia64_set_ibr(i, ibrs[i]); - ia64_dv_serialize_instruction(); - } - ia64_srlz_i(); -} - -static inline void -pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) -{ - int i; - - for (i=0; i < ndbrs; i++) { - ia64_set_dbr(i, dbrs[i]); - ia64_dv_serialize_data(); - } - ia64_srlz_d(); -} - -/* - * PMD[i] must be a counter. no check is made - */ -static inline unsigned long -pfm_read_soft_counter(pfm_context_t *ctx, int i) -{ - return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); -} - -/* - * PMD[i] must be a counter. no check is made - */ -static inline void -pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) -{ - unsigned long ovfl_val = pmu_conf->ovfl_val; - - ctx->ctx_pmds[i].val = val & ~ovfl_val; - /* - * writing to unimplemented part is ignore, so we do not need to - * mask off top part - */ - ia64_set_pmd(i, val & ovfl_val); -} - -static pfm_msg_t * -pfm_get_new_msg(pfm_context_t *ctx) -{ - int idx, next; - - next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; - - DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); - if (next == ctx->ctx_msgq_head) return NULL; - - idx = ctx->ctx_msgq_tail; - ctx->ctx_msgq_tail = next; - - DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); - - return ctx->ctx_msgq+idx; -} - -static pfm_msg_t * -pfm_get_next_msg(pfm_context_t *ctx) -{ - pfm_msg_t *msg; - - DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); - - if (PFM_CTXQ_EMPTY(ctx)) return NULL; - - /* - * get oldest message - */ - msg = ctx->ctx_msgq+ctx->ctx_msgq_head; - - /* - * and move forward - */ - ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; - - DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); - - return msg; -} - -static void -pfm_reset_msgq(pfm_context_t *ctx) -{ - ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; - DPRINT(("ctx=%p msgq reset\n", ctx)); -} - -static pfm_context_t * -pfm_context_alloc(int ctx_flags) -{ - pfm_context_t *ctx; - - /* - * allocate context descriptor - * must be able to free with interrupts disabled - */ - ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL); - if (ctx) { - DPRINT(("alloc ctx @%p\n", ctx)); - - /* - * init context protection lock - */ - spin_lock_init(&ctx->ctx_lock); - - /* - * context is unloaded - */ - ctx->ctx_state = PFM_CTX_UNLOADED; - - /* - * initialization of context's flags - */ - ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; - ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; - ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; - /* - * will move to set properties - * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; - */ - - /* - * init restart semaphore to locked - */ - init_completion(&ctx->ctx_restart_done); - - /* - * activation is used in SMP only - */ - ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; - SET_LAST_CPU(ctx, -1); - - /* - * initialize notification message queue - */ - ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; - init_waitqueue_head(&ctx->ctx_msgq_wait); - init_waitqueue_head(&ctx->ctx_zombieq); - - } - return ctx; -} - -static void -pfm_context_free(pfm_context_t *ctx) -{ - if (ctx) { - DPRINT(("free ctx @%p\n", ctx)); - kfree(ctx); - } -} - -static void -pfm_mask_monitoring(struct task_struct *task) -{ - pfm_context_t *ctx = PFM_GET_CTX(task); - unsigned long mask, val, ovfl_mask; - int i; - - DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task))); - - ovfl_mask = pmu_conf->ovfl_val; - /* - * monitoring can only be masked as a result of a valid - * counter overflow. In UP, it means that the PMU still - * has an owner. Note that the owner can be different - * from the current task. However the PMU state belongs - * to the owner. - * In SMP, a valid overflow only happens when task is - * current. Therefore if we come here, we know that - * the PMU state belongs to the current task, therefore - * we can access the live registers. - * - * So in both cases, the live register contains the owner's - * state. We can ONLY touch the PMU registers and NOT the PSR. - * - * As a consequence to this call, the ctx->th_pmds[] array - * contains stale information which must be ignored - * when context is reloaded AND monitoring is active (see - * pfm_restart). - */ - mask = ctx->ctx_used_pmds[0]; - for (i = 0; mask; i++, mask>>=1) { - /* skip non used pmds */ - if ((mask & 0x1) == 0) continue; - val = ia64_get_pmd(i); - - if (PMD_IS_COUNTING(i)) { - /* - * we rebuild the full 64 bit value of the counter - */ - ctx->ctx_pmds[i].val += (val & ovfl_mask); - } else { - ctx->ctx_pmds[i].val = val; - } - DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", - i, - ctx->ctx_pmds[i].val, - val & ovfl_mask)); - } - /* - * mask monitoring by setting the privilege level to 0 - * we cannot use psr.pp/psr.up for this, it is controlled by - * the user - * - * if task is current, modify actual registers, otherwise modify - * thread save state, i.e., what will be restored in pfm_load_regs() - */ - mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; - for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { - if ((mask & 0x1) == 0UL) continue; - ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL); - ctx->th_pmcs[i] &= ~0xfUL; - DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); - } - /* - * make all of this visible - */ - ia64_srlz_d(); -} - -/* - * must always be done with task == current - * - * context must be in MASKED state when calling - */ -static void -pfm_restore_monitoring(struct task_struct *task) -{ - pfm_context_t *ctx = PFM_GET_CTX(task); - unsigned long mask, ovfl_mask; - unsigned long psr, val; - int i, is_system; - - is_system = ctx->ctx_fl_system; - ovfl_mask = pmu_conf->ovfl_val; - - if (task != current) { - printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current)); - return; - } - if (ctx->ctx_state != PFM_CTX_MASKED) { - printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, - task_pid_nr(task), task_pid_nr(current), ctx->ctx_state); - return; - } - psr = pfm_get_psr(); - /* - * monitoring is masked via the PMC. - * As we restore their value, we do not want each counter to - * restart right away. We stop monitoring using the PSR, - * restore the PMC (and PMD) and then re-establish the psr - * as it was. Note that there can be no pending overflow at - * this point, because monitoring was MASKED. - * - * system-wide session are pinned and self-monitoring - */ - if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { - /* disable dcr pp */ - ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); - pfm_clear_psr_pp(); - } else { - pfm_clear_psr_up(); - } - /* - * first, we restore the PMD - */ - mask = ctx->ctx_used_pmds[0]; - for (i = 0; mask; i++, mask>>=1) { - /* skip non used pmds */ - if ((mask & 0x1) == 0) continue; - - if (PMD_IS_COUNTING(i)) { - /* - * we split the 64bit value according to - * counter width - */ - val = ctx->ctx_pmds[i].val & ovfl_mask; - ctx->ctx_pmds[i].val &= ~ovfl_mask; - } else { - val = ctx->ctx_pmds[i].val; - } - ia64_set_pmd(i, val); - - DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", - i, - ctx->ctx_pmds[i].val, - val)); - } - /* - * restore the PMCs - */ - mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; - for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { - if ((mask & 0x1) == 0UL) continue; - ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; - ia64_set_pmc(i, ctx->th_pmcs[i]); - DPRINT(("[%d] pmc[%d]=0x%lx\n", - task_pid_nr(task), i, ctx->th_pmcs[i])); - } - ia64_srlz_d(); - - /* - * must restore DBR/IBR because could be modified while masked - * XXX: need to optimize - */ - if (ctx->ctx_fl_using_dbreg) { - pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); - pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); - } - - /* - * now restore PSR - */ - if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { - /* enable dcr pp */ - ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); - ia64_srlz_i(); - } - pfm_set_psr_l(psr); -} - -static inline void -pfm_save_pmds(unsigned long *pmds, unsigned long mask) -{ - int i; - - ia64_srlz_d(); - - for (i=0; mask; i++, mask>>=1) { - if (mask & 0x1) pmds[i] = ia64_get_pmd(i); - } -} - -/* - * reload from thread state (used for ctxw only) - */ -static inline void -pfm_restore_pmds(unsigned long *pmds, unsigned long mask) -{ - int i; - unsigned long val, ovfl_val = pmu_conf->ovfl_val; - - for (i=0; mask; i++, mask>>=1) { - if ((mask & 0x1) == 0) continue; - val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; - ia64_set_pmd(i, val); - } - ia64_srlz_d(); -} - -/* - * propagate PMD from context to thread-state - */ -static inline void -pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) -{ - unsigned long ovfl_val = pmu_conf->ovfl_val; - unsigned long mask = ctx->ctx_all_pmds[0]; - unsigned long val; - int i; - - DPRINT(("mask=0x%lx\n", mask)); - - for (i=0; mask; i++, mask>>=1) { - - val = ctx->ctx_pmds[i].val; - - /* - * We break up the 64 bit value into 2 pieces - * the lower bits go to the machine state in the - * thread (will be reloaded on ctxsw in). - * The upper part stays in the soft-counter. - */ - if (PMD_IS_COUNTING(i)) { - ctx->ctx_pmds[i].val = val & ~ovfl_val; - val &= ovfl_val; - } - ctx->th_pmds[i] = val; - - DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", - i, - ctx->th_pmds[i], - ctx->ctx_pmds[i].val)); - } -} - -/* - * propagate PMC from context to thread-state - */ -static inline void -pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) -{ - unsigned long mask = ctx->ctx_all_pmcs[0]; - int i; - - DPRINT(("mask=0x%lx\n", mask)); - - for (i=0; mask; i++, mask>>=1) { - /* masking 0 with ovfl_val yields 0 */ - ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; - DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); - } -} - - - -static inline void -pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) -{ - int i; - - for (i=0; mask; i++, mask>>=1) { - if ((mask & 0x1) == 0) continue; - ia64_set_pmc(i, pmcs[i]); - } - ia64_srlz_d(); -} - -static inline int -pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) -{ - return memcmp(a, b, sizeof(pfm_uuid_t)); -} - -static inline int -pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) -{ - int ret = 0; - if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); - return ret; -} - -static inline int -pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) -{ - int ret = 0; - if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); - return ret; -} - - -static inline int -pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, - int cpu, void *arg) -{ - int ret = 0; - if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); - return ret; -} - -static inline int -pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, - int cpu, void *arg) -{ - int ret = 0; - if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); - return ret; -} - -static inline int -pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) -{ - int ret = 0; - if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); - return ret; -} - -static inline int -pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) -{ - int ret = 0; - if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); - return ret; -} - -static pfm_buffer_fmt_t * -__pfm_find_buffer_fmt(pfm_uuid_t uuid) -{ - struct list_head * pos; - pfm_buffer_fmt_t * entry; - - list_for_each(pos, &pfm_buffer_fmt_list) { - entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); - if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) - return entry; - } - return NULL; -} - -/* - * find a buffer format based on its uuid - */ -static pfm_buffer_fmt_t * -pfm_find_buffer_fmt(pfm_uuid_t uuid) -{ - pfm_buffer_fmt_t * fmt; - spin_lock(&pfm_buffer_fmt_lock); - fmt = __pfm_find_buffer_fmt(uuid); - spin_unlock(&pfm_buffer_fmt_lock); - return fmt; -} - -int -pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) -{ - int ret = 0; - - /* some sanity checks */ - if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; - - /* we need at least a handler */ - if (fmt->fmt_handler == NULL) return -EINVAL; - - /* - * XXX: need check validity of fmt_arg_size - */ - - spin_lock(&pfm_buffer_fmt_lock); - - if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { - printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); - ret = -EBUSY; - goto out; - } - list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); - printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); - -out: - spin_unlock(&pfm_buffer_fmt_lock); - return ret; -} -EXPORT_SYMBOL(pfm_register_buffer_fmt); - -int -pfm_unregister_buffer_fmt(pfm_uuid_t uuid) -{ - pfm_buffer_fmt_t *fmt; - int ret = 0; - - spin_lock(&pfm_buffer_fmt_lock); - - fmt = __pfm_find_buffer_fmt(uuid); - if (!fmt) { - printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); - ret = -EINVAL; - goto out; - } - list_del_init(&fmt->fmt_list); - printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); - -out: - spin_unlock(&pfm_buffer_fmt_lock); - return ret; - -} -EXPORT_SYMBOL(pfm_unregister_buffer_fmt); - -static int -pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) -{ - unsigned long flags; - /* - * validity checks on cpu_mask have been done upstream - */ - LOCK_PFS(flags); - - DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", - pfm_sessions.pfs_sys_sessions, - pfm_sessions.pfs_task_sessions, - pfm_sessions.pfs_sys_use_dbregs, - is_syswide, - cpu)); - - if (is_syswide) { - /* - * cannot mix system wide and per-task sessions - */ - if (pfm_sessions.pfs_task_sessions > 0UL) { - DPRINT(("system wide not possible, %u conflicting task_sessions\n", - pfm_sessions.pfs_task_sessions)); - goto abort; - } - - if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; - - DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); - - pfm_sessions.pfs_sys_session[cpu] = task; - - pfm_sessions.pfs_sys_sessions++ ; - - } else { - if (pfm_sessions.pfs_sys_sessions) goto abort; - pfm_sessions.pfs_task_sessions++; - } - - DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", - pfm_sessions.pfs_sys_sessions, - pfm_sessions.pfs_task_sessions, - pfm_sessions.pfs_sys_use_dbregs, - is_syswide, - cpu)); - - /* - * Force idle() into poll mode - */ - cpu_idle_poll_ctrl(true); - - UNLOCK_PFS(flags); - - return 0; - -error_conflict: - DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", - task_pid_nr(pfm_sessions.pfs_sys_session[cpu]), - cpu)); -abort: - UNLOCK_PFS(flags); - - return -EBUSY; - -} - -static int -pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) -{ - unsigned long flags; - /* - * validity checks on cpu_mask have been done upstream - */ - LOCK_PFS(flags); - - DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", - pfm_sessions.pfs_sys_sessions, - pfm_sessions.pfs_task_sessions, - pfm_sessions.pfs_sys_use_dbregs, - is_syswide, - cpu)); - - - if (is_syswide) { - pfm_sessions.pfs_sys_session[cpu] = NULL; - /* - * would not work with perfmon+more than one bit in cpu_mask - */ - if (ctx && ctx->ctx_fl_using_dbreg) { - if (pfm_sessions.pfs_sys_use_dbregs == 0) { - printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); - } else { - pfm_sessions.pfs_sys_use_dbregs--; - } - } - pfm_sessions.pfs_sys_sessions--; - } else { - pfm_sessions.pfs_task_sessions--; - } - DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", - pfm_sessions.pfs_sys_sessions, - pfm_sessions.pfs_task_sessions, - pfm_sessions.pfs_sys_use_dbregs, - is_syswide, - cpu)); - - /* Undo forced polling. Last session reenables pal_halt */ - cpu_idle_poll_ctrl(false); - - UNLOCK_PFS(flags); - - return 0; -} - -/* - * removes virtual mapping of the sampling buffer. - * IMPORTANT: cannot be called with interrupts disable, e.g. inside - * a PROTECT_CTX() section. - */ -static int -pfm_remove_smpl_mapping(void *vaddr, unsigned long size) -{ - struct task_struct *task = current; - int r; - - /* sanity checks */ - if (task->mm == NULL || size == 0UL || vaddr == NULL) { - printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm); - return -EINVAL; - } - - DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); - - /* - * does the actual unmapping - */ - r = vm_munmap((unsigned long)vaddr, size); - - if (r !