Merge ../linus

This commit is contained in:
Dave Jones 2006-12-12 18:13:32 -05:00
commit f0eef25339
8932 changed files with 486268 additions and 284857 deletions

1
.gitignore vendored
View File

@ -20,6 +20,7 @@
# Top-level generic files
#
tags
TAGS
vmlinux*
System.map
Module.symvers

61
CREDITS
View File

@ -34,6 +34,7 @@ E: magrawal@nortelnetworks.com
D: Basic Interphase 5575 driver with UBR and ABR support.
S: 75 Donald St, Apt 42
S: Weymouth, MA 02188
S: USA
N: Dave Airlie
E: airlied@linux.ie
@ -44,7 +45,7 @@ S: Longford, Ireland
S: Sydney, Australia
N: Tigran A. Aivazian
E: tigran@veritas.com
E: tigran@aivazian.fsnet.co.uk
W: http://www.moses.uklinux.net/patches
D: BFS filesystem
D: Intel IA32 CPU microcode update support
@ -202,6 +203,7 @@ S: MS42
S: Hewlett-Packard
S: 3404 E Harmony Rd
S: Fort Collins, CO 80525
S: USA
N: Arindam Banerji
E: axb@cse.nd.edu
@ -444,6 +446,7 @@ E: rbradetich@uswest.net
D: Linux/PA-RISC hacker
S: 1200 Goldenrod Dr.
S: Nampa, Idaho 83686
S: USA
N: Derrick J. Brashear
E: shadow@dementia.org
@ -633,6 +636,7 @@ E: scole@lanl.gov
E: elenstev@mesatop.com
D: Various build fixes and kernel documentation.
S: Los Alamos, New Mexico
S: USA
N: Hamish Coleman
E: hamish@zot.apana.org.au
@ -951,6 +955,12 @@ S: Brevia 1043
S: S-114 79 Stockholm
S: Sweden
N: Pekka Enberg
E: penberg@cs.helsinki.fi
W: http://www.cs.helsinki.fi/u/penberg/
D: Various kernel hacks, fixes, and cleanups.
S: Finland
N: David Engebretsen
E: engebret@us.ibm.com
D: Linux port to 64-bit PowerPC architecture
@ -1620,7 +1630,8 @@ D: fbdev hacking
N: Jesper Juhl
E: jesper.juhl@gmail.com
D: Various fixes, cleanups and minor features.
D: Various fixes, cleanups and minor features all over the tree.
D: Wrote initial version of the hdaps driver (since passed on to others).
S: Lemnosvej 1, 3.tv
S: 2300 Copenhagen S.
S: Denmark
@ -1797,6 +1808,14 @@ S: Kruislaan 419
S: 1098 VA Amsterdam
S: The Netherlands
N: Jiri Kosina
E: jikos@jikos.cz
E: jkosina@suse.cz
D: Generic HID layer - original code split, fixes
D: Various ACPI fixes, keeping correct battery state through suspend
D: various lockdep annotations, autofs and other random bugfixes
S: Prague, Czech Republic
N: Gene Kozin
E: 74604.152@compuserve.com
W: http://www.sangoma.com
@ -2002,6 +2021,7 @@ W: http://www.mathematik.uni-stuttgart.de/~floeff
D: Busmaster driver for HP 10/100 Mbit Network Adapters
S: University of Stuttgart, Germany and
S: Ecole Nationale Superieure des Telecommunications, Paris
S: France
N: Jamie Lokier
E: jamie@shareable.org
@ -2171,6 +2191,7 @@ S: Hewlett Packard
S: MS 42
S: 3404 E. Harmony Road
S: Fort Collins, CO 80528
S: USA
N: Torben Mathiasen
E: torben.mathiasen@compaq.com
@ -2227,6 +2248,12 @@ D: tc: HFSC scheduler
S: Freiburg
S: Germany
N: Paul E. McKenney
E: paulmck@us.ibm.com
W: http://www.rdrop.com/users/paulmck/
D: RCU and variants
D: rcutorture module
N: Mike McLagan
E: mike.mclagan@linux.org
W: http://www.invlogic.com/~mmclagan
@ -2477,7 +2504,8 @@ S: Derbyshire DE4 3RL
S: United Kingdom
N: Ian S. Nelson
E: ian.nelson@echostar.com
E: nelsonis@earthlink.net
P: 1024D/00D3D983 3EFD 7B86 B888 D7E2 29B6 9E97 576F 1B97 00D3 D983
D: Minor mmap and ide hacks
S: 1370 Atlantis Ave.
S: Lafayette CO, 80026
@ -2578,6 +2606,9 @@ S: Ucitelska 1576
S: Prague 8
S: 182 00 Czech Republic
N: Rick Payne
D: RFC2385 Support for TCP
N: Barak A. Pearlmutter
E: bap@cs.unm.edu
W: http://www.cs.unm.edu/~bap/
@ -2967,6 +2998,10 @@ S: 69 rue Dunois
S: 75013 Paris
S: France
N: Dipankar Sarma
E: dipankar@in.ibm.com
D: RCU
N: Hannu Savolainen
E: hannu@opensound.com
D: Maintainer of the sound drivers until 2.1.x days.
@ -3279,6 +3314,12 @@ S: 3 Ballow Crescent
S: MacGregor A.C.T 2615
S: Australia
N: Josh Triplett
E: josh@freedesktop.org
P: 1024D/D0FE7AFB B24A 65C9 1D71 2AC2 DE87 CA26 189B 9946 D0FE 7AFB
D: rcutorture maintainer
D: lock annotations, finding and fixing lock bugs
N: Winfried Trümper
E: winni@xpilot.org
W: http://www.shop.de/~winni/
@ -3481,14 +3522,12 @@ D: The Linux Support Team Erlangen
N: David Weinehall
E: tao@acc.umu.se
P: 1024D/DC47CA16 7ACE 0FB0 7A74 F994 9B36 E1D1 D14E 8526 DC47 CA16
W: http://www.acc.umu.se/~tao/
W: http://www.acc.umu.se/~mcalinux/
D: v2.0 kernel maintainer
D: Fixes for the NE/2-driver
D: Miscellaneous MCA-support
D: Cleanup of the Config-files
S: Axtorpsvagen 40:20
S: S-903 37 UMEA
S: Sweden
N: Matt Welsh
E: mdw@metalab.unc.edu
@ -3548,11 +3587,11 @@ S: Fargo, North Dakota 58122
S: USA
N: Steven Whitehouse
E: SteveW@ACM.org
E: steve@chygwyn.com
W: http://www.chygwyn.com/~steve
D: Linux DECnet project: http://www.sucs.swan.ac.uk/~rohan/DECnet/index.html
D: Linux DECnet project
D: Minor debugging of other networking protocols.
D: Misc bug fixes and filesystem development
D: Misc bug fixes and GFS2 filesystem development
N: Hans-Joachim Widmaier
E: hjw@zvw.de
@ -3650,7 +3689,7 @@ S: Portland, OR
S: USA
N: Michal Wronski
E: Michal.Wronski@motorola.com
E: michal.wronski@gmail.com
D: POSIX message queues fs (with K. Benedyczak)
S: Krakow
S: Poland

View File

@ -104,8 +104,6 @@ firmware_class/
- request_firmware() hotplug interface info.
floppy.txt
- notes and driver options for the floppy disk driver.
ftape.txt
- notes about the floppy tape device driver.
hayes-esp.txt
- info on using the Hayes ESP serial driver.
highuid.txt

View File

@ -0,0 +1,20 @@
What: /debug/pktcdvd/pktcdvd[0-7]
Date: Oct. 2006
KernelVersion: 2.6.19
Contact: Thomas Maier <balagi@justmail.de>
Description:
debugfs interface
-----------------
The pktcdvd module (packet writing driver) creates
these files in debugfs:
/debug/pktcdvd/pktcdvd[0-7]/
info (0444) Lots of human readable driver
statistics and infos. Multiple lines!
Example:
-------
cat /debug/pktcdvd/pktcdvd0/info

View File

@ -0,0 +1,72 @@
What: /sys/class/pktcdvd/
Date: Oct. 2006
KernelVersion: 2.6.19
Contact: Thomas Maier <balagi@justmail.de>
Description:
sysfs interface
---------------
The pktcdvd module (packet writing driver) creates
these files in the sysfs:
(<devid> is in format major:minor )
/sys/class/pktcdvd/
add (0200) Write a block device id (major:minor)
to create a new pktcdvd device and map
it to the block device.
remove (0200) Write the pktcdvd device id (major:minor)
to it to remove the pktcdvd device.
device_map (0444) Shows the device mapping in format:
pktcdvd[0-7] <pktdevid> <blkdevid>
/sys/class/pktcdvd/pktcdvd[0-7]/
dev (0444) Device id
uevent (0200) To send an uevent.
/sys/class/pktcdvd/pktcdvd[0-7]/stat/
packets_started (0444) Number of started packets.
packets_finished (0444) Number of finished packets.
kb_written (0444) kBytes written.
kb_read (0444) kBytes read.
kb_read_gather (0444) kBytes read to fill write packets.
reset (0200) Write any value to it to reset
pktcdvd device statistic values, like
bytes read/written.
/sys/class/pktcdvd/pktcdvd[0-7]/write_queue/
size (0444) Contains the size of the bio write
queue.
congestion_off (0644) If bio write queue size is below
this mark, accept new bio requests
from the block layer.
congestion_on (0644) If bio write queue size is higher
as this mark, do no longer accept
bio write requests from the block
layer and wait till the pktcdvd
device has processed enough bio's
so that bio write queue size is
below congestion off mark.
A value of <= 0 disables congestion
control.
Example:
--------
To use the pktcdvd sysfs interface directly, you can do:
# create a new pktcdvd device mapped to /dev/hdc
echo "22:0" >/sys/class/pktcdvd/add
cat /sys/class/pktcdvd/device_map
# assuming device pktcdvd0 was created, look at stat's
cat /sys/class/pktcdvd/pktcdvd0/stat/kb_written
# print the device id of the mapped block device
fgrep pktcdvd0 /sys/class/pktcdvd/device_map
# remove device, using pktcdvd0 device id 253:0
echo "253:0" >/sys/class/pktcdvd/remove

View File

@ -21,7 +21,7 @@ Description:
these states.
What: /sys/power/disk
Date: August 2006
Date: September 2006
Contact: Rafael J. Wysocki <rjw@sisk.pl>
Description:
The /sys/power/disk file controls the operating mode of the
@ -39,6 +39,19 @@ Description:
'reboot' - the memory image will be saved by the kernel and
the system will be rebooted.
Additionally, /sys/power/disk can be used to turn on one of the
two testing modes of the suspend-to-disk mechanism: 'testproc'
or 'test'. If the suspend-to-disk mechanism is in the
'testproc' mode, writing 'disk' to /sys/power/state will cause
the kernel to disable nonboot CPUs and freeze tasks, wait for 5
seconds, unfreeze tasks and enable nonboot CPUs. If it is in
the 'test' mode, writing 'disk' to /sys/power/state will cause
the kernel to disable nonboot CPUs and freeze tasks, shrink
memory, suspend devices, wait for 5 seconds, resume devices,
unfreeze tasks and enable nonboot CPUs. Then, we are able to
look in the log messages and work out, for example, which code
is being slow and which device drivers are misbehaving.
The suspend-to-disk method may be chosen by writing to this
file one of the accepted strings:
@ -46,6 +59,8 @@ Description:
'platform'
'shutdown'
'reboot'
'testproc'
'test'
It will only change to 'firmware' or 'platform' if the system
supports that.