=0) { - printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size); - } - - DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); - - return 0; -} - -/* - * free actual physical storage used by sampling buffer - */ -#if 0 -static int -pfm_free_smpl_buffer(pfm_context_t *ctx) -{ - pfm_buffer_fmt_t *fmt; - - if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; - - /* - * we won't use the buffer format anymore - */ - fmt = ctx->ctx_buf_fmt; - - DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", - ctx->ctx_smpl_hdr, - ctx->ctx_smpl_size, - ctx->ctx_smpl_vaddr)); - - pfm_buf_fmt_exit(fmt, current, NULL, NULL); - - /* - * free the buffer - */ - vfree(ctx->ctx_smpl_hdr); - - ctx->ctx_smpl_hdr = NULL; - ctx->ctx_smpl_size = 0UL; - - return 0; - -invalid_free: - printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current)); - return -EINVAL; -} -#endif - -static inline void -pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) -{ - if (fmt == NULL) return; - - pfm_buf_fmt_exit(fmt, current, NULL, NULL); - -} - -/* - * pfmfs should _never_ be mounted by userland - too much of security hassle, - * no real gain from having the whole whorehouse mounted. So we don't need - * any operations on the root directory. However, we need a non-trivial - * d_name - pfm: will go nicely and kill the special-casing in procfs. - */ -static struct vfsmount *pfmfs_mnt __read_mostly; - -static int __init -init_pfm_fs(void) -{ - int err = register_filesystem(&pfm_fs_type); - if (!err) { - pfmfs_mnt = kern_mount(&pfm_fs_type); - err = PTR_ERR(pfmfs_mnt); - if (IS_ERR(pfmfs_mnt)) - unregister_filesystem(&pfm_fs_type); - else - err = 0; - } - return err; -} - -static ssize_t -pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) -{ - pfm_context_t *ctx; - pfm_msg_t *msg; - ssize_t ret; - unsigned long flags; - DECLARE_WAITQUEUE(wait, current); - if (PFM_IS_FILE(filp) == 0) { - printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); - return -EINVAL; - } - - ctx = filp->private_data; - if (ctx == NULL) { - printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current)); - return -EINVAL; - } - - /* - * check even when there is no message - */ - if (size < sizeof(pfm_msg_t)) { - DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); - return -EINVAL; - } - - PROTECT_CTX(ctx, flags); - - /* - * put ourselves on the wait queue - */ - add_wait_queue(&ctx->ctx_msgq_wait, &wait); - - - for(;;) { - /* - * check wait queue - */ - - set_current_state(TASK_INTERRUPTIBLE); - - DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); - - ret = 0; - if(PFM_CTXQ_EMPTY(ctx) == 0) break; - - UNPROTECT_CTX(ctx, flags); - - /* - * check non-blocking read - */ - ret = -EAGAIN; - if(filp->f_flags & O_NONBLOCK) break; - - /* - * check pending signals - */ - if(signal_pending(current)) { - ret = -EINTR; - break; - } - /* - * no message, so wait - */ - schedule(); - - PROTECT_CTX(ctx, flags); - } - DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret)); - set_current_state(TASK_RUNNING); - remove_wait_queue(&ctx->ctx_msgq_wait, &wait); - - if (ret < 0) goto abort; - - ret = -EINVAL; - msg = pfm_get_next_msg(ctx); - if (msg == NULL) { - printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current)); - goto abort_locked; - } - - DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); - - ret = -EFAULT; - if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); - -abort_locked: - UNPROTECT_CTX(ctx, flags); -abort: - return ret; -} - -static ssize_t -pfm_write(struct file *file, const char __user *ubuf, - size_t size, loff_t *ppos) -{ - DPRINT(("pfm_write called\n")); - return -EINVAL; -} - -static __poll_t -pfm_poll(struct file *filp, poll_table * wait) -{ - pfm_context_t *ctx; - unsigned long flags; - __poll_t mask = 0; - - if (PFM_IS_FILE(filp) == 0) { - printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); - return 0; - } - - ctx = filp->private_data; - if (ctx == NULL) { - printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current)); - return 0; - } - - - DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); - - poll_wait(filp, &ctx->ctx_msgq_wait, wait); - - PROTECT_CTX(ctx, flags); - - if (PFM_CTXQ_EMPTY(ctx) == 0) - mask = EPOLLIN | EPOLLRDNORM; - - UNPROTECT_CTX(ctx, flags); - - DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); - - return mask; -} - -static long -pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) -{ - DPRINT(("pfm_ioctl called\n")); - return -EINVAL; -} - -/* - * interrupt cannot be masked when coming here - */ -static inline int -pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) -{ - int ret; - - ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); - - DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", - task_pid_nr(current), - fd, - on, - ctx->ctx_async_queue, ret)); - - return ret; -} - -static int -pfm_fasync(int fd, struct file *filp, int on) -{ - pfm_context_t *ctx; - int ret; - - if (PFM_IS_FILE(filp) == 0) { - printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current)); - return -EBADF; - } - - ctx = filp->private_data; - if (ctx == NULL) { - printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current)); - return -EBADF; - } - /* - * we cannot mask interrupts during this call because this may - * may go to sleep if memory is not readily avalaible. - * - * We are protected from the conetxt disappearing by the get_fd()/put_fd() - * done in caller. Serialization of this function is ensured by caller. - */ - ret = pfm_do_fasync(fd, filp, ctx, on); - - - DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", - fd, - on, - ctx->ctx_async_queue, ret)); - - return ret; -} - -#ifdef CONFIG_SMP -/* - * this function is exclusively called from pfm_close(). - * The context is not protected at that time, nor are interrupts - * on the remote CPU. That's necessary to avoid deadlocks. - */ -static void -pfm_syswide_force_stop(void *info) -{ - pfm_context_t *ctx = (pfm_context_t *)info; - struct pt_regs *regs = task_pt_regs(current); - struct task_struct *owner; - unsigned long flags; - int ret; - - if (ctx->ctx_cpu != smp_processor_id()) { - printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n", - ctx->ctx_cpu, - smp_processor_id()); - return; - } - owner = GET_PMU_OWNER(); - if (owner != ctx->ctx_task) { - printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", - smp_processor_id(), - task_pid_nr(owner), task_pid_nr(ctx->ctx_task)); - return; - } - if (GET_PMU_CTX() != ctx) { - printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", - smp_processor_id(), - GET_PMU_CTX(), ctx); - return; - } - - DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task))); - /* - * the context is already protected in pfm_close(), we simply - * need to mask interrupts to avoid a PMU interrupt race on - * this CPU - */ - local_irq_save(flags); - - ret = pfm_context_unload(ctx, NULL, 0, regs); - if (ret) { - DPRINT(("context_unload returned %d\n", ret)); - } - - /* - * unmask interrupts, PMU interrupts are now spurious here - */ - local_irq_restore(flags); -} - -static void -pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) -{ - int ret; - - DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); - ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1); - DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); -} -#endif /* CONFIG_SMP */ - -/* - * called for each close(). Partially free resources. - * When caller is self-monitoring, the context is unloaded. - */ -static int -pfm_flush(struct file *filp, fl_owner_t id) -{ - pfm_context_t *ctx; - struct task_struct *task; - struct pt_regs *regs; - unsigned long flags; - unsigned long smpl_buf_size = 0UL; - void *smpl_buf_vaddr = NULL; - int state, is_system; - - if (PFM_IS_FILE(filp) == 0) { - DPRINT(("bad magic for\n")); - return -EBADF; - } - - ctx = filp->private_data; - if (ctx == NULL) { - printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current)); - return -EBADF; - } - - /* - * remove our file from the async queue, if we use this mode. - * This can be done without the context being protected. We come - * here when the context has become unreachable by other tasks. - * - * We may still have active monitoring at this point and we may - * end up in pfm_overflow_handler(). However, fasync_helper() - * operates with interrupts disabled and it cleans up the - * queue. If the PMU handler is called prior to entering - * fasync_helper() then it will send a signal. If it is - * invoked after, it will find an empty queue and no - * signal will be sent. In both case, we are safe - */ - PROTECT_CTX(ctx, flags); - - state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - - task = PFM_CTX_TASK(ctx); - regs = task_pt_regs(task); - - DPRINT(("ctx_state=%d is_current=%d\n", - state, - task == current ? 1 : 0)); - - /* - * if state == UNLOADED, then task is NULL - */ - - /* - * we must stop and unload because we are losing access to the context. - */ - if (task == current) { -#ifdef CONFIG_SMP - /* - * the task IS the owner but it migrated to another CPU: that's bad - * but we must handle this cleanly. Unfortunately, the kernel does - * not provide a mechanism to block migration (while the context is loaded). - * - * We need to release the resource on the ORIGINAL cpu. - */ - if (is_system && ctx->ctx_cpu != smp_processor_id()) { - - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - /* - * keep context protected but unmask interrupt for IPI - */ - local_irq_restore(flags); - - pfm_syswide_cleanup_other_cpu(ctx); - - /* - * restore interrupt masking - */ - local_irq_save(flags); - - /* - * context is unloaded at this point - */ - } else -#endif /* CONFIG_SMP */ - { - - DPRINT(("forcing unload\n")); - /* - * stop and unload, returning with state UNLOADED - * and session unreserved. - */ - pfm_context_unload(ctx, NULL, 0, regs); - - DPRINT(("ctx_state=%d\n", ctx->ctx_state)); - } - } - - /* - * remove virtual mapping, if any, for the calling task. - * cannot reset ctx field until last user is calling close(). - * - * ctx_smpl_vaddr must never be cleared because it is needed - * by every task with access to the context - * - * When called from do_exit(), the mm context is gone already, therefore - * mm is NULL, i.e., the VMA is already gone and we do not have to - * do anything here - */ - if (ctx->ctx_smpl_vaddr && current->mm) { - smpl_buf_vaddr = ctx->ctx_smpl_vaddr; - smpl_buf_size = ctx->ctx_smpl_size; - } - - UNPROTECT_CTX(ctx, flags); - - /* - * if there was a mapping, then we systematically remove it - * at this point. Cannot be done inside critical section - * because some VM function reenables interrupts. - * - */ - if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size); - - return 0; -} -/* - * called either on explicit close() or from exit_files(). - * Only the LAST user of the file gets to this point, i.e., it is - * called only ONCE. - * - * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero - * (fput()),i.e, last task to access the file. Nobody else can access the - * file at this point. - * - * When called from exit_files(), the VMA has been freed because exit_mm() - * is executed before exit_files(). - * - * When called from exit_files(), the current task is not yet ZOMBIE but we - * flush the PMU state to the context. - */ -static int -pfm_close(struct inode *inode, struct file *filp) -{ - pfm_context_t *ctx; - struct task_struct *task; - struct pt_regs *regs; - DECLARE_WAITQUEUE(wait, current); - unsigned long flags; - unsigned long smpl_buf_size = 0UL; - void *smpl_buf_addr = NULL; - int free_possible = 1; - int state, is_system; - - DPRINT(("pfm_close called private=%p\n", filp->private_data)); - - if (PFM_IS_FILE(filp) == 0) { - DPRINT(("bad magic\n")); - return -EBADF; - } - - ctx = filp->private_data; - if (ctx == NULL) { - printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current)); - return -EBADF; - } - - PROTECT_CTX(ctx, flags); - - state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - - task = PFM_CTX_TASK(ctx); - regs = task_pt_regs(task); - - DPRINT(("ctx_state=%d is_current=%d\n", - state, - task == current ? 1 : 0)); - - /* - * if task == current, then pfm_flush() unloaded the context - */ - if (state == PFM_CTX_UNLOADED) goto doit; - - /* - * context is loaded/masked and task != current, we need to - * either force an unload or go zombie - */ - - /* - * The task is currently blocked or will block after an overflow. - * we must force it to wakeup to get out of the - * MASKED state and transition to the unloaded state by itself. - * - * This situation is only possible for per-task mode - */ - if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { - - /* - * set a "partial" zombie state to be checked - * upon return from down() in pfm_handle_work(). - * - * We cannot use the ZOMBIE state, because it is checked - * by pfm_load_regs() which is called upon wakeup from down(). - * In such case, it would free the context and then we would - * return to pfm_handle_work() which would access the - * stale context. Instead, we set a flag invisible to pfm_load_regs() - * but visible to pfm_handle_work(). - * - * For some window of time, we have a zombie context with - * ctx_state = MASKED and not ZOMBIE - */ - ctx->ctx_fl_going_zombie = 1; - - /* - * force task to wake up from MASKED state - */ - complete(&ctx->ctx_restart_done); - - DPRINT(("waking up ctx_state=%d\n", state)); - - /* - * put ourself to sleep waiting for the other - * task to report completion - * - * the context is protected by mutex, therefore there - * is no risk of being notified of completion before - * begin actually on the waitq. - */ - set_current_state(TASK_INTERRUPTIBLE); - add_wait_queue(&ctx->ctx_zombieq, &wait); - - UNPROTECT_CTX(ctx, flags); - - /* - * XXX: check for signals : - * - ok for explicit close - * - not ok when coming from exit_files() - */ - schedule(); - - - PROTECT_CTX(ctx, flags); - - - remove_wait_queue(&ctx->ctx_zombieq, &wait); - set_current_state(TASK_RUNNING); - - /* - * context is unloaded at this point - */ - DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); - } - else if (task != current) { -#ifdef CONFIG_SMP - /* - * switch context to zombie state - */ - ctx->ctx_state = PFM_CTX_ZOMBIE; - - DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task))); - /* - * cannot free the context on the spot. deferred until - * the task notices the ZOMBIE state - */ - free_possible = 0; -#else - pfm_context_unload(ctx, NULL, 0, regs); -#endif - } - -doit: - /* reload state, may have changed during opening of critical section */ - state = ctx->ctx_state; - - /* - * the context is still attached to a task (possibly current) - * we cannot destroy it right now - */ - - /* - * we must free the sampling buffer right here because - * we cannot rely on it being cleaned up later by the - * monitored task. It is not possible to free vmalloc'ed - * memory in pfm_load_regs(). Instead, we remove the buffer - * now. should there be subsequent PMU overflow originally - * meant for sampling, the will be converted to spurious - * and that's fine because the monitoring tools is gone anyway. - */ - if (ctx->ctx_smpl_hdr) { - smpl_buf_addr = ctx->ctx_smpl_hdr; - smpl_buf_size = ctx->ctx_smpl_size; - /* no more sampling */ - ctx->ctx_smpl_hdr = NULL; - ctx->ctx_fl_is_sampling = 0; - } - - DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", - state, - free_possible, - smpl_buf_addr, - smpl_buf_size)); - - if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); - - /* - * UNLOADED that the session has already been unreserved. - */ - if (state == PFM_CTX_ZOMBIE) { - pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); - } - - /* - * disconnect file descriptor from context must be done - * before we unlock. - */ - filp->private_data = NULL; - - /* - * if we free on the spot, the context is now completely unreachable - * from the callers side. The monitored task side is also cut, so we - * can freely cut. - * - * If we have a deferred free, only the caller side is disconnected. - */ - UNPROTECT_CTX(ctx, flags); - - /* - * All memory free operations (especially for vmalloc'ed memory) - * MUST be done with interrupts ENABLED. - */ - vfree(smpl_buf_addr); - - /* - * return the memory used by the context - */ - if (free_possible) pfm_context_free(ctx); - - return 0; -} - -static const struct file_operations pfm_file_ops = { - .llseek = no_llseek, - .read = pfm_read, - .write = pfm_write, - .poll = pfm_poll, - .unlocked_ioctl = pfm_ioctl, - .fasync = pfm_fasync, - .release = pfm_close, - .flush = pfm_flush -}; - -static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen) -{ - return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]", - d_inode(dentry)->i_ino); -} - -static const struct dentry_operations pfmfs_dentry_operations = { - .d_delete = always_delete_dentry, - .d_dname = pfmfs_dname, -}; - - -static struct file * -pfm_alloc_file(pfm_context_t *ctx) -{ - struct file *file; - struct inode *inode; - struct path path; - struct qstr this = { .name = "" }; - - /* - * allocate a new inode - */ - inode = new_inode(pfmfs_mnt->mnt_sb); - if (!inode) - return ERR_PTR(-ENOMEM); - - DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); - - inode->i_mode = S_IFCHR|S_IRUGO; - inode->i_uid = current_fsuid(); - inode->i_gid = current_fsgid(); - - /* - * allocate a new dcache entry - */ - path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this); - if (!path.dentry) { - iput(inode); - return ERR_PTR(-ENOMEM); - } - path.mnt = mntget(pfmfs_mnt); - - d_add(path.dentry, inode); - - file = alloc_file(&path, FMODE_READ, &pfm_file_ops); - if (IS_ERR(file)) { - path_put(&path); - return file; - } - - file->f_flags = O_RDONLY; - file->private_data = ctx; - - return file; -} - -static int -pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) -{ - DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); - - while (size > 0) { - unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; - - - if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) - return -ENOMEM; - - addr += PAGE_SIZE; - buf += PAGE_SIZE; - size -= PAGE_SIZE; - } - return 0; -} - -/* - * allocate a sampling buffer and remaps it into the user address space of the task - */ -static int -pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) -{ - struct mm_struct *mm = task->mm; - struct vm_area_struct *vma = NULL; - unsigned long size; - void *smpl_buf; - - - /* - * the fixed header + requested size and align to page boundary - */ - size = PAGE_ALIGN(rsize); - - DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); - - /* - * check requested size to avoid Denial-of-service attacks - * XXX: may have to refine this test - * Check against address space limit. - * - * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) - * return -ENOMEM; - */ - if (size > task_rlimit(task, RLIMIT_MEMLOCK)) - return -ENOMEM; - - /* - * We do the easy to undo allocations first. - */ - smpl_buf = vzalloc(size); - if (smpl_buf == NULL) { - DPRINT(("Can't allocate sampling buffer\n")); - return -ENOMEM; - } - - DPRINT(("smpl_buf @%p\n", smpl_buf)); - - /* allocate vma */ - vma = vm_area_alloc(mm); - if (!vma) { - DPRINT(("Cannot allocate vma\n")); - goto error_kmem; - } - - /* - * partially initialize the vma for the sampling buffer - */ - vma->vm_file = get_file(filp); - vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP; - vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */ - - /* - * Now we have everything we need and we can initialize - * and connect all the data structures - */ - - ctx->ctx_smpl_hdr = smpl_buf; - ctx->ctx_smpl_size = size; /* aligned size */ - - /* - * Let's do the difficult operations next. - * - * now we atomically find some area in the address space and - * remap the buffer in it. - */ - mmap_write_lock(task->mm); - - /* find some free area in address space, must have mmap sem held */ - vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS); - if (IS_ERR_VALUE(vma->vm_start)) { - DPRINT(("Cannot find unmapped area for size %ld\n", size)); - mmap_write_unlock(task->mm); - goto error; - } - vma->vm_end = vma->vm_start + size; - vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; - - DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); - - /* can only be applied to current task, need to have the mm semaphore held when called */ - if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { - DPRINT(("Can't remap buffer\n")); - mmap_write_unlock(task->mm); - goto error; - } - - /* - * now insert the vma in the vm list for the process, must be - * done with mmap lock held - */ - insert_vm_struct(mm, vma); - - vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma)); - mmap_write_unlock(task->mm); - - /* - * keep track of user level virtual address - */ - ctx->ctx_smpl_vaddr = (void *)vma->vm_start; - *(unsigned long *)user_vaddr = vma->vm_start; - - return 0; - -error: - vm_area_free(vma); -error_kmem: - vfree(smpl_buf); - - return -ENOMEM; -} - -/* - * XXX: do something better here - */ -static int -pfm_bad_permissions(struct task_struct *task) -{ - const struct cred *tcred; - kuid_t uid = current_uid(); - kgid_t gid = current_gid(); - int ret; - - rcu_read_lock(); - tcred = __task_cred(task); - - /* inspired by ptrace_attach() */ - DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", - from_kuid(&init_user_ns, uid), - from_kgid(&init_user_ns, gid), - from_kuid(&init_user_ns, tcred->euid), - from_kuid(&init_user_ns, tcred->suid), - from_kuid(&init_user_ns, tcred->uid), - from_kgid(&init_user_ns, tcred->egid), - from_kgid(&init_user_ns, tcred->sgid))); - - ret = ((!uid_eq(uid, tcred->euid)) - || (!uid_eq(uid, tcred->suid)) - || (!uid_eq(uid, tcred->uid)) - || (!gid_eq(gid, tcred->egid)) - || (!gid_eq(gid, tcred->sgid)) - || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE); - - rcu_read_unlock(); - return ret; -} - -static int -pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) -{ - int ctx_flags; - - /* valid signal */ - - ctx_flags = pfx->ctx_flags; - - if (ctx_flags & PFM_FL_SYSTEM_WIDE) { - - /* - * cannot block in this mode - */ - if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { - DPRINT(("cannot use blocking mode when in system wide monitoring\n")); - return -EINVAL; - } - } else { - } - /* probably more to add here */ - - return 0; -} - -static int -pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags, - unsigned int cpu, pfarg_context_t *arg) -{ - pfm_buffer_fmt_t *fmt = NULL; - unsigned long size = 0UL; - void *uaddr = NULL; - void *fmt_arg = NULL; - int ret = 0; -#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1) - - /* invoke and lock buffer format, if found */ - fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); - if (fmt == NULL) { - DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task))); - return -EINVAL; - } - - /* - * buffer argument MUST be contiguous to pfarg_context_t - */ - if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); - - ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); - - DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret)); - - if (ret) goto error; - - /* link buffer format and context */ - ctx->ctx_buf_fmt = fmt; - ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */ - - /* - * check if buffer format wants to use perfmon buffer allocation/mapping service - */ - ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); - if (ret) goto error; - - if (size) { - /* - * buffer is always remapped into the caller's address space - */ - ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr); - if (ret) goto error; - - /* keep track of user address of buffer */ - arg->ctx_smpl_vaddr = uaddr; - } - ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); - -error: - return ret; -} - -static void -pfm_reset_pmu_state(pfm_context_t *ctx) -{ - int i; - - /* - * install reset values for PMC. - */ - for (i=1; PMC_IS_LAST(i) == 0; i++) { - if (PMC_IS_IMPL(i) == 0) continue; - ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); - DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); - } - /* - * PMD registers are set to 0UL when the context in memset() - */ - - /* - * On context switched restore, we must restore ALL pmc and ALL pmd even - * when they are not actively used by the task. In UP, the incoming process - * may otherwise pick up left over PMC, PMD state from the previous process. - * As opposed to PMD, stale PMC can cause harm to the incoming - * process because they may change what is being measured. - * Therefore, we must systematically reinstall the entire - * PMC state. In SMP, the same thing is possible on the - * same CPU but also on between 2 CPUs. - * - * The problem with PMD is information leaking especially - * to user level when psr.sp=0 - * - * There is unfortunately no easy way to avoid this problem - * on either UP or SMP. This definitively slows down the - * pfm_load_regs() function. - */ - - /* - * bitmask of all PMCs accessible to this context - * - * PMC0 is treated differently. - */ - ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; - - /* - * bitmask of all PMDs that are accessible to this context - */ - ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; - - DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); - - /* - * useful in case of re-enable after disable - */ - ctx->ctx_used_ibrs[0] = 0UL; - ctx->ctx_used_dbrs[0] = 0UL; -} - -static int -pfm_ctx_getsize(void *arg, size_t *sz) -{ - pfarg_context_t *req = (pfarg_context_t *)arg; - pfm_buffer_fmt_t *fmt; - - *sz = 0; - - if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; - - fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); - if (fmt == NULL) { - DPRINT(("cannot find buffer format\n")); - return -EINVAL; - } - /* get just enough to copy in user parameters */ - *sz = fmt->fmt_arg_size; - DPRINT(("arg_size=%lu\n", *sz)); - - return 0; -} - - - -/* - * cannot attach if : - * - kernel task - * - task not owned by caller - * - task incompatible with context mode - */ -static int -pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) -{ - /* - * no kernel task or task not owner by caller - */ - if (task->mm == NULL) { - DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task))); - return -EPERM; - } - if (pfm_bad_permissions(task)) { - DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task))); - return -EPERM; - } - /* - * cannot block in self-monitoring mode - */ - if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { - DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task))); - return -EINVAL; - } - - if (task->exit_state == EXIT_ZOMBIE) { - DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task))); - return -EBUSY; - } - - /* - * always ok for self - */ - if (task == current) return 0; - - if (!task_is_stopped_or_traced(task)) { - DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state)); - return -EBUSY; - } - /* - * make sure the task is off any CPU - */ - wait_task_inactive(task, 0); - - /* more to come... */ - - return 0; -} - -static int -pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) -{ - struct task_struct *p = current; - int ret; - - /* XXX: need to add more checks here */ - if (pid < 2) return -EPERM; - - if (pid != task_pid_vnr(current)) { - /* make sure task cannot go away while we operate on it */ - p = find_get_task_by_vpid(pid); - if (!p) - return -ESRCH; - } - - ret = pfm_task_incompatible(ctx, p); - if (ret == 0) { - *task = p; - } else if (p != current) { - pfm_put_task(p); - } - return ret; -} - - - -static int -pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - pfarg_context_t *req = (pfarg_context_t *)arg; - struct file *filp; - struct path path; - int ctx_flags; - int fd; - int ret; - - /* let's check the arguments first */ - ret = pfarg_is_sane(current, req); - if (ret < 0) - return ret; - - ctx_flags = req->ctx_flags; - - ret = -ENOMEM; - - fd = get_unused_fd_flags(0); - if (fd < 0) - return fd; - - ctx = pfm_context_alloc(ctx_flags); - if (!ctx) - goto error; - - filp = pfm_alloc_file(ctx); - if (IS_ERR(filp)) { - ret = PTR_ERR(filp); - goto error_file; - } - - req->ctx_fd = ctx->ctx_fd = fd; - - /* - * does the user want to sample? - */ - if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { - ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req); - if (ret) - goto buffer_error; - } - - DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n", - ctx, - ctx_flags, - ctx->ctx_fl_system, - ctx->ctx_fl_block, - ctx->ctx_fl_excl_idle, - ctx->ctx_fl_no_msg, - ctx->ctx_fd)); - - /* - * initialize soft PMU state - */ - pfm_reset_pmu_state(ctx); - - fd_install(fd, filp); - - return 0; - -buffer_error: - path = filp->f_path; - put_filp(filp); - path_put(&path); - - if (ctx->ctx_buf_fmt) { - pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); - } -error_file: - pfm_context_free(ctx); - -error: - put_unused_fd(fd); - return ret; -} - -static inline unsigned long -pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) -{ - unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; - unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; - extern unsigned long carta_random32 (unsigned long seed); - - if (reg->flags & PFM_REGFL_RANDOM) { - new_seed = carta_random32(old_seed); - val -= (old_seed & mask); /* counter values are negative numbers! */ - if ((mask >> 32) != 0) - /* construct a full 64-bit random value: */ - new_seed |= carta_random32(old_seed >> 32) << 32; - reg->seed = new_seed; - } - reg->lval = val; - return val; -} - -static void -pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) -{ - unsigned long mask = ovfl_regs[0]; - unsigned long reset_others = 0UL; - unsigned long val; - int i; - - /* - * now restore reset value on sampling overflowed counters - */ - mask >>= PMU_FIRST_COUNTER; - for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { - - if ((mask & 0x1UL) == 0UL) continue; - - ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); - reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; - - DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); - } - - /* - * Now take care of resetting the other registers - */ - for(i = 0; reset_others; i++, reset_others >>= 1) { - - if ((reset_others & 0x1) == 0) continue; - - ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); - - DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", - is_long_reset ? "long" : "short", i, val)); - } -} - -static void -pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) -{ - unsigned long mask = ovfl_regs[0]; - unsigned long reset_others = 0UL; - unsigned long val; - int i; - - DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); - - if (ctx->ctx_state == PFM_CTX_MASKED) { - pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); - return; - } - - /* - * now restore reset value on sampling overflowed counters - */ - mask >>= PMU_FIRST_COUNTER; - for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { - - if ((mask & 0x1UL) == 0UL) continue; - - val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); - reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; - - DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); - - pfm_write_soft_counter(ctx, i, val); - } - - /* - * Now take care of resetting the other registers - */ - for(i = 0; reset_others; i++, reset_others >>= 1) { - - if ((reset_others & 0x1) == 0) continue; - - val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); - - if (PMD_IS_COUNTING(i)) { - pfm_write_soft_counter(ctx, i, val); - } else { - ia64_set_pmd(i, val); - } - DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", - is_long_reset ? "long" : "short", i, val)); - } - ia64_srlz_d(); -} - -static int -pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task; - pfarg_reg_t *req = (pfarg_reg_t *)arg; - unsigned long value, pmc_pm; - unsigned long smpl_pmds, reset_pmds, impl_pmds; - unsigned int cnum, reg_flags, flags, pmc_type; - int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; - int is_monitor, is_counting, state; - int ret = -EINVAL; - pfm_reg_check_t wr_func; -#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) - - state = ctx->ctx_state; - is_loaded = state == PFM_CTX_LOADED ? 1 : 0; - is_system = ctx->ctx_fl_system; - task = ctx->ctx_task; - impl_pmds = pmu_conf->impl_pmds[0]; - - if (state == PFM_CTX_ZOMBIE) return -EINVAL; - - if (is_loaded) { - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (is_system && ctx->ctx_cpu != smp_processor_id()) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; - } - expert_mode = pfm_sysctl.expert_mode; - - for (i = 0; i < count; i++, req++) { - - cnum = req->reg_num; - reg_flags = req->reg_flags; - value = req->reg_value; - smpl_pmds = req->reg_smpl_pmds[0]; - reset_pmds = req->reg_reset_pmds[0]; - flags = 0; - - - if (cnum >= PMU_MAX_PMCS) { - DPRINT(("pmc%u is invalid\n", cnum)); - goto error; - } - - pmc_type = pmu_conf->pmc_desc[cnum].type; - pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; - is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; - is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; - - /* - * we reject all non implemented PMC as well - * as attempts to modify PMC[0-3] which are used - * as status registers by the PMU - */ - if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { - DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); - goto error; - } - wr_func = pmu_conf->pmc_desc[cnum].write_check; - /* - * If the PMC is a monitor, then if the value is not the default: - * - system-wide session: PMCx.pm=1 (privileged monitor) - * - per-task : PMCx.pm=0 (user monitor) - */ - if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { - DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", - cnum, - pmc_pm, - is_system)); - goto error; - } - - if (is_counting) { - /* - * enforce generation of overflow interrupt. Necessary on all - * CPUs. - */ - value |= 1 << PMU_PMC_OI; - - if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { - flags |= PFM_REGFL_OVFL_NOTIFY; - } - - if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; - - /* verify validity of smpl_pmds */ - if ((smpl_pmds & impl_pmds) != smpl_pmds) { - DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); - goto error; - } - - /* verify validity of reset_pmds */ - if ((reset_pmds & impl_pmds) != reset_pmds) { - DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); - goto error; - } - } else { - if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { - DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); - goto error; - } - /* eventid on non-counting monitors are ignored */ - } - - /* - * execute write checker, if any - */ - if (likely(expert_mode == 0 && wr_func)) { - ret = (*wr_func)(task, ctx, cnum, &value, regs); - if (ret) goto error; - ret = -EINVAL; - } - - /* - * no error on this register - */ - PFM_REG_RETFLAG_SET(req->reg_flags, 0); - - /* - * Now we commit the changes to the software state - */ - - /* - * update overflow information - */ - if (is_counting) { - /* - * full flag update each time a register is programmed - */ - ctx->ctx_pmds[cnum].flags = flags; - - ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; - ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds; - ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid; - - /* - * Mark all PMDS to be accessed as used. - * - * We do not keep track of PMC because we have to - * systematically restore ALL of them. - * - * We do not update the used_monitors mask, because - * if we have not programmed them, then will be in - * a quiescent state, therefore we will not need to - * mask/restore then when context is MASKED. - */ - CTX_USED_PMD(ctx, reset_pmds); - CTX_USED_PMD(ctx, smpl_pmds); - /* - * make sure we do not try to reset on - * restart because we have established new values - */ - if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; - } - /* - * Needed in case the user does not initialize the equivalent - * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no - * possible leak here. - */ - CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); - - /* - * keep track of the monitor PMC that we are using. - * we save the value of the pmc in ctx_pmcs[] and if - * the monitoring is not stopped for the context we also - * place it in the saved state area so that it will be - * picked up later by the context switch code. - * - * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). - * - * The value in th_pmcs[] may be modified on overflow, i.e., when - * monitoring needs to be stopped. - */ - if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); - - /* - * update context state - */ - ctx->ctx_pmcs[cnum] = value; - - if (is_loaded) { - /* - * write thread state - */ - if (is_system == 0) ctx->th_pmcs[cnum] = value; - - /* - * write hardware register if we can - */ - if (can_access_pmu) { - ia64_set_pmc(cnum, value); - } -#ifdef CONFIG_SMP - else { - /* - * per-task SMP only here - * - * we are guaranteed that the task is not running on the other CPU, - * we indicate that this PMD will need to be reloaded if the task - * is rescheduled on the CPU it ran last on. - */ - ctx->ctx_reload_pmcs[0] |= 1UL << cnum; - } -#endif - } - - DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", - cnum, - value, - is_loaded, - can_access_pmu, - flags, - ctx->ctx_all_pmcs[0], - ctx->ctx_used_pmds[0], - ctx->ctx_pmds[cnum].eventid, - smpl_pmds, - reset_pmds, - ctx->ctx_reload_pmcs[0], - ctx->ctx_used_monitors[0], - ctx->ctx_ovfl_regs[0])); - } - - /* - * make sure the changes are visible - */ - if (can_access_pmu) ia64_srlz_d(); - - return 0; -error: - PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); - return ret; -} - -static int -pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task; - pfarg_reg_t *req = (pfarg_reg_t *)arg; - unsigned long value, hw_value, ovfl_mask; - unsigned int cnum; - int i, can_access_pmu = 0, state; - int is_counting, is_loaded, is_system, expert_mode; - int ret = -EINVAL; - pfm_reg_check_t wr_func; - - - state = ctx->ctx_state; - is_loaded = state == PFM_CTX_LOADED ? 