View File

@ -201,7 +201,7 @@ udev
----
udev is a userspace application for populating /dev dynamically with
only entries for devices actually present. udev replaces the basic
functionality of devfs, while allowing persistant device naming for
functionality of devfs, while allowing persistent device naming for
devices.
FUSE

View File

@ -35,12 +35,37 @@ In short, 8-char indents make things easier to read, and have the added
benefit of warning you when you're nesting your functions too deep.
Heed that warning.
The preferred way to ease multiple indentation levels in a switch statement is
to align the "switch" and its subordinate "case" labels in the same column
instead of "double-indenting" the "case" labels. E.g.:
switch (suffix) {
case 'G':
case 'g':
mem <<= 30;
break;
case 'M':
case 'm':
mem <<= 20;
break;
case 'K':
case 'k':
mem <<= 10;
/* fall through */
default:
break;
}
Don't put multiple statements on a single line unless you have
something to hide:
if (condition) do_this;
do_something_everytime;
Don't put multiple assignments on a single line either. Kernel coding style
is super simple. Avoid tricky expressions.
Outside of comments, documentation and except in Kconfig, spaces are never
used for indentation, and the above example is deliberately broken.
@ -69,7 +94,7 @@ void fun(int a, int b, int c)
next_statement;
}
Chapter 3: Placing Braces
Chapter 3: Placing Braces and Spaces
The other issue that always comes up in C styling is the placement of
braces. Unlike the indent size, there are few technical reasons to
@ -81,6 +106,20 @@ brace last on the line, and put the closing brace first, thusly:
we do y
}
This applies to all non-function statement blocks (if, switch, for,
while, do). E.g.:
switch (action) {
case KOBJ_ADD:
return "add";
case KOBJ_REMOVE:
return "remove";
case KOBJ_CHANGE:
return "change";
default:
return NULL;
}
However, there is one special case, namely functions: they have the
opening brace at the beginning of the next line, thus:
@ -121,6 +160,49 @@ supply of new-lines on your screen is not a renewable resource (think
25-line terminal screens here), you have more empty lines to put
comments on.
3.1: Spaces
Linux kernel style for use of spaces depends (mostly) on
function-versus-keyword usage. Use a space after (most) keywords. The
notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
somewhat like functions (and are usually used with parentheses in Linux,
although they are not required in the language, as in: "sizeof info" after
"struct fileinfo info;" is declared).
So use a space after these keywords:
if, switch, case, for, do, while
but not with sizeof, typeof, alignof, or __attribute__. E.g.,
s = sizeof(struct file);
Do not add spaces around (inside) parenthesized expressions. This example is
*bad*:
s = sizeof( struct file );
When declaring pointer data or a function that returns a pointer type, the
preferred use of '*' is adjacent to the data name or function name and not
adjacent to the type name. Examples:
char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);
Use one space around (on each side of) most binary and ternary operators,
such as any of these:
= + - < > * / % | & ^ <= >= == != ? :
but no space after unary operators:
& * + - ~ ! sizeof typeof alignof __attribute__ defined
no space before the postfix increment & decrement unary operators:
++ --
no space after the prefix increment & decrement unary operators:
++ --
and no space around the '.' and "->" structure member operators.
Chapter 4: Naming
@ -152,7 +234,7 @@ variable that is used to hold a temporary value.
If you are afraid to mix up your local variable names, you have another
problem, which is called the function-growth-hormone-imbalance syndrome.
See next chapter.
See chapter 6 (Functions).
Chapter 5: Typedefs
@ -258,6 +340,20 @@ generally easily keep track of about 7 different things, anything more
and it gets confused. You know you're brilliant, but maybe you'd like
to understand what you did 2 weeks from now.
In source files, separate functions with one blank line. If the function is
exported, the EXPORT* macro for it should follow immediately after the closing
function brace line. E.g.:
int system_is_up(void)
{
return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);
In function prototypes, include parameter names with their data types.
Although this is not required by the C language, it is preferred in Linux
because it is a simple way to add valuable information for the reader.
Chapter 7: Centralized exiting of functions
@ -306,16 +402,36 @@ time to explain badly written code.
Generally, you want your comments to tell WHAT your code does, not HOW.
Also, try to avoid putting comments inside a function body: if the
function is so complex that you need to separately comment parts of it,
you should probably go back to chapter 5 for a while. You can make
you should probably go back to chapter 6 for a while. You can make
small comments to note or warn about something particularly clever (or
ugly), but try to avoid excess. Instead, put the comments at the head
of the function, telling people what it does, and possibly WHY it does
it.
When commenting the kernel API functions, please use the kerneldoc format.
When commenting the kernel API functions, please use the kernel-doc format.
See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc
for details.
Linux style for comments is the C89 "/* ... */" style.
Don't use C99-style "// ..." comments.
The preferred style for long (multi-line) comments is:
/*
* This is the preferred style for multi-line
* comments in the Linux kernel source code.
* Please use it consistently.
*
* Description: A column of asterisks on the left side,
* with beginning and ending almost-blank lines.
*/
It's also important to comment data, whether they are basic types or derived
types. To this end, use just one data declaration per line (no commas for
multiple data declarations). This leaves you room for a small comment on each
item, explaining its use.
Chapter 9: You've made a mess of it
That's OK, we all do. You've probably been told by your long-time Unix
@ -532,6 +648,40 @@ appears outweighs the potential value of the hint that tells gcc to do
something it would have done anyway.
Chapter 16: Function return values and names
Functions can return values of many different kinds, and one of the
most common is a value indicating whether the function succeeded or
failed. Such a value can be represented as an error-code integer
(-Exxx = failure, 0 = success) or a "succeeded" boolean (0 = failure,
non-zero = success).
Mixing up these two sorts of representations is a fertile source of
difficult-to-find bugs. If the C language included a strong distinction
between integers and booleans then the compiler would find these mistakes
for us... but it doesn't. To help prevent such bugs, always follow this
convention:
If the name of a function is an action or an imperative command,
the function should return an error-code integer. If the name
is a predicate, the function should return a "succeeded" boolean.
For example, "add work" is a command, and the add_work() function returns 0
for success or -EBUSY for failure. In the same way, "PCI device present" is
a predicate, and the pci_dev_present() function returns 1 if it succeeds in
finding a matching device or 0 if it doesn't.
All EXPORTed functions must respect this convention, and so should all
public functions. Private (static) functions need not, but it is
recommended that they do.
Functions whose return value is the actual result of a computation, rather
than an indication of whether the computation succeeded, are not subject to
this rule. Generally they indicate failure by returning some out-of-range
result. Typical examples would be functions that return pointers; they use
NULL or the ERR_PTR mechanism to report failure.
Appendix I: References
@ -557,4 +707,4 @@ Kernel CodingStyle, by greg@kroah.com at OLS 2002:
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
--
Last updated on 30 April 2006.
Last updated on 2006-December-06.

View File

@ -77,7 +77,7 @@ To get this part of the dma_ API, you must #include <linux/dmapool.h>
Many drivers need lots of small dma-coherent memory regions for DMA
descriptors or I/O buffers. Rather than allocating in units of a page
or more using dma_alloc_coherent(), you can use DMA pools. These work
much like a kmem_cache_t, except that they use the dma-coherent allocator
much like a struct kmem_cache, except that they use the dma-coherent allocator
not __get_free_pages(). Also, they understand common hardware constraints
for alignment, like queue heads needing to be aligned on N byte boundaries.
@ -94,7 +94,7 @@ The pool create() routines initialize a pool of dma-coherent buffers
for use with a given device. It must be called in a context which
can sleep.
The "name" is for diagnostics (like a kmem_cache_t name); dev and size
The "name" is for diagnostics (like a struct kmem_cache name); dev and size
are like what you'd pass to dma_alloc_coherent(). The device's hardware
alignment requirement for this type of data is "align" (which is expressed
in bytes, and must be a power of two). If your device has no boundary
@ -431,10 +431,10 @@ be identical to those passed in (and returned by
dma_alloc_noncoherent()).
int
dma_is_consistent(dma_addr_t dma_handle)
dma_is_consistent(struct device *dev, dma_addr_t dma_handle)
returns true if the memory pointed to by the dma_handle is actually
consistent.
returns true if the device dev is performing consistent DMA on the memory
area pointed to by the dma_handle.
int
dma_get_cache_alignment(void)
@ -459,7 +459,7 @@ anything like this. You must also be extra careful about accessing
memory you intend to sync partially.
void
dma_cache_sync(void *vaddr, size_t size,
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
Do a partial sync of memory that was allocated by
@ -489,7 +489,7 @@ size is the size of the area (must be multiples of PAGE_SIZE).
flags can be or'd together and are
DMA_MEMORY_MAP - request that the memory returned from
dma_alloc_coherent() be directly writeable.
dma_alloc_coherent() be directly writable.
DMA_MEMORY_IO - request that the memory returned from
dma_alloc_coherent() be addressable using read/write/memcpy_toio etc.

View File

@ -110,7 +110,7 @@ lock.
Once the DMA transfer is finished (or timed out) you should disable
the channel again. You should also check get_dma_residue() to make
sure that all data has been transfered.
sure that all data has been transferred.
Example:

View File

@ -107,7 +107,7 @@ The query is performed via a call to pci_set_dma_mask():
int pci_set_dma_mask(struct pci_dev *pdev, u64 device_mask);
The query for consistent allocations is performed via a a call to
The query for consistent allocations is performed via a call to
pci_set_consistent_dma_mask():
int pci_set_consistent_dma_mask(struct pci_dev *pdev, u64 device_mask);
@ -117,7 +117,7 @@ device_mask is a bit mask describing which bits of a PCI address your
device supports. It returns zero if your card can perform DMA
properly on the machine given the address mask you provided.
If it returns non-zero, your device can not perform DMA properly on
If it returns non-zero, your device cannot perform DMA properly on
this platform, and attempting to do so will result in undefined
behavior. You must either use a different mask, or not use DMA.

View File

@ -9,7 +9,7 @@
DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
procfs-guide.xml writing_usb_driver.xml \
kernel-api.xml journal-api.xml lsm.xml usb.xml \
kernel-api.xml filesystems.xml lsm.xml usb.xml \
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
genericirq.xml
@ -190,9 +190,13 @@ quiet_cmd_fig2png = FIG2PNG $@
###
# Help targets as used by the top-level makefile
dochelp:
@echo ' Linux kernel internal documentation in different formats:'
@echo ' xmldocs (XML DocBook), psdocs (Postscript), pdfdocs (PDF)'
@echo ' htmldocs (HTML), mandocs (man pages, use installmandocs to install)'
@echo ' Linux kernel internal documentation in different formats:'
@echo ' htmldocs - HTML'
@echo ' installmandocs - install man pages generated by mandocs'
@echo ' mandocs - man pages'
@echo ' pdfdocs - PDF'
@echo ' psdocs - Postscript'
@echo ' xmldocs - XML DocBook'
###
# Temporary files left by various tools