1 : 0; - is_system = ctx->ctx_fl_system; - ovfl_mask = pmu_conf->ovfl_val; - task = ctx->ctx_task; - - if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; - - /* - * on both UP and SMP, we can only write to the PMC when the task is - * the owner of the local PMU. - */ - if (likely(is_loaded)) { - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; - } - expert_mode = pfm_sysctl.expert_mode; - - for (i = 0; i < count; i++, req++) { - - cnum = req->reg_num; - value = req->reg_value; - - if (!PMD_IS_IMPL(cnum)) { - DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); - goto abort_mission; - } - is_counting = PMD_IS_COUNTING(cnum); - wr_func = pmu_conf->pmd_desc[cnum].write_check; - - /* - * execute write checker, if any - */ - if (unlikely(expert_mode == 0 && wr_func)) { - unsigned long v = value; - - ret = (*wr_func)(task, ctx, cnum, &v, regs); - if (ret) goto abort_mission; - - value = v; - ret = -EINVAL; - } - - /* - * no error on this register - */ - PFM_REG_RETFLAG_SET(req->reg_flags, 0); - - /* - * now commit changes to software state - */ - hw_value = value; - - /* - * update virtualized (64bits) counter - */ - if (is_counting) { - /* - * write context state - */ - ctx->ctx_pmds[cnum].lval = value; - - /* - * when context is load we use the split value - */ - if (is_loaded) { - hw_value = value & ovfl_mask; - value = value & ~ovfl_mask; - } - } - /* - * update reset values (not just for counters) - */ - ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset; - ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset; - - /* - * update randomization parameters (not just for counters) - */ - ctx->ctx_pmds[cnum].seed = req->reg_random_seed; - ctx->ctx_pmds[cnum].mask = req->reg_random_mask; - - /* - * update context value - */ - ctx->ctx_pmds[cnum].val = value; - - /* - * Keep track of what we use - * - * We do not keep track of PMC because we have to - * systematically restore ALL of them. - */ - CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum)); - - /* - * mark this PMD register used as well - */ - CTX_USED_PMD(ctx, RDEP(cnum)); - - /* - * make sure we do not try to reset on - * restart because we have established new values - */ - if (is_counting && state == PFM_CTX_MASKED) { - ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; - } - - if (is_loaded) { - /* - * write thread state - */ - if (is_system == 0) ctx->th_pmds[cnum] = hw_value; - - /* - * write hardware register if we can - */ - if (can_access_pmu) { - ia64_set_pmd(cnum, hw_value); - } else { -#ifdef CONFIG_SMP - /* - * we are guaranteed that the task is not running on the other CPU, - * we indicate that this PMD will need to be reloaded if the task - * is rescheduled on the CPU it ran last on. - */ - ctx->ctx_reload_pmds[0] |= 1UL << cnum; -#endif - } - } - - DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx " - "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n", - cnum, - value, - is_loaded, - can_access_pmu, - hw_value, - ctx->ctx_pmds[cnum].val, - ctx->ctx_pmds[cnum].short_reset, - ctx->ctx_pmds[cnum].long_reset, - PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N', - ctx->ctx_pmds[cnum].seed, - ctx->ctx_pmds[cnum].mask, - ctx->ctx_used_pmds[0], - ctx->ctx_pmds[cnum].reset_pmds[0], - ctx->ctx_reload_pmds[0], - ctx->ctx_all_pmds[0], - ctx->ctx_ovfl_regs[0])); - } - - /* - * make changes visible - */ - if (can_access_pmu) ia64_srlz_d(); - - return 0; - -abort_mission: - /* - * for now, we have only one possibility for error - */ - PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); - return ret; -} - -/* - * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function. - * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an - * interrupt is delivered during the call, it will be kept pending until we leave, making - * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are - * guaranteed to return consistent data to the user, it may simply be old. It is not - * trivial to treat the overflow while inside the call because you may end up in - * some module sampling buffer code causing deadlocks. - */ -static int -pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task; - unsigned long val = 0UL, lval, ovfl_mask, sval; - pfarg_reg_t *req = (pfarg_reg_t *)arg; - unsigned int cnum, reg_flags = 0; - int i, can_access_pmu = 0, state; - int is_loaded, is_system, is_counting, expert_mode; - int ret = -EINVAL; - pfm_reg_check_t rd_func; - - /* - * access is possible when loaded only for - * self-monitoring tasks or in UP mode - */ - - state = ctx->ctx_state; - is_loaded = state == PFM_CTX_LOADED ? 1 : 0; - is_system = ctx->ctx_fl_system; - ovfl_mask = pmu_conf->ovfl_val; - task = ctx->ctx_task; - - if (state == PFM_CTX_ZOMBIE) return -EINVAL; - - if (likely(is_loaded)) { - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - /* - * this can be true when not self-monitoring only in UP - */ - can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; - - if (can_access_pmu) ia64_srlz_d(); - } - expert_mode = pfm_sysctl.expert_mode; - - DPRINT(("ld=%d apmu=%d ctx_state=%d\n", - is_loaded, - can_access_pmu, - state)); - - /* - * on both UP and SMP, we can only read the PMD from the hardware register when - * the task is the owner of the local PMU. - */ - - for (i = 0; i < count; i++, req++) { - - cnum = req->reg_num; - reg_flags = req->reg_flags; - - if (unlikely(!PMD_IS_IMPL(cnum))) goto error; - /* - * we can only read the register that we use. That includes - * the one we explicitly initialize AND the one we want included - * in the sampling buffer (smpl_regs). - * - * Having this restriction allows optimization in the ctxsw routine - * without compromising security (leaks) - */ - if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error; - - sval = ctx->ctx_pmds[cnum].val; - lval = ctx->ctx_pmds[cnum].lval; - is_counting = PMD_IS_COUNTING(cnum); - - /* - * If the task is not the current one, then we check if the - * PMU state is still in the local live register due to lazy ctxsw. - * If true, then we read directly from the registers. - */ - if (can_access_pmu){ - val = ia64_get_pmd(cnum); - } else { - /* - * context has been saved - * if context is zombie, then task does not exist anymore. - * In this case, we use the full value saved in the context (pfm_flush_regs()). - */ - val = is_loaded ? ctx->th_pmds[cnum] : 0UL; - } - rd_func = pmu_conf->pmd_desc[cnum].read_check; - - if (is_counting) { - /* - * XXX: need to check for overflow when loaded - */ - val &= ovfl_mask; - val += sval; - } - - /* - * execute read checker, if any - */ - if (unlikely(expert_mode == 0 && rd_func)) { - unsigned long v = val; - ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs); - if (ret) goto error; - val = v; - ret = -EINVAL; - } - - PFM_REG_RETFLAG_SET(reg_flags, 0); - - DPRINT(("pmd[%u]=0x%lx\n", cnum, val)); - - /* - * update register return value, abort all if problem during copy. - * we only modify the reg_flags field. no check mode is fine because - * access has been verified upfront in sys_perfmonctl(). - */ - req->reg_value = val; - req->reg_flags = reg_flags; - req->reg_last_reset_val = lval; - } - - return 0; - -error: - PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); - return ret; -} - -int -pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) -{ - pfm_context_t *ctx; - - if (req == NULL) return -EINVAL; - - ctx = GET_PMU_CTX(); - - if (ctx == NULL) return -EINVAL; - - /* - * for now limit to current task, which is enough when calling - * from overflow handler - */ - if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; - - return pfm_write_pmcs(ctx, req, nreq, regs); -} -EXPORT_SYMBOL(pfm_mod_write_pmcs); - -int -pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) -{ - pfm_context_t *ctx; - - if (req == NULL) return -EINVAL; - - ctx = GET_PMU_CTX(); - - if (ctx == NULL) return -EINVAL; - - /* - * for now limit to current task, which is enough when calling - * from overflow handler - */ - if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; - - return pfm_read_pmds(ctx, req, nreq, regs); -} -EXPORT_SYMBOL(pfm_mod_read_pmds); - -/* - * Only call this function when a process it trying to - * write the debug registers (reading is always allowed) - */ -int -pfm_use_debug_registers(struct task_struct *task) -{ - pfm_context_t *ctx = task->thread.pfm_context; - unsigned long flags; - int ret = 0; - - if (pmu_conf->use_rr_dbregs == 0) return 0; - - DPRINT(("called for [%d]\n", task_pid_nr(task))); - - /* - * do it only once - */ - if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0; - - /* - * Even on SMP, we do not need to use an atomic here because - * the only way in is via ptrace() and this is possible only when the - * process is stopped. Even in the case where the ctxsw out is not totally - * completed by the time we come here, there is no way the 'stopped' process - * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine. - * So this is always safe. - */ - if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1; - - LOCK_PFS(flags); - - /* - * We cannot allow setting breakpoints when system wide monitoring - * sessions are using the debug registers. - */ - if (pfm_sessions.pfs_sys_use_dbregs> 0) - ret = -1; - else - pfm_sessions.pfs_ptrace_use_dbregs++; - - DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n", - pfm_sessions.pfs_ptrace_use_dbregs, - pfm_sessions.pfs_sys_use_dbregs, - task_pid_nr(task), ret)); - - UNLOCK_PFS(flags); - - return ret; -} - -/* - * This function is called for every task that exits with the - * IA64_THREAD_DBG_VALID set. This indicates a task which was - * able to use the debug registers for debugging purposes via - * ptrace(). Therefore we know it was not using them for - * performance monitoring, so we only decrement the number - * of "ptraced" debug register users to keep the count up to date - */ -int -pfm_release_debug_registers(struct task_struct *task) -{ - unsigned long flags; - int ret; - - if (pmu_conf->use_rr_dbregs == 0) return 0; - - LOCK_PFS(flags); - if (pfm_sessions.pfs_ptrace_use_dbregs == 0) { - printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task)); - ret = -1; - } else { - pfm_sessions.pfs_ptrace_use_dbregs--; - ret = 0; - } - UNLOCK_PFS(flags); - - return ret; -} - -static int -pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task; - pfm_buffer_fmt_t *fmt; - pfm_ovfl_ctrl_t rst_ctrl; - int state, is_system; - int ret = 0; - - state = ctx->ctx_state; - fmt = ctx->ctx_buf_fmt; - is_system = ctx->ctx_fl_system; - task = PFM_CTX_TASK(ctx); - - switch(state) { - case PFM_CTX_MASKED: - break; - case PFM_CTX_LOADED: - if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break; - fallthrough; - case PFM_CTX_UNLOADED: - case PFM_CTX_ZOMBIE: - DPRINT(("invalid state=%d\n", state)); - return -EBUSY; - default: - DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state)); - return -EINVAL; - } - - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (is_system && ctx->ctx_cpu != smp_processor_id()) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - - /* sanity check */ - if (unlikely(task == NULL)) { - printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current)); - return -EINVAL; - } - - if (task == current || is_system) { - - fmt = ctx->ctx_buf_fmt; - - DPRINT(("restarting self %d ovfl=0x%lx\n", - task_pid_nr(task), - ctx->ctx_ovfl_regs[0])); - - if (CTX_HAS_SMPL(ctx)) { - - prefetch(ctx->ctx_smpl_hdr); - - rst_ctrl.bits.mask_monitoring = 0; - rst_ctrl.bits.reset_ovfl_pmds = 0; - - if (state == PFM_CTX_LOADED) - ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); - else - ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); - } else { - rst_ctrl.bits.mask_monitoring = 0; - rst_ctrl.bits.reset_ovfl_pmds = 1; - } - - if (ret == 0) { - if (rst_ctrl.bits.reset_ovfl_pmds) - pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET); - - if (rst_ctrl.bits.mask_monitoring == 0) { - DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task))); - - if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task); - } else { - DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task))); - - // cannot use pfm_stop_monitoring(task, regs); - } - } - /* - * clear overflowed PMD mask to remove any stale information - */ - ctx->ctx_ovfl_regs[0] = 0UL; - - /* - * back to LOADED state - */ - ctx->ctx_state = PFM_CTX_LOADED; - - /* - * XXX: not really useful for self monitoring - */ - ctx->ctx_fl_can_restart = 0; - - return 0; - } - - /* - * restart another task - */ - - /* - * When PFM_CTX_MASKED, we cannot issue a restart before the previous - * one is seen by the task. - */ - if (state == PFM_CTX_MASKED) { - if (ctx->ctx_fl_can_restart == 0) return -EINVAL; - /* - * will prevent subsequent restart before this one is - * seen by other task - */ - ctx->ctx_fl_can_restart = 0; - } - - /* - * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e. - * the task is blocked or on its way to block. That's the normal - * restart path. If the monitoring is not masked, then the task - * can be actively monitoring and we cannot directly intervene. - * Therefore we use the trap mechanism to catch the task and - * force it to reset the buffer/reset PMDs. - * - * if non-blocking, then we ensure that the task will go into - * pfm_handle_work() before returning to user mode. - * - * We cannot explicitly reset another task, it MUST always - * be done by the task itself. This works for system wide because - * the tool that is controlling the session is logically doing - * "self-monitoring". - */ - if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) { - DPRINT(("unblocking [%d]\n", task_pid_nr(task))); - complete(&ctx->ctx_restart_done); - } else { - DPRINT(("[%d] armed exit trap\n", task_pid_nr(task))); - - ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET; - - PFM_SET_WORK_PENDING(task, 1); - - set_notify_resume(task); - - /* - * XXX: send reschedule if task runs on another CPU - */ - } - return 0; -} - -static int -pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - unsigned int m = *(unsigned int *)arg; - - pfm_sysctl.debug = m == 0 ? 0 : 1; - - printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off"); - - if (m == 0) { - memset(pfm_stats, 0, sizeof(pfm_stats)); - for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL; - } - return 0; -} - -/* - * arg can be NULL and count can be zero for this function - */ -static int -pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct thread_struct *thread = NULL; - struct task_struct *task; - pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg; - unsigned long flags; - dbreg_t dbreg; - unsigned int rnum; - int first_time; - int ret = 0, state; - int i, can_access_pmu = 0; - int is_system, is_loaded; - - if (pmu_conf->use_rr_dbregs == 0) return -EINVAL; - - state = ctx->ctx_state; - is_loaded = state == PFM_CTX_LOADED ? 1 : 0; - is_system = ctx->ctx_fl_system; - task = ctx->ctx_task; - - if (state == PFM_CTX_ZOMBIE) return -EINVAL; - - /* - * on both UP and SMP, we can only write to the PMC when the task is - * the owner of the local PMU. - */ - if (is_loaded) { - thread = &task->thread; - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; - } - - /* - * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w - * ensuring that no real breakpoint can be installed via this call. - * - * IMPORTANT: regs can be NULL in this function - */ - - first_time = ctx->ctx_fl_using_dbreg == 0; - - /* - * don't bother if we are loaded and task is being debugged - */ - if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) { - DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task))); - return -EBUSY; - } - - /* - * check for debug registers in system wide mode - * - * If though a check is done in pfm_context_load(), - * we must repeat it here, in case the registers are - * written after the context is loaded - */ - if (is_loaded) { - LOCK_PFS(flags); - - if (first_time && is_system) { - if (pfm_sessions.pfs_ptrace_use_dbregs) - ret = -EBUSY; - else - pfm_sessions.pfs_sys_use_dbregs++; - } - UNLOCK_PFS(flags); - } - - if (ret != 0) return ret; - - /* - * mark ourself as user of the debug registers for - * perfmon purposes. - */ - ctx->ctx_fl_using_dbreg = 1; - - /* - * clear hardware registers to make sure we don't - * pick up stale state. - * - * for a system wide session, we do not use - * thread.dbr, thread.ibr because this process - * never leaves the current CPU and the state - * is shared by all processes running on it - */ - if (first_time && can_access_pmu) { - DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task))); - for (i=0; i < pmu_conf->num_ibrs; i++) { - ia64_set_ibr(i, 0UL); - ia64_dv_serialize_instruction(); - } - ia64_srlz_i(); - for (i=0; i < pmu_conf->num_dbrs; i++) { - ia64_set_dbr(i, 0UL); - ia64_dv_serialize_data(); - } - ia64_srlz_d(); - } - - /* - * Now install the values into the registers - */ - for (i = 0; i < count; i++, req++) { - - rnum = req->dbreg_num; - dbreg.val = req->dbreg_value; - - ret = -EINVAL; - - if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) { - DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n", - rnum, dbreg.val, mode, i, count)); - - goto abort_mission; - } - - /* - * make sure we do not install enabled breakpoint - */ - if (rnum & 0x1) { - if (mode == PFM_CODE_RR) - dbreg.ibr.ibr_x = 0; - else - dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0; - } - - PFM_REG_RETFLAG_SET(req->dbreg_flags, 0); - - /* - * Debug registers, just like PMC, can only be modified - * by a kernel call. Moreover, perfmon() access to those - * registers are centralized in this routine. The hardware - * does not modify the value of these registers, therefore, - * if we save them as they are written, we can avoid having - * to save them on context switch out. This is made possible - * by the fact that when perfmon uses debug registers, ptrace() - * won't be able to modify them concurrently. - */ - if (mode == PFM_CODE_RR) { - CTX_USED_IBR(ctx, rnum); - - if (can_access_pmu) { - ia64_set_ibr(rnum, dbreg.val); - ia64_dv_serialize_instruction(); - } - - ctx->ctx_ibrs[rnum] = dbreg.val; - - DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n", - rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu)); - } else { - CTX_USED_DBR(ctx, rnum); - - if (can_access_pmu) { - ia64_set_dbr(rnum, dbreg.val); - ia64_dv_serialize_data(); - } - ctx->ctx_dbrs[rnum] = dbreg.val; - - DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n", - rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu)); - } - } - - return 0; - -abort_mission: - /* - * in case it was our first attempt, we undo the global modifications - */ - if (first_time) { - LOCK_PFS(flags); - if (ctx->ctx_fl_system) { - pfm_sessions.pfs_sys_use_dbregs--; - } - UNLOCK_PFS(flags); - ctx->ctx_fl_using_dbreg = 0; - } - /* - * install error return flag - */ - PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL); - - return ret; -} - -static int -pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs); -} - -static int -pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs); -} - -int -pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) -{ - pfm_context_t *ctx; - - if (req == NULL) return -EINVAL; - - ctx = GET_PMU_CTX(); - - if (ctx == NULL) return -EINVAL; - - /* - * for now limit to current task, which is enough when calling - * from overflow handler - */ - if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; - - return pfm_write_ibrs(ctx, req, nreq, regs); -} -EXPORT_SYMBOL(pfm_mod_write_ibrs); - -int -pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) -{ - pfm_context_t *ctx; - - if (req == NULL) return -EINVAL; - - ctx = GET_PMU_CTX(); - - if (ctx == NULL) return -EINVAL; - - /* - * for now limit to current task, which is enough when calling - * from overflow handler - */ - if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; - - return pfm_write_dbrs(ctx, req, nreq, regs); -} -EXPORT_SYMBOL(pfm_mod_write_dbrs); - - -static int -pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - pfarg_features_t *req = (pfarg_features_t *)arg; - - req->ft_version = PFM_VERSION; - return 0; -} - -static int -pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct pt_regs *tregs; - struct task_struct *task = PFM_CTX_TASK(ctx); - int state, is_system; - - state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - - /* - * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE) - */ - if (state == PFM_CTX_UNLOADED) return -EINVAL; - - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (is_system && ctx->ctx_cpu != smp_processor_id()) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - DPRINT(("task [%d] ctx_state=%d is_system=%d\n", - task_pid_nr(PFM_CTX_TASK(ctx)), - state, - is_system)); - /* - * in system mode, we need to update the PMU directly - * and the user