View File

@ -2,9 +2,106 @@
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="LinuxJBDAPI">
<book id="Linux-filesystems-API">
<bookinfo>
<title>Linux Filesystems API</title>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<chapter id="vfs">
<title>The Linux VFS</title>
<sect1><title>The Filesystem types</title>
!Iinclude/linux/fs.h
</sect1>
<sect1><title>The Directory Cache</title>
!Efs/dcache.c
!Iinclude/linux/dcache.h
</sect1>
<sect1><title>Inode Handling</title>
!Efs/inode.c
!Efs/bad_inode.c
</sect1>
<sect1><title>Registration and Superblocks</title>
!Efs/super.c
</sect1>
<sect1><title>File Locks</title>
!Efs/locks.c
!Ifs/locks.c
</sect1>
<sect1><title>Other Functions</title>
!Efs/mpage.c
!Efs/namei.c
!Efs/buffer.c
!Efs/bio.c
!Efs/seq_file.c
!Efs/filesystems.c
!Efs/fs-writeback.c
!Efs/block_dev.c
</sect1>
</chapter>
<chapter id="proc">
<title>The proc filesystem</title>
<sect1><title>sysctl interface</title>
!Ekernel/sysctl.c
</sect1>
<sect1><title>proc filesystem interface</title>
!Ifs/proc/base.c
</sect1>
</chapter>
<chapter id="sysfs">
<title>The Filesystem for Exporting Kernel Objects</title>
!Efs/sysfs/file.c
!Efs/sysfs/symlink.c
!Efs/sysfs/bin.c
</chapter>
<chapter id="debugfs">
<title>The debugfs filesystem</title>
<sect1><title>debugfs interface</title>
!Efs/debugfs/inode.c
!Efs/debugfs/file.c
</sect1>
</chapter>
<chapter id="LinuxJDBAPI">
<chapterinfo>
<title>The Linux Journalling API</title>
<authorgroup>
<author>
<firstname>Roger</firstname>
@ -14,9 +111,9 @@
<email>rgammans@computer-surgery.co.uk</email>
</address>
</affiliation>
</author>
</author>
</authorgroup>
<authorgroup>
<author>
<firstname>Stephen</firstname>
@ -33,50 +130,21 @@
<year>2002</year>
<holder>Roger Gammans</holder>
</copyright>
</chapterinfo>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<title>The Linux Journalling API</title>
<toc></toc>
<chapter id="Overview">
<sect1>
<title>Overview</title>
<sect1>
<sect2>
<title>Details</title>
<para>
The journalling layer is easy to use. You need to
The journalling layer is easy to use. You need to
first of all create a journal_t data structure. There are
two calls to do this dependent on how you decide to allocate the physical
media on which the journal resides. The journal_init_inode() call
media on which the journal resides. The journal_init_inode() call
is for journals stored in filesystem inodes, or the journal_init_dev()
call can be use for journal stored on a raw device (in a continuous range
call can be use for journal stored on a raw device (in a continuous range
of blocks). A journal_t is a typedef for a struct pointer, so when
you are finally finished make sure you call journal_destroy() on it
to free up any used kernel memory.
@ -91,27 +159,26 @@ need to call journal_create().
<para>
Most of the time however your journal file will already have been created, but
before you load it you must call journal_wipe() to empty the journal file.
Hang on, you say , what if the filesystem wasn't cleanly umount()'d . Well, it is the
Hang on, you say , what if the filesystem wasn't cleanly umount()'d . Well, it is the
job of the client file system to detect this and skip the call to journal_wipe().
</para>
<para>
In either case the next call should be to journal_load() which prepares the
journal file for use. Note that journal_wipe(..,0) calls journal_skip_recovery()
journal file for use. Note that journal_wipe(..,0) calls journal_skip_recovery()
for you if it detects any outstanding transactions in the journal and similarly
journal_load() will call journal_recover() if necessary.
I would advise reading fs/ext3/super.c for examples on this stage.
[RGG: Why is the journal_wipe() call necessary - doesn't this needlessly
complicate the API. Or isn't a good idea for the journal layer to hide
[RGG: Why is the journal_wipe() call necessary - doesn't this needlessly
complicate the API. Or isn't a good idea for the journal layer to hide
dirty mounts from the client fs]
</para>
<para>
Now you can go ahead and start modifying the underlying
Now you can go ahead and start modifying the underlying
filesystem. Almost.
</para>
<para>
You still need to actually journal your filesystem changes, this
@ -138,10 +205,10 @@ individual buffers (blocks). Before you start to modify a buffer you
need to call journal_get_{create,write,undo}_access() as appropriate,
this allows the journalling layer to copy the unmodified data if it
needs to. After all the buffer may be part of a previously uncommitted
transaction.
transaction.
At this point you are at last ready to modify a buffer, and once
you are have done so you need to call journal_dirty_{meta,}data().
Or if you've asked for access to a buffer you now know is now longer
Or if you've asked for access to a buffer you now know is now longer
required to be pushed back on the device you can call journal_forget()
in much the same way as you might have used bforget() in the past.
</para>
@ -156,7 +223,6 @@ Then at umount time , in your put_super() (2.4) or write_super() (2.5)
you can then call journal_destroy() to clean up your in-core journal object.
</para>
<para>
Unfortunately there a couple of ways the journal layer can cause a deadlock.
The first thing to note is that each task can only have
@ -164,19 +230,19 @@ a single outstanding transaction at any one time, remember nothing