level state of the caller, which may not - * necessarily be the creator of the context. - */ - if (is_system) { - /* - * Update local PMU first - * - * disable dcr pp - */ - ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); - ia64_srlz_i(); - - /* - * update local cpuinfo - */ - PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); - - /* - * stop monitoring, does srlz.i - */ - pfm_clear_psr_pp(); - - /* - * stop monitoring in the caller - */ - ia64_psr(regs)->pp = 0; - - return 0; - } - /* - * per-task mode - */ - - if (task == current) { - /* stop monitoring at kernel level */ - pfm_clear_psr_up(); - - /* - * stop monitoring at the user level - */ - ia64_psr(regs)->up = 0; - } else { - tregs = task_pt_regs(task); - - /* - * stop monitoring at the user level - */ - ia64_psr(tregs)->up = 0; - - /* - * monitoring disabled in kernel at next reschedule - */ - ctx->ctx_saved_psr_up = 0; - DPRINT(("task=[%d]\n", task_pid_nr(task))); - } - return 0; -} - - -static int -pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct pt_regs *tregs; - int state, is_system; - - state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - - if (state != PFM_CTX_LOADED) return -EINVAL; - - /* - * In system wide and when the context is loaded, access can only happen - * when the caller is running on the CPU being monitored by the session. - * It does not have to be the owner (ctx_task) of the context per se. - */ - if (is_system && ctx->ctx_cpu != smp_processor_id()) { - DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); - return -EBUSY; - } - - /* - * in system mode, we need to update the PMU directly - * and the user level state of the caller, which may not - * necessarily be the creator of the context. - */ - if (is_system) { - - /* - * set user level psr.pp for the caller - */ - ia64_psr(regs)->pp = 1; - - /* - * now update the local PMU and cpuinfo - */ - PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP); - - /* - * start monitoring at kernel level - */ - pfm_set_psr_pp(); - - /* enable dcr pp */ - ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); - ia64_srlz_i(); - - return 0; - } - - /* - * per-process mode - */ - - if (ctx->ctx_task == current) { - - /* start monitoring at kernel level */ - pfm_set_psr_up(); - - /* - * activate monitoring at user level - */ - ia64_psr(regs)->up = 1; - - } else { - tregs = task_pt_regs(ctx->ctx_task); - - /* - * start monitoring at the kernel level the next - * time the task is scheduled - */ - ctx->ctx_saved_psr_up = IA64_PSR_UP; - - /* - * activate monitoring at user level - */ - ia64_psr(tregs)->up = 1; - } - return 0; -} - -static int -pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - pfarg_reg_t *req = (pfarg_reg_t *)arg; - unsigned int cnum; - int i; - int ret = -EINVAL; - - for (i = 0; i < count; i++, req++) { - - cnum = req->reg_num; - - if (!PMC_IS_IMPL(cnum)) goto abort_mission; - - req->reg_value = PMC_DFL_VAL(cnum); - - PFM_REG_RETFLAG_SET(req->reg_flags, 0); - - DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value)); - } - return 0; - -abort_mission: - PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); - return ret; -} - -static int -pfm_check_task_exist(pfm_context_t *ctx) -{ - struct task_struct *g, *t; - int ret = -ESRCH; - - read_lock(&tasklist_lock); - - do_each_thread (g, t) { - if (t->thread.pfm_context == ctx) { - ret = 0; - goto out; - } - } while_each_thread (g, t); -out: - read_unlock(&tasklist_lock); - - DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx)); - - return ret; -} - -static int -pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task; - struct thread_struct *thread; - struct pfm_context_t *old; - unsigned long flags; -#ifndef CONFIG_SMP - struct task_struct *owner_task = NULL; -#endif - pfarg_load_t *req = (pfarg_load_t *)arg; - unsigned long *pmcs_source, *pmds_source; - int the_cpu; - int ret = 0; - int state, is_system, set_dbregs = 0; - - state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - /* - * can only load from unloaded or terminated state - */ - if (state != PFM_CTX_UNLOADED) { - DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", - req->load_pid, - ctx->ctx_state)); - return -EBUSY; - } - - DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); - - if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) { - DPRINT(("cannot use blocking mode on self\n")); - return -EINVAL; - } - - ret = pfm_get_task(ctx, req->load_pid, &task); - if (ret) { - DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret)); - return ret; - } - - ret = -EINVAL; - - /* - * system wide is self monitoring only - */ - if (is_system && task != current) { - DPRINT(("system wide is self monitoring only load_pid=%d\n", - req->load_pid)); - goto error; - } - - thread = &task->thread; - - ret = 0; - /* - * cannot load a context which is using range restrictions, - * into a task that is being debugged. - */ - if (ctx->ctx_fl_using_dbreg) { - if (thread->flags & IA64_THREAD_DBG_VALID) { - ret = -EBUSY; - DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid)); - goto error; - } - LOCK_PFS(flags); - - if (is_system) { - if (pfm_sessions.pfs_ptrace_use_dbregs) { - DPRINT(("cannot load [%d] dbregs in use\n", - task_pid_nr(task))); - ret = -EBUSY; - } else { - pfm_sessions.pfs_sys_use_dbregs++; - DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs)); - set_dbregs = 1; - } - } - - UNLOCK_PFS(flags); - - if (ret) goto error; - } - - /* - * SMP system-wide monitoring implies self-monitoring. - * - * The programming model expects the task to - * be pinned on a CPU throughout the session. - * Here we take note of the current CPU at the - * time the context is loaded. No call from - * another CPU will be allowed. - * - * The pinning via shed_setaffinity() - * must be done by the calling task prior - * to this call. - * - * systemwide: keep track of CPU this session is supposed to run on - */ - the_cpu = ctx->ctx_cpu = smp_processor_id(); - - ret = -EBUSY; - /* - * now reserve the session - */ - ret = pfm_reserve_session(current, is_system, the_cpu); - if (ret) goto error; - - /* - * task is necessarily stopped at this point. - * - * If the previous context was zombie, then it got removed in - * pfm_save_regs(). Therefore we should not see it here. - * If we see a context, then this is an active context - * - * XXX: needs to be atomic - */ - DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n", - thread->pfm_context, ctx)); - - ret = -EBUSY; - old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *)); - if (old != NULL) { - DPRINT(("load_pid [%d] already has a context\n", req->load_pid)); - goto error_unres; - } - - pfm_reset_msgq(ctx); - - ctx->ctx_state = PFM_CTX_LOADED; - - /* - * link context to task - */ - ctx->ctx_task = task; - - if (is_system) { - /* - * we load as stopped - */ - PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE); - PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); - - if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE); - } else { - thread->flags |= IA64_THREAD_PM_VALID; - } - - /* - * propagate into thread-state - */ - pfm_copy_pmds(task, ctx); - pfm_copy_pmcs(task, ctx); - - pmcs_source = ctx->th_pmcs; - pmds_source = ctx->th_pmds; - - /* - * always the case for system-wide - */ - if (task == current) { - - if (is_system == 0) { - - /* allow user level control */ - ia64_psr(regs)->sp = 0; - DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task))); - - SET_LAST_CPU(ctx, smp_processor_id()); - INC_ACTIVATION(); - SET_ACTIVATION(ctx); -#ifndef CONFIG_SMP - /* - * push the other task out, if any - */ - owner_task = GET_PMU_OWNER(); - if (owner_task) pfm_lazy_save_regs(owner_task); -#endif - } - /* - * load all PMD from ctx to PMU (as opposed to thread state) - * restore all PMC from ctx to PMU - */ - pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]); - pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]); - - ctx->ctx_reload_pmcs[0] = 0UL; - ctx->ctx_reload_pmds[0] = 0UL; - - /* - * guaranteed safe by earlier check against DBG_VALID - */ - if (ctx->ctx_fl_using_dbreg) { - pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); - pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); - } - /* - * set new ownership - */ - SET_PMU_OWNER(task, ctx); - - DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task))); - } else { - /* - * when not current, task MUST be stopped, so this is safe - */ - regs = task_pt_regs(task); - - /* force a full reload */ - ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; - SET_LAST_CPU(ctx, -1); - - /* initial saved psr (stopped) */ - ctx->ctx_saved_psr_up = 0UL; - ia64_psr(regs)->up = ia64_psr(regs)->pp = 0; - } - - ret = 0; - -error_unres: - if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu); -error: - /* - * we must undo the dbregs setting (for system-wide) - */ - if (ret && set_dbregs) { - LOCK_PFS(flags); - pfm_sessions.pfs_sys_use_dbregs--; - UNLOCK_PFS(flags); - } - /* - * release task, there is now a link with the context - */ - if (is_system == 0 && task != current) { - pfm_put_task(task); - - if (ret == 0) { - ret = pfm_check_task_exist(ctx); - if (ret) { - ctx->ctx_state = PFM_CTX_UNLOADED; - ctx->ctx_task = NULL; - } - } - } - return ret; -} - -/* - * in this function, we do not need to increase the use count - * for the task via get_task_struct(), because we hold the - * context lock. If the task were to disappear while having - * a context attached, it would go through pfm_exit_thread() - * which also grabs the context lock and would therefore be blocked - * until we are here. - */ -static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx); - -static int -pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) -{ - struct task_struct *task = PFM_CTX_TASK(ctx); - struct pt_regs *tregs; - int prev_state, is_system; - int ret; - - DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1)); - - prev_state = ctx->ctx_state; - is_system = ctx->ctx_fl_system; - - /* - * unload only when necessary - */ - if (prev_state == PFM_CTX_UNLOADED) { - DPRINT(("ctx_state=%d, nothing to do\n", prev_state)); - return 0; - } - - /* - * clear psr and dcr bits - */ - ret = pfm_stop(ctx, NULL, 0, regs); - if (ret) return ret; - - ctx->ctx_state = PFM_CTX_UNLOADED; - - /* - * in system mode, we need to update the PMU directly - * and the user level state of the caller, which may not - * necessarily be the creator of the context. - */ - if (is_system) { - - /* - * Update cpuinfo - * - * local PMU is taken care of in pfm_stop() - */ - PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE); - PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE); - - /* - * save PMDs in context - * release ownership - */ - pfm_flush_pmds(current, ctx); - - /* - * at this point we are done with the PMU - * so we can unreserve the resource. - */ - if (prev_state != PFM_CTX_ZOMBIE) - pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu); - - /* - * disconnect context from task - */ - task->thread.pfm_context = NULL; - /* - * disconnect task from context - */ - ctx->ctx_task = NULL; - - /* - * There is nothing more to cleanup here. - */ - return 0; - } - - /* - * per-task mode - */ - tregs = task == current ? regs : task_pt_regs(task); - - if (task == current) { - /* - * cancel user level control - */ - ia64_psr(regs)->sp = 1; - - DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task))); - } - /* - * save PMDs to context - * release ownership - */ - pfm_flush_pmds(task, ctx); - - /* - * at this point we are done with the PMU - * so we can unreserve the resource. - * - * when state was ZOMBIE, we have already unreserved. - */ - if (prev_state != PFM_CTX_ZOMBIE) - pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu); - - /* - * reset activation counter and psr - */ - ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; - SET_LAST_CPU(ctx, -1); - - /* - * PMU state will not be restored - */ - task->thread.flags &= ~IA64_THREAD_PM_VALID; - - /* - * break links between context and task - */ - task->thread.pfm_context = NULL; - ctx->ctx_task = NULL; - - PFM_SET_WORK_PENDING(task, 0); - - ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; - ctx->ctx_fl_can_restart = 0; - ctx->ctx_fl_going_zombie = 0; - - DPRINT(("disconnected [%d] from context\n", task_pid_nr(task))); - - return 0; -} - - -/* - * called only from exit_thread() - * we come here only if the task has a context attached (loaded or masked) - */ -void -pfm_exit_thread(struct task_struct *task) -{ - pfm_context_t *ctx; - unsigned long flags; - struct pt_regs *regs = task_pt_regs(task); - int ret, state; - int free_ok = 0; - - ctx = PFM_GET_CTX(task); - - PROTECT_CTX(ctx, flags); - - DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task))); - - state = ctx->ctx_state; - switch(state) { - case PFM_CTX_UNLOADED: - /* - * only comes to this function if pfm_context is not NULL, i.e., cannot - * be in unloaded state - */ - printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task)); - break; - case PFM_CTX_LOADED: - case PFM_CTX_MASKED: - ret = pfm_context_unload(ctx, NULL, 0, regs); - if (ret) { - printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); - } - DPRINT(("ctx unloaded for current state was %d\n", state)); - - pfm_end_notify_user(ctx); - break; - case PFM_CTX_ZOMBIE: - ret = pfm_context_unload(ctx, NULL, 0, regs); - if (ret) { - printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); - } - free_ok = 1; - break; - default: - printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state); - break; - } - UNPROTECT_CTX(ctx, flags); - - { u64 psr = pfm_get_psr(); - BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); - BUG_ON(GET_PMU_OWNER()); - BUG_ON(ia64_psr(regs)->up); - BUG_ON(ia64_psr(regs)->pp); - } - - /* - * All memory free operations (especially for vmalloc'ed memory) - * MUST be done with interrupts ENABLED. - */ - if (free_ok) pfm_context_free(ctx); -} - -/* - * functions MUST be listed in the increasing order of their index (see permfon.h) - */ -#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz } -#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL } -#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP) -#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW) -#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL} - -static pfm_cmd_desc_t pfm_cmd_tab[]={ -/* 0 */PFM_CMD_NONE, -/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), -/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), -/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), -/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS), -/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS), -/* 6 */PFM_CMD_NONE, -/* 7 */PFM_CMD_NONE, -/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize), -/* 9 */PFM_CMD_NONE, -/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW), -/* 11 */PFM_CMD_NONE, -/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL), -/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL), -/* 14 */PFM_CMD_NONE, -/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), -/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL), -/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS), -/* 18 */PFM_CMD_NONE, -/* 19 */PFM_CMD_NONE, -/* 20 */PFM_CMD_NONE, -/* 21 */PFM_CMD_NONE, -/* 22 */PFM_CMD_NONE, -/* 23 */PFM_CMD_NONE, -/* 24 */PFM_CMD_NONE, -/* 25 */PFM_CMD_NONE, -/* 26 */PFM_CMD_NONE, -/* 27 */PFM_CMD_NONE, -/* 28 */PFM_CMD_NONE, -/* 29 */PFM_CMD_NONE, -/* 30 */PFM_CMD_NONE, -/* 31 */PFM_CMD_NONE, -/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL), -/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL) -}; -#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t)) - -static int -pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags) -{ - struct task_struct *task; - int state, old_state; - -recheck: - state = ctx->ctx_state; - task = ctx->ctx_task; - - if (task == NULL) { - DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state)); - return 0; - } - - DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n", - ctx->ctx_fd, - state, - task_pid_nr(task), - task->state, PFM_CMD_STOPPED(cmd))); - - /* - * self-monitoring always ok. - * - * for system-wide the caller can either be the creator of the - * context (to one to which the context is attached to) OR - * a task running on the same CPU as the session. - */ - if (task == current || ctx->ctx_fl_system) return 0; - - /* - * we are monitoring another thread - */ - switch(state) { - case PFM_CTX_UNLOADED: - /* - * if context is UNLOADED we are safe to go - */ - return 0; - case PFM_CTX_ZOMBIE: - /* - * no command can operate on a zombie context - */ - DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); - return -EINVAL; - case PFM_CTX_MASKED: - /* - * PMU state has been saved to software even though - * the thread may still be running. - */ - if (cmd != PFM_UNLOAD_CONTEXT) return 0; - } - - /* - * context is LOADED or MASKED. Some commands may need to have - * the task stopped. - * - * We could lift this restriction for UP but it would mean that - * the user has no guarantee the task would not run between - * two successive calls to perfmonctl(). That's probably OK. - * If this user wants to ensure the task does not run, then - * the task must be stopped. - */ - if (PFM_CMD_STOPPED(cmd)) { - if (!task_is_stopped_or_traced(task)) { - DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task))); - return -EBUSY; - } - /* - * task is now stopped, wait for ctxsw out - * - * This is an interesting point in the code. - * We need to unprotect the context because - * the pfm_save_regs() routines needs to grab - * the same lock. There are danger in doing - * this because it leaves a window open for - * another task to get access to the context - * and possibly change its state. The one thing - * that is not possible is for the context to disappear - * because we are protected by the VFS layer, i.e., - * get_fd()/put_fd(). - */ - old_state = state; - - UNPROTECT_CTX(ctx, flags); - - wait_task_inactive(task, 0); - - PROTECT_CTX(ctx, flags); - - /* - * we must recheck to verify if state has changed - */ - if (ctx->ctx_state != old_state) { - DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state)); - goto recheck; - } - } - return 0; -} - -/* - * system-call entry point (must return long) - */ -asmlinkage long -sys_perfmonctl (int fd, int cmd, void __user *arg, int count) -{ - struct fd f = {NULL, 0}; - pfm_context_t *ctx = NULL; - unsigned long flags = 0UL; - void *args_k = NULL; - long ret; /* will expand int return types */ - size_t base_sz, sz, xtra_sz = 0; - int narg, completed_args = 0, call_made = 0, cmd_flags; - int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); - int (*getsize)(void *arg, size_t *sz); -#define