commits until the outermost journal_stop(). This means
you must complete the transaction at the end of each file/inode/address
etc. operation you perform, so that the journalling system isn't re-entered
on another journal. Since transactions can't be nested/batched
on another journal. Since transactions can't be nested/batched
across differing journals, and another filesystem other than
yours (say ext3) may be modified in a later syscall.
</para>
<para>
The second case to bear in mind is that journal_start() can
block if there isn't enough space in the journal for your transaction
The second case to bear in mind is that journal_start() can
block if there isn't enough space in the journal for your transaction
(based on the passed nblocks param) - when it blocks it merely(!) needs to
wait for transactions to complete and be committed from other tasks,
so essentially we are waiting for journal_stop(). So to avoid
wait for transactions to complete and be committed from other tasks,
so essentially we are waiting for journal_stop(). So to avoid
deadlocks you must treat journal_start/stop() as if they
were semaphores and include them in your semaphore ordering rules to prevent
were semaphores and include them in your semaphore ordering rules to prevent
deadlocks. Note that journal_extend() has similar blocking behaviour to
journal_start() so you can deadlock here just as easily as on journal_start().
</para>
@ -184,7 +250,7 @@ journal_start() so you can deadlock here just as easily as on journal_start().
<para>
Try to reserve the right number of blocks the first time. ;-). This will
be the maximum number of blocks you are going to touch in this transaction.
I advise having a look at at least ext3_jbd.h to see the basis on which
I advise having a look at at least ext3_jbd.h to see the basis on which
ext3 uses to make these decisions.
</para>
@ -193,13 +259,13 @@ Another wriggle to watch out for is your on-disk block allocation strategy.
why? Because, if you undo a delete, you need to ensure you haven't reused any
of the freed blocks in a later transaction. One simple way of doing this
is make sure any blocks you allocate only have checkpointed transactions
listed against them. Ext3 does this in ext3_test_allocatable().
listed against them. Ext3 does this in ext3_test_allocatable().
</para>
<para>
Lock is also providing through journal_{un,}lock_updates(),
ext3 uses this when it wants a window with a clean and stable fs for a moment.
eg.
eg.
</para>
<programlisting>
@ -230,19 +296,19 @@ extend it like this:-
struct journal_callback for_jbd;
// Stuff for myfs allocated together.
myfs_inode* i_commited;
}
</programlisting>
<para>
this would be useful if you needed to know when data was committed to a
this would be useful if you needed to know when data was committed to a
particular inode.
</para>
</sect1>
</sect2>
<sect1>
<title>Summary</title>
<sect2>
<title>Summary</title>
<para>
Using the journal is a matter of wrapping the different context changes,
being each mount, each modification (transaction) and each changed buffer
@ -260,15 +326,15 @@ an example.
if (clean) journal_wipe();
journal_load();
foreach(transaction) { /*transactions must be
foreach(transaction) { /*transactions must be
completed before
a syscall returns to
a syscall returns to
userspace*/
handle_t * xct=journal_start(my_jnrl);
foreach(bh) {
journal_get_{create,write,undo}_access(xact,bh);
if ( myfs_modify(bh) ) { /* returns true
if ( myfs_modify(bh) ) { /* returns true
if makes changes */
journal_dirty_{meta,}data(xact,bh);
} else {
@ -279,55 +345,57 @@ an example.
}
journal_destroy(my_jrnl);
</programlisting>
</sect1>
</sect2>
</chapter>
</sect1>
<chapter id="adt">
<sect1>
<title>Data Types</title>
<para>
<para>
The journalling layer uses typedefs to 'hide' the concrete definitions
of the structures used. As a client of the JBD layer you can
just rely on the using the pointer as a magic cookie of some sort.
Obviously the hiding is not enforced as this is 'C'.
</para>
<sect1><title>Structures</title>
!Iinclude/linux/jbd.h
</sect1>
</chapter>
<chapter id="calls">
Obviously the hiding is not enforced as this is 'C'.
</para>
<sect2><title>Structures</title>
!Iinclude/linux/jbd.h
</sect2>
</sect1>
<sect1>
<title>Functions</title>
<para>
<para>
The functions here are split into two groups those that
affect a journal as a whole, and those which are used to
manage transactions
</para>
<sect1><title>Journal Level</title>
</para>
<sect2><title>Journal Level</title>
!Efs/jbd/journal.c
!Ifs/jbd/recovery.c
</sect1>
<sect1><title>Transasction Level</title>
!Efs/jbd/transaction.c
</sect1>
</chapter>
<chapter>
</sect2>
<sect2><title>Transasction Level</title>
!Efs/jbd/transaction.c
</sect2>
</sect1>
<sect1>
<title>See also</title>
<para>
<citation>
<citation>
<ulink url="ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/journal-design.ps.gz">
Journaling the Linux ext2fs Filesystem,LinuxExpo 98, Stephen Tweedie
Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen Tweedie
</ulink>
</citation>
</para>
<para>
</citation>
</para>
<para>
<citation>
<ulink url="http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html">
Ext3 Journalling FileSystem , OLS 2000, Dr. Stephen Tweedie
Ext3 Journalling FileSystem, OLS 2000, Dr. Stephen Tweedie
</ulink>
</citation>
</para>
</chapter>
</para>
</sect1>
</chapter>
</book>

View File

@ -158,6 +158,7 @@ X!Ilib/string.c
!Emm/filemap.c
!Emm/memory.c
!Emm/vmalloc.c
!Imm/page_alloc.c
!Emm/mempool.c
!Emm/page-writeback.c
!Emm/truncate.c
@ -181,56 +182,19 @@ X!Ilib/string.c
</sect1>
</chapter>
<chapter id="proc">
<title>The proc filesystem</title>
<sect1><title>sysctl interface</title>
!Ekernel/sysctl.c
</sect1>
<chapter id="relayfs">
<title>relay interface support</title>
<sect1><title>proc filesystem interface</title>
!Ifs/proc/base.c
</sect1>
</chapter>
<para>
Relay interface support
is designed to provide an efficient mechanism for tools and
facilities to relay large amounts of data from kernel space to
user space.
</para>
<chapter id="debugfs">
<title>The debugfs filesystem</title>
<sect1><title>debugfs interface</title>
!Efs/debugfs/inode.c
!Efs/debugfs/file.c
</sect1>
</chapter>
<chapter id="vfs">
<title>The Linux VFS</title>
<sect1><title>The Filesystem types</title>
!Iinclude/linux/fs.h
</sect1>
<sect1><title>The Directory Cache</title>
!Efs/dcache.c
!Iinclude/linux/dcache.h
</sect1>
<sect1><title>Inode Handling</title>
!Efs/inode.c
!Efs/bad_inode.c
</sect1>
<sect1><title>Registration and Superblocks</title>
!Efs/super.c
</sect1>
<sect1><title>File Locks</title>
!Efs/locks.c
!Ifs/locks.c
</sect1>
<sect1><title>Other Functions</title>
!Efs/mpage.c
!Efs/namei.c
!Efs/buffer.c
!Efs/bio.c
!Efs/seq_file.c
!Efs/filesystems.c
!Efs/fs-writeback.c
!Efs/block_dev.c
<sect1><title>relay interface</title>
!Ekernel/relay.c
!Ikernel/relay.c
</sect1>
</chapter>
@ -302,8 +266,13 @@ X!Ekernel/module.c
!Ekernel/irq/manage.c
</sect1>
<sect1><title>DMA Channels</title>
!Ekernel/dma.c
</sect1>
<sect1><title>Resources Management</title>
!Ikernel/resource.c
!Ekernel/resource.c
</sect1>
<sect1><title>MTRR Handling</title>
@ -349,13 +318,6 @@ X!Earch/i386/kernel/mca.c
</sect1>
</chapter>
<chapter id="sysfs">
<title>The Filesystem for Exporting Kernel Objects</title>
!Efs/sysfs/file.c
!Efs/sysfs/symlink.c
!Efs/sysfs/bin.c
</chapter>
<chapter id="security">
<title>Security Framework</title>
!Esecurity/security.c
@ -386,6 +348,7 @@ X!Iinclude/linux/device.h
-->
!Edrivers/base/driver.c
!Edrivers/base/core.c
!Edrivers/base/class.c
!Edrivers/base/firmware_class.c
!Edrivers/base/transport_class.c
!Edrivers/base/dmapool.c
@ -437,6 +400,11 @@ X!Edrivers/pnp/system.c
!Eblock/ll_rw_blk.c
</chapter>
<chapter id="chrdev">
<title>Char devices</title>
!Efs/char_dev.c
</chapter>
<chapter id="miscdev">
<title>Miscellaneous Devices</title>
!Edrivers/char/misc.c
@ -450,9 +418,35 @@ X!Edrivers/pnp/system.c
!Idrivers/parport/daisy.c
</chapter>
<chapter id="viddev">
<title>Video4Linux</title>
!Edrivers/media/video/videodev.c
<chapter id="message_devices">
<title>Message-based devices</title>
<sect1><title>Fusion message devices</title>
!Edrivers/message/fusion/mptbase.c
!Idrivers/message/fusion/mptbase.c
!Edrivers/message/fusion/mptscsih.c
!Idrivers/message/fusion/mptscsih.c
!Idrivers/message/fusion/mptctl.c
!Idrivers/message/fusion/mptspi.c
!Idrivers/message/fusion/mptfc.c
!Idrivers/message/fusion/mptlan.c
</sect1>
<sect1><title>I2O message devices</title>
!Iinclude/linux/i2o.h
!Idrivers/message/i2o/core.h
!Edrivers/message/i2o/iop.c
!Idrivers/message/i2o/iop.c
!Idrivers/message/i2o/config-osm.c
!Edrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/bus-osm.c
!Edrivers/message/i2o/device.c
!Idrivers/message/i2o/device.c
!Idrivers/message/i2o/driver.c
!Idrivers/message/i2o/pci.c
!Idrivers/message/i2o/i2o_block.c
!Idrivers/message/i2o/i2o_scsi.c
!Idrivers/message/i2o/i2o_proc.c
</sect1>
</chapter>
<chapter id="snddev">
@ -565,4 +559,12 @@ X!Idrivers/video/console/fonts.c
-->
</sect1>
</chapter>
<chapter id="input_subsystem">
<title>Input Subsystem</title>
!Iinclude/linux/input.h
!Edrivers/input/input.c
!Edrivers/input/ff-core.c
!Edrivers/input/ff-memless.c
</chapter>
</book>

View File

@ -14,7 +14,7 @@
</authorgroup>
<copyright>
<year>2003-2005</year>
<year>2003-2006</year>
<holder>Jeff Garzik</holder>
</copyright>
@ -1400,7 +1400,7 @@ and other resources, etc.
<listitem>
<para>
When it's known that HBA is in ready state but ATA/ATAPI
device in in unknown state, reset only device.
device is in unknown state, reset only device.
</para>
</listitem>