PFM_MAX_ARGSIZE 4096 - - /* - * reject any call if perfmon was disabled at initialization - */ - if (unlikely(pmu_conf == NULL)) return -ENOSYS; - - if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) { - DPRINT(("invalid cmd=%d\n", cmd)); - return -EINVAL; - } - - func = pfm_cmd_tab[cmd].cmd_func; - narg = pfm_cmd_tab[cmd].cmd_narg; - base_sz = pfm_cmd_tab[cmd].cmd_argsize; - getsize = pfm_cmd_tab[cmd].cmd_getsize; - cmd_flags = pfm_cmd_tab[cmd].cmd_flags; - - if (unlikely(func == NULL)) { - DPRINT(("invalid cmd=%d\n", cmd)); - return -EINVAL; - } - - DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n", - PFM_CMD_NAME(cmd), - cmd, - narg, - base_sz, - count)); - - /* - * check if number of arguments matches what the command expects - */ - if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count))) - return -EINVAL; - -restart_args: - sz = xtra_sz + base_sz*count; - /* - * limit abuse to min page size - */ - if (unlikely(sz > PFM_MAX_ARGSIZE)) { - printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz); - return -E2BIG; - } - - /* - * allocate default-sized argument buffer - */ - if (likely(count && args_k == NULL)) { - args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL); - if (args_k == NULL) return -ENOMEM; - } - - ret = -EFAULT; - - /* - * copy arguments - * - * assume sz = 0 for command without parameters - */ - if (sz && copy_from_user(args_k, arg, sz)) { - DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg)); - goto error_args; - } - - /* - * check if command supports extra parameters - */ - if (completed_args == 0 && getsize) { - /* - * get extra parameters size (based on main argument) - */ - ret = (*getsize)(args_k, &xtra_sz); - if (ret) goto error_args; - - completed_args = 1; - - DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz)); - - /* retry if necessary */ - if (likely(xtra_sz)) goto restart_args; - } - - if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd; - - ret = -EBADF; - - f = fdget(fd); - if (unlikely(f.file == NULL)) { - DPRINT(("invalid fd %d\n", fd)); - goto error_args; - } - if (unlikely(PFM_IS_FILE(f.file) == 0)) { - DPRINT(("fd %d not related to perfmon\n", fd)); - goto error_args; - } - - ctx = f.file->private_data; - if (unlikely(ctx == NULL)) { - DPRINT(("no context for fd %d\n", fd)); - goto error_args; - } - prefetch(&ctx->ctx_state); - - PROTECT_CTX(ctx, flags); - - /* - * check task is stopped - */ - ret = pfm_check_task_state(ctx, cmd, flags); - if (unlikely(ret)) goto abort_locked; - -skip_fd: - ret = (*func)(ctx, args_k, count, task_pt_regs(current)); - - call_made = 1; - -abort_locked: - if (likely(ctx)) { - DPRINT(("context unlocked\n")); - UNPROTECT_CTX(ctx, flags); - } - - /* copy argument back to user, if needed */ - if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT; - -error_args: - if (f.file) - fdput(f); - - kfree(args_k); - - DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret)); - - return ret; -} - -static void -pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs) -{ - pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt; - pfm_ovfl_ctrl_t rst_ctrl; - int state; - int ret = 0; - - state = ctx->ctx_state; - /* - * Unlock sampling buffer and reset index atomically - * XXX: not really needed when blocking - */ - if (CTX_HAS_SMPL(ctx)) { - - rst_ctrl.bits.mask_monitoring = 0; - rst_ctrl.bits.reset_ovfl_pmds = 0; - - if (state == PFM_CTX_LOADED) - ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); - else - ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); - } else { - rst_ctrl.bits.mask_monitoring = 0; - rst_ctrl.bits.reset_ovfl_pmds = 1; - } - - if (ret == 0) { - if (rst_ctrl.bits.reset_ovfl_pmds) { - pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET); - } - if (rst_ctrl.bits.mask_monitoring == 0) { - DPRINT(("resuming monitoring\n")); - if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current); - } else { - DPRINT(("stopping monitoring\n")); - //pfm_stop_monitoring(current, regs); - } - ctx->ctx_state = PFM_CTX_LOADED; - } -} - -/* - * context MUST BE LOCKED when calling - * can only be called for current - */ -static void -pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) -{ - int ret; - - DPRINT(("entering for [%d]\n", task_pid_nr(current))); - - ret = pfm_context_unload(ctx, NULL, 0, regs); - if (ret) { - printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret); - } - - /* - * and wakeup controlling task, indicating we are now disconnected - */ - wake_up_interruptible(&ctx->ctx_zombieq); - - /* - * given that context is still locked, the controlling - * task will only get access when we return from - * pfm_handle_work(). - */ -} - -static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); - - /* - * pfm_handle_work() can be called with interrupts enabled - * (TIF_NEED_RESCHED) or disabled. The down_interruptible - * call may sleep, therefore we must re-enable interrupts - * to avoid deadlocks. It is safe to do so because this function - * is called ONLY when returning to user level (pUStk=1), in which case - * there is no risk of kernel stack overflow due to deep - * interrupt nesting. - */ -void -pfm_handle_work(void) -{ - pfm_context_t *ctx; - struct pt_regs *regs; - unsigned long flags, dummy_flags; - unsigned long ovfl_regs; - unsigned int reason; - int ret; - - ctx = PFM_GET_CTX(current); - if (ctx == NULL) { - printk(KERN_ERR "perfmon: [%d] has no PFM context\n", - task_pid_nr(current)); - return; - } - - PROTECT_CTX(ctx, flags); - - PFM_SET_WORK_PENDING(current, 0); - - regs = task_pt_regs(current); - - /* - * extract reason for being here and clear - */ - reason = ctx->ctx_fl_trap_reason; - ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; - ovfl_regs = ctx->ctx_ovfl_regs[0]; - - DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state)); - - /* - * must be done before we check for simple-reset mode - */ - if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) - goto do_zombie; - - //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; - if (reason == PFM_TRAP_REASON_RESET) - goto skip_blocking; - - /* - * restore interrupt mask to what it was on entry. - * Could be enabled/diasbled. - */ - UNPROTECT_CTX(ctx, flags); - - /* - * force interrupt enable because of down_interruptible() - */ - local_irq_enable(); - - DPRINT(("before block sleeping\n")); - - /* - * may go through without blocking on SMP systems - * if restart has been received already by the time we call down() - */ - ret = wait_for_completion_interruptible(&ctx->ctx_restart_done); - - DPRINT(("after block sleeping ret=%d\n", ret)); - - /* - * lock context and mask interrupts again - * We save flags into a dummy because we may have - * altered interrupts mask compared to entry in this - * function. - */ - PROTECT_CTX(ctx, dummy_flags); - - /* - * we need to read the ovfl_regs only after wake-up - * because we may have had pfm_write_pmds() in between - * and that can changed PMD values and therefore - * ovfl_regs is reset for these new PMD values. - */ - ovfl_regs = ctx->ctx_ovfl_regs[0]; - - if (ctx->ctx_fl_going_zombie) { -do_zombie: - DPRINT(("context is zombie, bailing out\n")); - pfm_context_force_terminate(ctx, regs); - goto nothing_to_do; - } - /* - * in case of interruption of down() we don't restart anything - */ - if (ret < 0) - goto nothing_to_do; - -skip_blocking: - pfm_resume_after_ovfl(ctx, ovfl_regs, regs); - ctx->ctx_ovfl_regs[0] = 0UL; - -nothing_to_do: - /* - * restore flags as they were upon entry - */ - UNPROTECT_CTX(ctx, flags); -} - -static int -pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg) -{ - if (ctx->ctx_state == PFM_CTX_ZOMBIE) { - DPRINT(("ignoring overflow notification, owner is zombie\n")); - return 0; - } - - DPRINT(("waking up somebody\n")); - - if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait); - - /* - * safe, we are not in intr handler, nor in ctxsw when - * we come here - */ - kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN); - - return 0; -} - -static int -pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds) -{ - pfm_msg_t *msg = NULL; - - if (ctx->ctx_fl_no_msg == 0) { - msg = pfm_get_new_msg(ctx); - if (msg == NULL) { - printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n"); - return -1; - } - - msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL; - msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd; - msg->pfm_ovfl_msg.msg_active_set = 0; - msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds; - msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL; - msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL; - msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL; - msg->pfm_ovfl_msg.msg_tstamp = 0UL; - } - - DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n", - msg, - ctx->ctx_fl_no_msg, - ctx->ctx_fd, - ovfl_pmds)); - - return pfm_notify_user(ctx, msg); -} - -static int -pfm_end_notify_user(pfm_context_t *ctx) -{ - pfm_msg_t *msg; - - msg = pfm_get_new_msg(ctx); - if (msg == NULL) { - printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n"); - return -1; - } - /* no leak */ - memset(msg, 0, sizeof(*msg)); - - msg->pfm_end_msg.msg_type = PFM_MSG_END; - msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd; - msg->pfm_ovfl_msg.msg_tstamp = 0UL; - - DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n", - msg, - ctx->ctx_fl_no_msg, - ctx->ctx_fd)); - - return pfm_notify_user(ctx, msg); -} - -/* - * main overflow processing routine. - * it can be called from the interrupt path or explicitly during the context switch code - */ -static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, - unsigned long pmc0, struct pt_regs *regs) -{ - pfm_ovfl_arg_t *ovfl_arg; - unsigned long mask; - unsigned long old_val, ovfl_val, new_val; - unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds; - unsigned long tstamp; - pfm_ovfl_ctrl_t ovfl_ctrl; - unsigned int i, has_smpl; - int must_notify = 0; - - if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring; - - /* - * sanity test. Should never happen - */ - if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check; - - tstamp = ia64_get_itc(); - mask = pmc0 >> PMU_FIRST_COUNTER; - ovfl_val = pmu_conf->ovfl_val; - has_smpl = CTX_HAS_SMPL(ctx); - - DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s " - "used_pmds=0x%lx\n", - pmc0, - task ? task_pid_nr(task): -1, - (regs ? regs->cr_iip : 0), - CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking", - ctx->ctx_used_pmds[0])); - - - /* - * first we update the virtual counters - * assume there was a prior ia64_srlz_d() issued - */ - for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) { - - /* skip pmd which did not overflow */ - if ((mask & 0x1) == 0) continue; - - /* - * Note that the pmd is not necessarily 0 at this point as qualified events - * may have happened before the PMU was frozen. The residual count is not - * taken into consideration here but will be with any read of the pmd via - * pfm_read_pmds(). - */ - old_val = new_val = ctx->ctx_pmds[i].val; - new_val += 1 + ovfl_val; - ctx->ctx_pmds[i].val = new_val; - - /* - * check for overflow condition - */ - if (likely(old_val > new_val)) { - ovfl_pmds |= 1UL << i; - if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i; - } - - DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n", - i, - new_val, - old_val, - ia64_get_pmd(i) & ovfl_val, - ovfl_pmds, - ovfl_notify)); - } - - /* - * there was no 64-bit overflow, nothing else to do - */ - if (ovfl_pmds == 0UL) return; - - /* - * reset all control bits - */ - ovfl_ctrl.val = 0; - reset_pmds = 0UL; - - /* - * if a sampling format module exists, then we "cache" the overflow by - * calling the module's handler() routine. - */ - if (has_smpl) { - unsigned long start_cycles, end_cycles; - unsigned long pmd_mask; - int j, k, ret = 0; - int this_cpu = smp_processor_id(); - - pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER; - ovfl_arg = &ctx->ctx_ovfl_arg; - - prefetch(ctx->ctx_smpl_hdr); - - for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) { - - mask = 1UL << i; - - if ((pmd_mask & 0x1) == 0) continue; - - ovfl_arg->ovfl_pmd = (unsigned char )i; - ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0; - ovfl_arg->active_set = 0; - ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */ - ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0]; - - ovfl_arg->pmd_value = ctx->ctx_pmds[i].val; - ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval; - ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid; - - /* - * copy values of pmds of interest. Sampling format may copy them - * into sampling buffer. - */ - if (smpl_pmds) { - for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) { - if ((smpl_pmds & 0x1) == 0) continue; - ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j); - DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1])); - } - } - - pfm_stats[this_cpu].pfm_smpl_handler_calls++; - - start_cycles = ia64_get_itc(); - - /* - * call custom buffer format record (handler) routine - */ - ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp); - - end_cycles = ia64_get_itc(); - - /* - * For those controls, we take the union because they have - * an all or nothing behavior. - */ - ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user; - ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task; - ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring; - /* - * build the bitmask of pmds to reset now - */ - if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask; - - pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles; - } - /* - * when the module cannot handle the rest of the overflows, we abort right here - */ - if (ret && pmd_mask) { - DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n", - pmd_mask<ctx_ovfl_regs[0] = ovfl_pmds; - - /* - * check for blocking context - */ - if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) { - - ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK; - - /* - * set the perfmon specific checking pending work for the task - */ - PFM_SET_WORK_PENDING(task, 1); - - /* - * when coming from ctxsw, current still points to the - * previous task, therefore we must work with task and not current. - */ - set_notify_resume(task); - } - /* - * defer until state is changed (shorten spin window). the context is locked - * anyway, so the signal receiver would come spin for nothing. - */ - must_notify = 1; - } - - DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n", - GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1, - PFM_GET_WORK_PENDING(task), - ctx->ctx_fl_trap_reason, - ovfl_pmds, - ovfl_notify, - ovfl_ctrl.bits.mask_monitoring ? 1 : 0)); - /* - * in case monitoring must be stopped, we toggle the psr bits - */ - if (ovfl_ctrl.bits.mask_monitoring) { - pfm_mask_monitoring(task); - ctx->ctx_state = PFM_CTX_MASKED; - ctx->ctx_fl_can_restart = 1; - } - - /* - * send notification now - */ - if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify); - - return; - -sanity_check: - printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n", - smp_processor_id(), - task ? task_pid_nr(task) : -1, - pmc0); - return; - -stop_monitoring: - /* - * in SMP, zombie context is never restored but reclaimed in pfm_load_regs(). - * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can - * come here as zombie only if the task is the current task. In which case, we - * can access the PMU hardware directly. - * - * Note that zombies do have PM_VALID set. So here we do the minimal. - * - * In case the context was zombified it could not be reclaimed at the time - * the monitoring program exited. At this point, the PMU reservation has been - * returned, the sampiing buffer has been freed. We must convert this call - * into a spurious interrupt. However, we must also avoid infinite overflows - * by stopping monitoring for this task. We can only come here for a per-task - * context. All we need to do is to stop monitoring using the psr bits which - * are always task private. By re-enabling secure montioring, we ensure that - * the monitored task will not be able to re-activate monitoring. - * The task will eventually be context switched out, at which point the context - * will be reclaimed (that includes releasing ownership of the PMU). - * - * So there might be a window of time where the number of per-task session is zero - * yet one PMU might have a owner and get at most one overflow interrupt for a zombie - * context. This is safe because if a per-task session comes in, it will push this one - * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide - * session is force on that CPU, given that we use task pinning, pfm_save_regs() will - * also push our zombie context out. - * - * Overall pretty hairy stuff.... - */ - DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1)); - pfm_clear_psr_up(); - ia64_psr(regs)->up = 0; - ia64_psr(regs)->sp = 1; - return; -} - -static int -pfm_do_interrupt_handler(void *arg, struct pt_regs *regs) -{ - struct task_struct *task; - pfm_context_t *ctx; - unsigned long flags; - u64 pmc0; - int this_cpu = smp_processor_id(); - int retval = 0; - - pfm_stats[this_cpu].pfm_ovfl_intr_count++; - - /* - * srlz.d done before arriving here - */ - pmc0 = ia64_get_pmc(0); - - task = GET_PMU_OWNER(); - ctx = GET_PMU_CTX(); - - /* - * if we have some pending bits set - * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1 - */ - if (PMC0_HAS_OVFL(pmc0) && task) { - /* - * we assume that pmc0.fr is always set here - */ - - /* sanity check */ - if (!ctx) goto report_spurious1; - - if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) - goto report_spurious2; - - PROTECT_CTX_NOPRINT(ctx, flags); - - pfm_overflow_handler(task, ctx, pmc0, regs); - - UNPROTECT_CTX_NOPRINT(ctx, flags); - - } else { - pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++; - retval = -1; - } - /* - * keep it unfrozen at all times - */ - pfm_unfreeze_pmu(); - - return retval; - -report_spurious1: - printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n", - this_cpu, task_pid_nr(task)); - pfm_unfreeze_pmu(); - return -1; -report_spurious2: - printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", - this_cpu, - task_pid_nr(task)); - pfm_unfreeze_pmu(); - return -1; -} - -static irqreturn_t -pfm_interrupt_handler(int irq, void *arg) -{ - unsigned long start_cycles, total_cycles; - unsigned long min, max; - int this_cpu; - int ret; - struct pt_regs *regs = get_irq_regs(); - - this_cpu = get_cpu(); - if (likely(!pfm_alt_intr_handler)) { - min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min; - max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max; - - start_cycles = ia64_get_itc(); - - ret = pfm_do_interrupt_handler(arg, regs); - - total_cycles = ia64_get_itc(); - - /* - * don't measure spurious interrupts - */ - if (likely(ret == 0)) { - total_cycles -= start_cycles; - - if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles; - if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles; - - pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles; - } - } - else { - (*pfm_alt_intr_handler->handler)(irq, arg, regs); - } - - put_cpu(); - return IRQ_HANDLED; -} - -/* - * /proc/perfmon interface, for debug only - */ - -#define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1) - -static void * -pfm_proc_start(struct seq_file *m, loff_t *pos) -{ - if (*pos == 0) { - return PFM_PROC_SHOW_HEADER; - } - - while (*pos <= nr_cpu_ids) { - if (cpu_online(*pos - 1)) { - return (void *)*pos; - } - ++*pos; - } - return NULL; -} - -static void * -pfm_proc_next(struct seq_file *m, void *v, loff_t *pos) -{ - ++*pos; - return pfm_proc_start(m, pos); -} - -static void -pfm_proc_stop(struct seq_file *m, void *v) -{ -} - -static void -pfm_proc_show_header(struct seq_file *m) -{ - struct list_head * pos; - pfm_buffer_fmt_t * entry; - unsigned long flags; - - seq_printf(m, - "perfmon version : %u.%u\n" - "model : %s\n" - "fastctxsw : %s\n" - "expert mode : %s\n" - "ovfl_mask : 0x%lx\n" - "PMU flags : 0x%x\n", - PFM_VERSION_MAJ, PFM_VERSION_MIN, - pmu_conf->pmu_name, - pfm_sysctl.fastctxsw > 0 ? "Yes": "No", - pfm_sysctl.expert_mode > 0 ? "Yes": "No", - pmu_conf->ovfl_val, - pmu_conf->flags); - - LOCK_PFS(flags); - - seq_printf(m, - "proc_sessions : %u\n" - "sys_sessions : %u\n" - "sys_use_dbregs : %u\n" - "ptrace_use_dbregs : %u\n", - pfm_sessions.pfs_task_sessions, - pfm_sessions.pfs_sys_sessions, - pfm_sessions.pfs_sys_use_dbregs, - pfm_sessions.pfs_ptrace_use_dbregs); - - UNLOCK_PFS(flags); - - spin_lock(&pfm_buffer_fmt_lock); - - list_for_each(pos, &pfm_buffer_fmt_list) { - entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); - seq_printf(m, "format : %16phD %s\n", - entry->fmt_uuid, entry->fmt_name); - } - spin_unlock(&pfm_buffer_fmt_lock); - -} - -static int -pfm_proc_show(struct seq_file *m, void *v) -{ - unsigned long psr; - unsigned int i; - int cpu; - - if (v == PFM_PROC_SHOW_HEADER) { - pfm_proc_show_header(m); - return 0; - } - - /* show info for CPU (v - 1) */ - - cpu = (long)v - 1; - seq_printf(m, - "CPU%-2d overflow intrs : %lu\n" - "CPU%-2d overflow cycles : %lu\n" - "CPU%-2d overflow min : %lu\n" - "CPU%-2d overflow max : %lu\n" - "CPU%-2d smpl handler calls : %lu\n" - "CPU%-2d smpl handler cycles : %lu\n" - "CPU%-2d spurious intrs : %lu\n" - "CPU%-2d replay intrs : %lu\n" - "CPU%-2d syst_wide : %d\n" - "CPU%-2d dcr_pp : %d\n" - "CPU%-2d exclude idle : %d\n" - "CPU%-2d owner : %d\n" - "CPU%-2d context : %p\n" - "CPU%-2d activations : %lu\n", - cpu, pfm_stats[cpu].pfm_ovfl_intr_count, - cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles, - cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min, - cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max, - cpu, pfm_stats[cpu].pfm_smpl_handler_calls, - cpu, pfm_stats[cpu].pfm_smpl_handler_cycles, - cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count, - cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count, - cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0, - cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0, - cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0, - cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1, - cpu, pfm_get_cpu_data(pmu_ctx, cpu), - cpu, pfm_get_cpu_data(pmu_activation_number, cpu)); - - if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) { - - psr = pfm_get_psr(); - - ia64_srlz_d(); - - seq_printf(m, - "CPU%-2d psr : 0x%lx\n" - "CPU%-2d pmc0 : 0x%lx\n", - cpu, psr, - cpu, ia64_get_pmc(0)); - - for (i=0; PMC_IS_LAST(i) == 0; i++) { - if (PMC_IS_COUNTING(i) == 0) continue; - seq_printf(m, - "CPU%-2d pmc%u : 0x%lx\n" - "CPU%-2d pmd%u : 0x%lx\n", - cpu, i, ia64_get_pmc(i), - cpu, i, ia64_get_pmd(i)); - } - } - return 0; -} - -const struct seq_operations pfm_seq_ops = { - .start = pfm_proc_start, - .next = pfm_proc_next, - .stop = pfm_proc_stop, - .show = pfm_proc_show -}; - -/* - * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens - * during pfm_enable() hence before pfm_start(). We cannot assume monitoring - * is active or inactive based on mode. We must rely on the value in - * local_cpu_data->pfm_syst_info - */ -void -pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin) -{ - struct pt_regs *regs; - unsigned long dcr; - unsigned long dcr_pp; - - dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0; - - /* - * pid 0 is guaranteed to be the idle task. There is one such task with pid 0 - * on every CPU, so we can rely on the pid to identify the idle task. - */ - if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) { - regs = task_pt_regs(task); - ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0; - return; - } - /* - * if monitoring has started - */ - if (dcr_pp) { - dcr = ia64_getreg(_IA64_REG_CR_DCR); - /* - * context switching in? - */ - if (is_ctxswin) { - /* mask monitoring for the idle task */ - ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP); - pfm_clear_psr_pp(); - ia64_srlz_i(); - return; - } - /* - * context switching out - * restore monitoring for next task - * - * Due to inlining this odd if-then-else construction generates - * better code. - */ - ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP); - pfm_set_psr_pp(); - ia64_srlz_i(); - } -} - -#ifdef CONFIG_SMP - -static void -pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs) -{ - struct task_struct *task = ctx->ctx_task; - - ia64_psr(regs)->up = 0; - ia64_psr(regs)->sp = 1; - - if (GET_PMU_OWNER() == task) { - DPRINT(("cleared ownership for [%d]\n", - task_pid_nr(ctx->ctx_task))); - SET_PMU_OWNER(NULL, NULL); - } - - /* - * disconnect the task from the context and vice-versa - */ - PFM_SET_WORK_PENDING(task, 0); - - task->thread.pfm_context = NULL; - task->thread.flags &= ~IA64_THREAD_PM_VALID; - - DPRINT(("force cleanup for [%d]\n", task_pid_nr(task))); -} - - -/* - * in 2.6, interrupts are masked when we come here and the runqueue lock is held - */ -void -pfm_save_regs(struct task_struct *task) -{ - pfm_context_t *ctx; - unsigned long flags; - u64 psr; - - - ctx = PFM_GET_CTX(task); - if (ctx == NULL) return; - - /* - * we always come here with interrupts ALREADY disabled by - * the scheduler. So we simply need to protect against concurrent - * access, not CPU concurrency. - */ - flags = pfm_protect_ctx_ctxsw(ctx); - - if (ctx->ctx_state == PFM_CTX_ZOMBIE) { - struct pt_regs *regs = task_pt_regs(task); - - pfm_clear_psr_up(); - - pfm_force_cleanup(ctx, regs); - - BUG_ON(ctx->ctx_smpl_hdr); - - pfm_unprotect_ctx_ctxsw(ctx, flags); - - pfm_context_free(ctx); - return; - } - - /* - * save current PSR: needed because we modify it - */ - ia64_srlz_d(); - psr = pfm_get_psr(); - - BUG_ON(psr & (IA64_PSR_I)); - - /* - * stop monitoring: - * This is the last instruction which may generate an overflow - * - * We do not need to set psr.sp because, it is irrelevant in kernel. - * It will be restored from ipsr when going back to user level - */ - pfm_clear_psr_up(); - - /* - * keep a copy of psr.up (for reload) - */ - ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; - - /* - * release ownership of this PMU. - * PM interrupts are masked, so nothing - * can happen. - */ - SET_PMU_OWNER(NULL, NULL); - - /* - * we systematically save the PMD as we have no - * guarantee we will be schedule at that same - * CPU again. - */ - pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); - - /* - * save pmc0 ia64_srlz_d() done in pfm_save_pmds() - * we will need it on the restore path to check - * for pending overflow. - */ - ctx->th_pmcs[0] = ia64_get_pmc(0); - - /* - * unfreeze PMU if had pending overflows - */ - if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); - - /* - * finally, allow context access. - * interrupts will still be masked after this call. - */ - pfm_unprotect_ctx_ctxsw(ctx, flags); -} - -#else /* !CONFIG_SMP */ -void -pfm_save_regs(struct task_struct *task) -{ - pfm_context_t *ctx; - u64 psr; - - ctx = PFM_GET_CTX(task); - if (ctx == NULL) return; - - /* - * save current PSR: needed because we modify it - */ - psr = pfm_get_psr(); - - BUG_ON(psr & (IA64_PSR_I)); - - /* - * stop monitoring: - * This is the last instruction which may generate an overflow - * - * We do not need to set psr.sp because, it is irrelevant in kernel. - * It will be restored from ipsr when going back to user level - */ - pfm_clear_psr_up(); - - /* - * keep a copy of psr.up (for reload) - */ - ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; -} - -static void -pfm_lazy_save_regs (struct task_struct *task) -{ - pfm_context_t *ctx; - unsigned long flags; - - { u64 psr = pfm_get_psr(); - BUG_ON(psr & IA64_PSR_UP); - } - - ctx = PFM_GET_CTX(task); - - /* - * we need to mask PMU overflow here to - * make sure that we maintain pmc0 until - * we save it. overflow interrupts are - * treated as spurious if there is no - * owner. - * - * XXX: I don't think this is necessary - */ - PROTECT_CTX(ctx,flags); - - /* - * release ownership of this PMU. - * must be done before we save the registers. - * - * after this call any PMU interrupt is treated - * as spurious. - */ - SET_PMU_OWNER(NULL, NULL); - - /* - * save all the pmds we use - */ - pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); - - /* - * save pmc0 ia64_srlz_d() done in pfm_save_pmds() - * it is needed to check for pended overflow - * on the restore path - */ - ctx->th_pmcs[0] = ia64_get_pmc(0); - - /* - * unfreeze PMU if had pending overflows - */ - if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); - - /* - * now get can unmask PMU interrupts, they will - * be treated as purely spurious and we will not - * lose any information - */ - UNPROTECT_CTX(ctx,flags); -} -#endif /* CONFIG_SMP */ - -#ifdef CONFIG_SMP -/* - * in 2.6, interrupts are masked when we come here and the runqueue lock is held - */ -void -pfm_load_regs (struct task_struct *task) -{ - pfm_context_t *ctx; - unsigned long pmc_mask = 0UL, pmd_mask = 0UL; - unsigned long flags; - u64 psr, psr_up; - int need_irq_resend; - - ctx = PFM_GET_CTX(task); - if (unlikely(ctx == NULL)) return; - - BUG_ON(GET_PMU_OWNER()); - - /* - * possible on unload - */ - if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return; - - /* - * we always come here with interrupts ALREADY disabled by - * the scheduler. So we simply need to protect against concurrent - * access, not CPU concurrency. - */ - flags = pfm_protect_ctx_ctxsw(ctx); - psr = pfm_get_psr(); - - need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; - - BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); - BUG_ON(psr & IA64_PSR_I); - - if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) { - struct pt_regs *regs = task_pt_regs(task); - - BUG_ON(ctx->ctx_smpl_hdr); - - pfm_force_cleanup(ctx, regs); - - pfm_unprotect_ctx_ctxsw(ctx, flags); - - /* - * this one (kmalloc'ed) is fine with interrupts disabled - */ - pfm_context_free(ctx); - - return; - } - - /* - * we restore ALL the debug registers to avoid picking up - * stale state. - */ - if (ctx->ctx_fl_using_dbreg) { - pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); - pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); - } - /* - * retrieve saved psr.up - */ - psr_up = ctx->ctx_saved_psr_up; - - /* - * if we were the last user of the PMU on that CPU, - * then nothing to do except restore psr - */ - if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) { - - /* - * retrieve partial reload masks (due to user modifications) - */ - pmc_mask = ctx->ctx_reload_pmcs[0]; - pmd_mask = ctx->ctx_reload_pmds[0]; - - } else { - /* - * To avoid leaking information to the user level when psr.sp=0, - * we must reload ALL implemented pmds (even the ones we don't use). - * In the kernel we only allow PFM_READ_PMDS on registers which - * we initialized or requested (sampling) so there is no risk there. - */ - pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; - - /* - * ALL accessible PMCs are systematically reloaded, unused registers - * get their default (from pfm_reset_pmu_state()) values to avoid picking - * up stale configuration. - * - * PMC0 is never in the mask. It is always restored separately. - */ - pmc_mask = ctx->ctx_all_pmcs[0]; - } - /* - * when context is MASKED, we will restore PMC with plm=0 - * and PMD with stale information, but that's ok, nothing - * will be captured. - * - * XXX: optimize here - */ - if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask); - if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); - - /* - * check for pending overflow at the time the state - * was saved. - */ - if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { - /* - * reload pmc0 with the overflow information - * On McKinley PMU, this will trigger a PMU interrupt - */ - ia64_set_pmc(0, ctx->th_pmcs[0]); - ia64_srlz_d(); - ctx->th_pmcs[0] = 0UL; - - /* - * will replay the PMU interrupt - */ - if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); - - pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; - } - - /* - * we just did a reload, so we reset the partial reload fields - */ - ctx->ctx_reload_pmcs[0] = 0UL; - ctx->ctx_reload_pmds[0] = 0UL; - - SET_LAST_CPU(ctx, smp_processor_id()); - - /* - * dump activation value for this PMU - */ - INC_ACTIVATION(); - /* - * record current activation for this context - */ - SET_ACTIVATION(ctx); - - /* - * establish new ownership. - */ - SET_PMU_OWNER(task, ctx); - - /* - * restore the psr.up bit. measurement - * is active again. - * no PMU interrupt can happen at this point - * because we still have interrupts disabled. - */ - if (likely(psr_up)) pfm_set_psr_up(); - - /* - * allow concurrent access to context - */ - pfm_unprotect_ctx_ctxsw(ctx, flags); -} -#else /* !CONFIG_SMP */ -/* - * reload PMU state for UP kernels - * in 2.5 we come here with interrupts disabled - */ -void -pfm_load_regs (struct task_struct *task) -{ - pfm_context_t *ctx; - struct task_struct *owner; - unsigned long pmd_mask, pmc_mask; - u64 psr, psr_up; - int need_irq_resend; - - owner = GET_PMU_OWNER(); - ctx = PFM_GET_CTX(task); - psr = pfm_get_psr(); - - BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); - BUG_ON(psr & IA64_PSR_I); - - /* - * we restore ALL the debug registers to avoid picking up - * stale state. - * - * This must be done even when the task is still the owner - * as the registers may have been modified via ptrace() - * (not perfmon) by the previous task. - */ - if (ctx->ctx_fl_using_dbreg) { - pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); - pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); - } - - /* - * retrieved saved psr.up - */ - psr_up = ctx->ctx_saved_psr_up; - need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; - - /* - * short path, our state is still there, just - * need to restore psr and we go - * - * we do not touch either PMC nor PMD. the psr is not touched - * by the overflow_handler. So we are safe w.r.t. to interrupt - * concurrency even without interrupt masking. - */ - if (likely(owner == task)) { - if (likely(psr_up)) pfm_set_psr_up(); - return; - } - - /* - * someone else is still using the PMU, first push it out and - * then we'll be able to install our stuff ! - * - * Upon return, there will be no owner for the current PMU - */ - if (owner) pfm_lazy_save_regs(owner); - - /* - * To avoid leaking information to the user level when psr.sp=0, - * we must reload ALL implemented pmds (even the ones we don't use). - * In the kernel we only allow PFM_READ_PMDS on registers which - * we initialized or requested (sampling) so there is no risk there. - */ - pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; - - /* - * ALL accessible PMCs are systematically reloaded, unused registers - * get their default (from pfm_reset_pmu_state()) values to avoid picking - * up stale configuration. - * - * PMC0 is never in the mask. It is always restored separately - */ - pmc_mask = ctx->ctx_all_pmcs[0]; - - pfm_restore_pmds(ctx->th_pmds, pmd_mask); - pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); - - /* - * check for pending overflow at the time the state - * was saved. - */ - if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { - /* - * reload pmc0 with the overflow information - * On McKinley PMU, this will trigger a PMU interrupt - */ - ia64_set_pmc(0, ctx->th_pmcs[0]); - ia64_srlz_d(); - - ctx->th_pmcs[0] = 0UL; - - /* - * will replay the PMU interrupt - */ - if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); - - pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; - } - - /* - * establish new ownership. - */ - SET_PMU_OWNER(task, ctx); - - /* - * restore the psr.up bit. measurement - * is active again. - * no PMU interrupt can happen at this point - * because we still have interrupts disabled. - */ - if (likely(psr_up)) pfm_set_psr_up(); -} -#endif /* CONFIG_SMP */ - -/* - * this function assumes monitoring is stopped - */ -static void -pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx) -{ - u64 pmc0; - unsigned long mask2, val, pmd_val, ovfl_val; - int i, can_access_pmu = 0; - int is_self; - - /* - * is the caller the task being monitored (or which initiated the - * session for system wide measurements) - */ - is_self = ctx->ctx_task == task ? 1 : 0; - - /* - * can access PMU is task is the owner of the PMU state on the current CPU - * or if we are running on the CPU bound to the context in system-wide mode - * (that is not necessarily the task the context is attached to in this mode). - * In system-wide we always have can_access_pmu true because a task running on an - * invalid processor is flagged earlier in the call stack (see pfm_stop). - */ - can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id()); - if (can_access_pmu) { - /* - * Mark the PMU as not owned - * This will cause the interrupt handler to do nothing in case an overflow - * interrupt was in-flight - * This also guarantees that pmc0 will contain the final state - * It virtually gives us full control on overflow processing from that point - * on. - */ - SET_PMU_OWNER(NULL, NULL); - DPRINT(("releasing ownership\n")); - - /* - * read current overflow status: - * - * we are guaranteed to read the final stable state - */ - ia64_srlz_d(); - pmc0 = ia64_get_pmc(0); /* slow */ - - /* - * reset freeze bit, overflow status information destroyed - */ - pfm_unfreeze_pmu(); - } else { - pmc0 = ctx->th_pmcs[0]; - /* - * clear whatever overflow status bits there were - */ - ctx->th_pmcs[0] = 0; - } - ovfl_val = pmu_conf->ovfl_val; - /* - * we save all the used pmds - * we take care of overflows for counting PMDs - * - * XXX: sampling situation is not taken into account here - */ - mask2 = ctx->ctx_used_pmds[0]; - - DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2)); - - for (i = 0; mask2; i++, mask2>>=1) { - - /* skip non used pmds */ - if ((mask2 & 0x1) == 0) continue; - - /* - * can access PMU always true in system wide mode - */ - val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i]; - - if (PMD_IS_COUNTING(i)) { - DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n", - task_pid_nr(task), - i, - ctx->ctx_pmds[i].val, - val & ovfl_val)); - - /* - * we rebuild the full 64 bit value of the counter - */ - val = ctx->ctx_pmds[i].val + (val & ovfl_val); - - /* - * now everything is in ctx_pmds[] and we need - * to clear the saved context from save_regs() such that - * pfm_read_pmds() gets the correct value - */ - pmd_val = 0UL; - - /* - * take care of overflow inline - */ - if (pmc0 & (1UL << i)) { - val += 1 + ovfl_val; - DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i)); - } - } - - DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val)); - - if (is_self) ctx->th_pmds[i] = pmd_val; - - ctx->ctx_pmds[i].val = val; - } -} - -static void -pfm_alt_save_pmu_state(void *data) -{ - struct pt_regs *regs; - - regs = task_pt_regs(current); - - DPRINT(("called\n")); - - /* - * should not be necessary but - * let's take not risk - */ - pfm_clear_psr_up(); - pfm_clear_psr_pp(); - ia64_psr(regs)->pp = 0; - - /* - * This call is required - * May cause a spurious interrupt on some processors - */ - pfm_freeze_pmu(); - - ia64_srlz_d(); -} - -void -pfm_alt_restore_pmu_state(void *data) -{ - struct pt_regs *regs; - - regs = task_pt_regs(current); - - DPRINT(("called\n")); - - /* - * put PMU back in state expected - * by perfmon - */ - pfm_clear_psr_up(); - pfm_clear_psr_pp(); - ia64_psr(regs)->pp = 0; - - /* - * perfmon runs with PMU unfrozen at all times - */ - pfm_unfreeze_pmu(); - - ia64_srlz_d(); -} - -int -pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) -{ - int ret, i; - int reserve_cpu; - - /* some sanity checks */ - if (hdl == NULL || hdl->handler == NULL) return -EINVAL; - - /* do the easy test first */ - if (pfm_alt_intr_handler) return -EBUSY; - - /* one at a time in the install or remove, just fail the others */ - if (!spin_trylock(&pfm_alt_install_check)) { - return -EBUSY; - } - - /* reserve our session */ - for_each_online_cpu(reserve_cpu) { - ret = pfm_reserve_session(NULL, 1, reserve_cpu); - if (ret) goto cleanup_reserve; - } - - /* save the current system wide pmu states */ - on_each_cpu(pfm_alt_save_pmu_state, NULL, 1); - - /* officially change to the alternate interrupt handler */ - pfm_alt_intr_handler = hdl; - - spin_unlock(&pfm_alt_install_check); - - return 0; - -cleanup_reserve: - for_each_online_cpu(i) { - /* don't unreserve more than we reserved */ - if (i >= reserve_cpu) break; - - pfm_unreserve_session(NULL, 1, i); - } - - spin_unlock(&pfm_alt_install_check); - - return ret; -} -EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt); - -int -pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) -{ - int i; - - if (hdl == NULL) return -EINVAL; - - /* cannot remove someone else's handler! */ - if (pfm_alt_intr_handler != hdl) return -EINVAL; - - /* one at a time in the install or remove, just fail the others */ - if (!spin_trylock(&pfm_alt_install_check)) { - return -EBUSY; - } - - pfm_alt_intr_handler = NULL; - - on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1); - - for_each_online_cpu(i) { - pfm_unreserve_session(NULL, 1, i); - } - - spin_unlock(&pfm_alt_install_check); - - return 0; -} -EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt); - -/* - * perfmon initialization routine, called from the initcall() table - */ -static int init_pfm_fs(void); - -static int __init -pfm_probe_pmu(void) -{ - pmu_config_t **p; - int family; - - family = local_cpu_data->family; - p = pmu_confs; - - while(*p) { - if ((*p)->probe) { - if ((*p)->probe() == 0) goto found; - } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) { - goto found; - } - p++; - } - return -1; -found: - pmu_conf = *p; - return 0; -} - -int __init -pfm_init(void) -{ - unsigned int n, n_counters, i; - - printk("perfmon: version %u.%u IRQ %u\n", - PFM_VERSION_MAJ, - PFM_VERSION_MIN, - IA64_PERFMON_VECTOR); - - if (pfm_probe_pmu()) { - printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", - local_cpu_data->family); - return -ENODEV; - } - - /* - * compute the number of implemented PMD/PMC from the - * description tables - */ - n = 0; - for (i=0; PMC_IS_LAST(i) == 0; i++) { - if (PMC_IS_IMPL(i) == 0) continue; - pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63); - n++; - } - pmu_conf->num_pmcs = n; - - n = 0; n_counters = 0; - for (i=0; PMD_IS_LAST(i) == 0; i++) { - if (PMD_IS_IMPL(i) == 0) continue; - pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63); - n++; - if (PMD_IS_COUNTING(i)) n_counters++; - } - pmu_conf->num_pmds = n; - pmu_conf->num_counters = n_counters; - - /* - * sanity checks on the number of debug registers - */ - if (pmu_conf->use_rr_dbregs) { - if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) { - printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs); - pmu_conf = NULL; - return -1; - } - if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) { - printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs); - pmu_conf = NULL; - return -1; - } - } - - printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n", - pmu_conf->pmu_name, - pmu_conf->num_pmcs, - pmu_conf->num_pmds, - pmu_conf->num_counters, - ffz(pmu_conf->ovfl_val)); - - /* sanity check */ - if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) { - printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n"); - pmu_conf = NULL; - return -1; - } - - /* - * create /proc/perfmon (mostly for debugging purposes) - */ - perfmon_dir = proc_create_seq("perfmon", S_IRUGO, NULL, &pfm_seq_ops); - if (perfmon_dir == NULL) { - printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n"); - pmu_conf = NULL; - return -1; - } - - /* - * create /proc/sys/kernel/perfmon (for debugging purposes) - */ - pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root); - - /* - * initialize all our spinlocks - */ - spin_lock_init(&pfm_sessions.pfs_lock); - spin_lock_init(&pfm_buffer_fmt_lock); - - init_pfm_fs(); - - for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL; - - return 0; -} - -__initcall(pfm_init); - -/* - * this function is called before pfm_init() - */ -void -pfm_init_percpu (void) -{ - static int first_time=1; - /* - * make sure no measurement is active - * (may inherit programmed PMCs from EFI). - */ - pfm_clear_psr_pp(); - pfm_clear_psr_up(); - - /* - * we run with the PMU not frozen at all times - */ - pfm_unfreeze_pmu(); - - if (first_time) { - register_percpu_irq(IA64_PERFMON_VECTOR, pfm_interrupt_handler, - 0, "perfmon"); - first_time=0; - } - - ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR); - ia64_srlz_d(); -} - -/* - * used for debug purposes only - */ -void -dump_pmu_state(const char *from) -{ - struct task_struct *task; - struct pt_regs *regs; - pfm_context_t *ctx; - unsigned long psr, dcr, info, flags; - int i, this_cpu; - - local_irq_save(flags); - - this_cpu = smp_processor_id(); - regs = task_pt_regs(current); - info = PFM_CPUINFO_GET(); - dcr = ia64_getreg(_IA64_REG_CR_DCR); - - if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) { - local_irq_restore(flags); - return; - } - - printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", - this_cpu, - from, - task_pid_nr(current), - regs->cr_iip, - current->comm); - - task = GET_PMU_OWNER(); - ctx = GET_PMU_CTX(); - - printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx); - - psr = pfm_get_psr(); - - printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", - this_cpu, - ia64_get_pmc(0), - psr & IA64_PSR_PP ? 1 : 0, - psr & IA64_PSR_UP ? 1 : 0, - dcr & IA64_DCR_PP ? 1 : 0, - info, - ia64_psr(regs)->up, - ia64_psr(regs)->pp); - - ia64_psr(regs)->up = 0; - ia64_psr(regs)->pp = 0; - - for (i=1; PMC_IS_LAST(i) == 0; i++) { - if (PMC_IS_IMPL(i) == 0) continue; - printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]); - } - - for (i=1; PMD_IS_LAST(i) == 0; i++) { - if (PMD_IS_IMPL(i) == 0) continue; - printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]); - } - - if (ctx) { - printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n", - this_cpu, - ctx->ctx_state, - ctx->ctx_smpl_vaddr, - ctx->ctx_smpl_hdr, - ctx->ctx_msgq_head, - ctx->ctx_msgq_tail, - ctx->ctx_saved_psr_up); - } - local_irq_restore(flags); -} - -/* - * called from process.c:copy_thread(). task is new child. - */ -void -pfm_inherit(struct task_struct *task, struct pt_regs *regs) -{ - struct thread_struct *thread; - - DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task))); - - thread = &task->thread; - - /* - * cut links inherited from parent (current) - */ - thread->pfm_context = NULL; - - PFM_SET_WORK_PENDING(task, 0); - - /* - * the psr bits are already set properly in copy_threads() - */ -} -#else /* !CONFIG_PERFMON */ -asmlinkage long -sys_perfmonctl (int fd, int cmd, void *arg, int count) -{ - return -ENOSYS; -} -#endif /* CONFIG_PERFMON */ diff --git a/arch/ia64/kernel/process.c b/arch/ia64/kernel/process.c index f19cb97c0098..e74e10f19fff 100644 --- a/arch/ia64/kernel/process.c +++ b/arch/ia64/kernel/process.c @@ -51,10 +51,6 @@ #include "entry.h" -#ifdef CONFIG_PERFMON -# include -#endif - #include "sigframe.h" void (*ia64_mark_idle)(int); @@ -174,15 +170,6 @@ do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) return; } -#ifdef CONFIG_PERFMON - if (current->thread.pfm_needs_checking) - /* - * Note: pfm_handle_work() allow us to call it with interrupts - * disabled, and may enable interrupts within the function. - */ - pfm_handle_work(); -#endif - /* deal with pending signal delivery */ if (test_thread_flag(TIF_SIGPENDING)) { local_irq_enable(); /* force interrupt enable */ @@ -264,41 +251,15 @@ void arch_cpu_idle(void) void ia64_save_extra (struct task_struct *task) { -#ifdef CONFIG_PERFMON - unsigned long info; -#endif - if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_save_debug_regs(&task->thread.dbr[0]); - -#ifdef CONFIG_PERFMON - if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) - pfm_save_regs(task); - - info = __this_cpu_read(pfm_syst_info); - if (info & PFM_CPUINFO_SYST_WIDE) - pfm_syst_wide_update_task(task, info, 0); -#endif } void ia64_load_extra (struct task_struct *task) { -#ifdef CONFIG_PERFMON - unsigned long info; -#endif - if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_load_debug_regs(&task->thread.dbr[0]); - -#ifdef CONFIG_PERFMON - if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) - pfm_load_regs(task); - - info = __this_cpu_read(pfm_syst_info); - if (info & PFM_CPUINFO_SYST_WIDE) - pfm_syst_wide_update_task(task, info, 1); -#endif } /* @@ -432,11 +393,6 @@ copy_thread(unsigned long clone_flags, unsigned long user_stack_base, */ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); - -#ifdef CONFIG_PERFMON - if (current->thread.pfm_context) - pfm_inherit(p, child_ptregs); -#endif return retval; } @@ -563,15 +519,6 @@ exit_thread (struct task_struct *tsk) { ia64_drop_fpu(tsk); -#ifdef CONFIG_PERFMON - /* if needed, stop monitoring and flush state to perfmon context */ - if (tsk->thread.pfm_context) - pfm_exit_thread(tsk); - - /* free debug register resources */ - if (tsk->thread.flags & IA64_THREAD_DBG_VALID) - pfm_release_debug_registers(tsk); -#endif } unsigned long diff --git a/arch/ia64/kernel/ptrace.c b/arch/ia64/kernel/ptrace.c index 33ca9fa0fbf5..75c070aed81e 100644 --- a/arch/ia64/kernel/ptrace.c +++ b/arch/ia64/kernel/ptrace.c @@ -30,9 +30,6 @@ #include #include #include -#ifdef CONFIG_PERFMON -#include -#endif #include "entry.h" @@ -1951,27 +1948,6 @@ access_uarea(struct task_struct *child, unsigned long addr, "address 0x%lx\n", addr); return -1; } -#ifdef CONFIG_PERFMON - /* - * Check if debug registers are used by perfmon. This - * test must be done once we know that we can do the - * operation, i.e. the arguments are all valid, but - * before we start modifying the state. - * - * Perfmon needs to keep a count of how many processes - * are trying to modify the debug registers for system - * wide monitoring sessions. - * - * We also include read access here, because they may - * cause the PMU-installed debug register state - * (dbr[], ibr[]) to be reset. The two arrays are also - * used by perfmon, but we do not use - * IA64_THREAD_DBG_VALID. The registers are restored - * by the PMU context switch code. - */ - if (pfm_use_debug_registers(child)) - return -1; -#endif if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { child->thread.flags |= IA64_THREAD_DBG_VALID; diff --git a/arch/ia64/kernel/smpboot.c b/arch/ia64/kernel/smpboot.c index c29c600d7967..093040f7e626 100644 --- a/arch/ia64/kernel/smpboot.c +++ b/arch/ia64/kernel/smpboot.c @@ -355,10 +355,6 @@ smp_callin (void) extern void ia64_init_itm(void); extern volatile int time_keeper_id; -#ifdef CONFIG_PERFMON - extern void pfm_init_percpu(void); -#endif - cpuid = smp_processor_id(); phys_id = hard_smp_processor_id(); itc_master = time_keeper_id; @@ -389,10 +385,6 @@ smp_callin (void) ia64_mca_cmc_vector_setup(); /* Setup vector on AP */ -#ifdef CONFIG_PERFMON - pfm_init_percpu(); -#endif - local_irq_enable(); if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { diff --git a/arch/ia64/kernel/syscalls/syscall.tbl b/arch/ia64/kernel/syscalls/syscall.tbl index f52a41f4c340..4799c96c325f 100644 --- a/arch/ia64/kernel/syscalls/syscall.tbl +++ b/arch/ia64/kernel/syscalls/syscall.tbl @@ -160,7 +160,7 @@ 148 common mmap2 sys_mmap2 149 common pciconfig_read sys_pciconfig_read 150 common pciconfig_write sys_pciconfig_write -151 common perfmonctl sys_perfmonctl +151 common perfmonctl sys_ni_syscall 152 common sigaltstack sys_sigaltstack 153 common rt_sigaction sys_rt_sigaction 154 common rt_sigpending sys_rt_sigpending diff --git a/arch/ia64/lib/Makefile b/arch/ia64/lib/Makefile index 82118b38532f..081fcba01dc0 100644 --- a/arch/ia64/lib/Makefile +++ b/arch/ia64/lib/Makefile @@ -12,7 +12,6 @@ lib-y := io.o __divsi3.o __udivsi3.o __modsi3.o __umodsi3.o \ lib-$(CONFIG_ITANIUM) += copy_page.o copy_user.o memcpy.o lib-$(CONFIG_MCKINLEY) += copy_page_mck.o memcpy_mck.o -lib-$(CONFIG_PERFMON) += carta_random.o AFLAGS___divdi3.o = AFLAGS___udivdi3.o = -DUNSIGNED diff --git a/arch/ia64/lib/carta_random.S b/arch/ia64/lib/carta_random.S deleted file mode 100644 index 1a4a639dc42f..000000000000 --- a/arch/ia64/lib/carta_random.S +++ /dev/null @@ -1,55 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Fast, simple, yet decent quality random number generator based on - * a paper by David G. Carta ("Two Fast Implementations of the - * `Minimal Standard' Random Number Generator," Communications of the - * ACM, January, 1990). - * - * Copyright (C) 2002 Hewlett-Packard Co - * David Mosberger-Tang - */ - -#include - -#define a r2 -#define m r3 -#define lo r8 -#define hi r9 -#define t0 r16 -#define t1 r17 -#define seed r32 - -GLOBAL_ENTRY(carta_random32) - movl a = (16807 << 16) | 16807 - ;; - pmpyshr2.u t0 = a, seed, 0 - pmpyshr2.u t1 = a, seed, 16 - ;; - unpack2.l t0 = t1, t0 - dep m = -1, r0, 0, 31 - ;; - zxt4 lo = t0 - shr.u hi = t0, 32 - ;; - dep t0 = 0, hi, 15, 49 // t0 = (hi & 0x7fff) - ;; - shl t0 = t0, 16 // t0 = (hi & 0x7fff) << 16 - shr t1 = hi, 15 // t1 = (hi >> 15) - ;; - add lo = lo, t0 - ;; - cmp.gtu p6, p0 = lo, m - ;; -(p6) and lo = lo, m - ;; -(p6) add lo = 1, lo - ;; - add lo = lo, t1 - ;; - cmp.gtu p6, p0 = lo, m - ;; -(p6) and lo = lo, m - ;; -(p6) add lo = 1, lo - br.ret.sptk.many rp -END(carta_random32) diff --git a/arch/ia64/oprofile/Makefile b/arch/ia64/oprofile/Makefile index cd134d6643bf..fc7944d462f4 100644 --- a/arch/ia64/oprofile/Makefile +++ b/arch/ia64/oprofile/Makefile @@ -8,4 +8,3 @@ DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \ timer_int.o ) oprofile-y := $(DRIVER_OBJS) init.o backtrace.o -oprofile-$(CONFIG_PERFMON) += perfmon.o diff --git a/arch/ia64/oprofile/init.c b/arch/ia64/oprofile/init.c index 31b545c35460..a692ba16a07b 100644 --- a/arch/ia64/oprofile/init.c +++ b/arch/ia64/oprofile/init.c @@ -18,21 +18,11 @@ extern void ia64_backtrace(struct pt_regs * const regs, unsigned int depth); int __init oprofile_arch_init(struct oprofile_operations *ops) { - int ret = -ENODEV; - -#ifdef CONFIG_PERFMON - /* perfmon_init() can fail, but we have no way to report it */ - ret = perfmon_init(ops); -#endif ops->backtrace = ia64_backtrace; - - return ret; + return -ENODEV; } void oprofile_arch_exit(void) { -#ifdef CONFIG_PERFMON - perfmon_exit(); -#endif } diff --git a/arch/ia64/oprofile/perfmon.c b/arch/ia64/oprofile/perfmon.c deleted file mode 100644 index 192d3e8e1f65..000000000000 --- a/arch/ia64/oprofile/perfmon.c +++ /dev/null @@ -1,99 +0,0 @@ -/** - * @file perfmon.c - * - * @remark Copyright 2003 OProfile authors - * @remark Read the file COPYING - * - * @author John Levon - */ - -#include -#include -#include -#include -#include -#include - -static int allow_ints; - -static int -perfmon_handler(struct task_struct *task, void *buf, pfm_ovfl_arg_t *arg, - struct pt_regs *regs, unsigned long stamp) -{ - int event = arg->pmd_eventid; - - arg->ovfl_ctrl.bits.reset_ovfl_pmds = 1; - - /* the owner of the oprofile event buffer may have exited - * without perfmon being shutdown (e.g. SIGSEGV) - */ - if (allow_ints) - oprofile_add_sample(regs, event); - return 0; -} - - -static int perfmon_start(void) -{ - allow_ints = 1; - return 0; -} - - -static void perfmon_stop(void) -{ - allow_ints = 0; -} - - -#define OPROFILE_FMT_UUID { \ - 0x77, 0x7a, 0x6e, 0x61, 0x20, 0x65, 0x73, 0x69, 0x74, 0x6e, 0x72, 0x20, 0x61, 0x65, 0x0a, 0x6c } - -static pfm_buffer_fmt_t oprofile_fmt = { - .fmt_name = "oprofile_format", - .fmt_uuid = OPROFILE_FMT_UUID, - .fmt_handler = perfmon_handler, -}; - - -static char *get_cpu_type(void) -{ - __u8 family = local_cpu_data->family; - - switch (family) { - case 0x07: - return "ia64/itanium"; - case 0x1f: - return "ia64/itanium2"; - default: - return "ia64/ia64"; - } -} - - -/* all the ops are handled via userspace for IA64 perfmon */ - -static int using_perfmon; - -int perfmon_init(struct oprofile_operations *ops) -{ - int ret = pfm_register_buffer_fmt(&oprofile_fmt); - if (ret) - return -ENODEV; - - ops->cpu_type = get_cpu_type(); - ops->start = perfmon_start; - ops->stop = perfmon_stop; - using_perfmon = 1; - printk(KERN_INFO "oprofile: using perfmon.\n"); - return 0; -} - - -void perfmon_exit(void) -{ - if (!using_perfmon) - return; - - pfm_unregister_buffer_fmt(oprofile_fmt.fmt_uuid); -}