View File

@ -43,59 +43,52 @@
<para>A Universal Serial Bus (USB) is used to connect a host,
such as a PC or workstation, to a number of peripheral
devices. USB uses a tree structure, with the host at the
devices. USB uses a tree structure, with the host as the
root (the system's master), hubs as interior nodes, and
peripheral devices as leaves (and slaves).
peripherals as leaves (and slaves).
Modern PCs support several such trees of USB devices, usually
one USB 2.0 tree (480 Mbit/sec each) with
a few USB 1.1 trees (12 Mbit/sec each) that are used when you
connect a USB 1.1 device directly to the machine's "root hub".
</para>
<para>That master/slave asymmetry was designed in part for
ease of use. It is not physically possible to assemble
(legal) USB cables incorrectly: all upstream "to-the-host"
connectors are the rectangular type, matching the sockets on
root hubs, and the downstream type are the squarish type
(or they are built in to the peripheral).
Software doesn't need to deal with distributed autoconfiguration
since the pre-designated master node manages all that.
At the electrical level, bus protocol overhead is reduced by
eliminating arbitration and moving scheduling into host software.
<para>That master/slave asymmetry was designed-in for a number of
reasons, one being ease of use. It is not physically possible to
assemble (legal) USB cables incorrectly: all upstream "to the host"
connectors are the rectangular type (matching the sockets on
root hubs), and all downstream connectors are the squarish type
(or they are built into the peripheral).
Also, the host software doesn't need to deal with distributed
auto-configuration since the pre-designated master node manages all that.
And finally, at the electrical level, bus protocol overhead is reduced by
eliminating arbitration and moving scheduling into the host software.
</para>
<para>USB 1.0 was announced in January 1996, and was revised
<para>USB 1.0 was announced in January 1996 and was revised
as USB 1.1 (with improvements in hub specification and
support for interrupt-out transfers) in September 1998.
USB 2.0 was released in April 2000, including high speed
transfers and transaction translating hubs (used for USB 1.1
USB 2.0 was released in April 2000, adding high-speed
transfers and transaction-translating hubs (used for USB 1.1
and 1.0 backward compatibility).
</para>
<para>USB support was added to Linux early in the 2.2 kernel series
shortly before the 2.3 development forked off. Updates
from 2.3 were regularly folded back into 2.2 releases, bringing
new features such as <filename>/sbin/hotplug</filename> support,
more drivers, and more robustness.
The 2.5 kernel series continued such improvements, and also
worked on USB 2.0 support,
higher performance,
better consistency between host controller drivers,
API simplification (to make bugs less likely),
and providing internal "kerneldoc" documentation.
<para>Kernel developers added USB support to Linux early in the 2.2 kernel
series, shortly before 2.3 development forked. Updates from 2.3 were
regularly folded back into 2.2 releases, which improved reliability and
brought <filename>/sbin/hotplug</filename> support as well more drivers.
Such improvements were continued in the 2.5 kernel series, where they added
USB 2.0 support, improved performance, and made the host controller drivers
(HCDs) more consistent. They also simplified the API (to make bugs less
likely) and added internal "kerneldoc" documentation.
</para>
<para>Linux can run inside USB devices as well as on
the hosts that control the devices.
Because the Linux 2.x USB support evolved to support mass market
platforms such as Apple Macintosh or PC-compatible systems,
it didn't address design concerns for those types of USB systems.
So it can't be used inside mass-market PDAs, or other peripherals.
USB device drivers running inside those Linux peripherals
But USB device drivers running inside those peripherals
don't do the same things as the ones running inside hosts,
and so they've been given a different name:
they're called <emphasis>gadget drivers</emphasis>.
This document does not present gadget drivers.
so they've been given a different name:
<emphasis>gadget drivers</emphasis>.
This document does not cover gadget drivers.
</para>
</chapter>
@ -103,17 +96,14 @@
<chapter id="host">
<title>USB Host-Side API Model</title>
<para>Within the kernel,
host-side drivers for USB devices talk to the "usbcore" APIs.
There are two types of public "usbcore" APIs, targetted at two different
layers of USB driver. Those are
<emphasis>general purpose</emphasis> drivers, exposed through
driver frameworks such as block, character, or network devices;
and drivers that are <emphasis>part of the core</emphasis>,
which are involved in managing a USB bus.
Such core drivers include the <emphasis>hub</emphasis> driver,
which manages trees of USB devices, and several different kinds
of <emphasis>host controller driver (HCD)</emphasis>,
<para>Host-side drivers for USB devices talk to the "usbcore" APIs.
There are two. One is intended for
<emphasis>general-purpose</emphasis> drivers (exposed through
driver frameworks), and the other is for drivers that are
<emphasis>part of the core</emphasis>.
Such core drivers include the <emphasis>hub</emphasis> driver
(which manages trees of USB devices) and several different kinds
of <emphasis>host controller drivers</emphasis>,
which control individual busses.
</para>
@ -122,21 +112,21 @@
<itemizedlist>
<listitem><para>USB supports four kinds of data transfer
(control, bulk, interrupt, and isochronous). Two transfer
types use bandwidth as it's available (control and bulk),
while the other two types of transfer (interrupt and isochronous)
<listitem><para>USB supports four kinds of data transfers
(control, bulk, interrupt, and isochronous). Two of them (control
and bulk) use bandwidth as it's available,
while the other two (interrupt and isochronous)
are scheduled to provide guaranteed bandwidth.
</para></listitem>
<listitem><para>The device description model includes one or more
"configurations" per device, only one of which is active at a time.
Devices that are capable of high speed operation must also support
full speed configurations, along with a way to ask about the
"other speed" configurations that might be used.
Devices that are capable of high-speed operation must also support
full-speed configurations, along with a way to ask about the
"other speed" configurations which might be used.
</para></listitem>
<listitem><para>Configurations have one or more "interface", each
<listitem><para>Configurations have one or more "interfaces", each
of which may have "alternate settings". Interfaces may be
standardized by USB "Class" specifications, or may be specific to
a vendor or device.</para>
@ -162,7 +152,7 @@
</para></listitem>
<listitem><para>The Linux USB API supports synchronous calls for
control and bulk messaging.
control and bulk messages.
It also supports asynchnous calls for all kinds of data transfer,
using request structures called "URBs" (USB Request Blocks).
</para></listitem>
@ -324,8 +314,7 @@
<emphasis>usbdevfs</emphasis> although it wasn't solving what
<emphasis>devfs</emphasis> was.
Every USB device will appear in usbfs, regardless of whether or
not it has a kernel driver; but only devices with kernel drivers
show up in devfs.
not it has a kernel driver.
</para>
<sect1>
@ -463,14 +452,25 @@
file in your Linux kernel sources.
</para>
<para>Otherwise the main use for this file from programs
is to poll() it to get notifications of usb devices
as they're plugged or unplugged.
To see what changed, you'd need to read the file and
compare "before" and "after" contents, scan the filesystem,
or see its hotplug event.
</para>
<para>This file, in combination with the poll() system call, can
also be used to detect when devices are added or removed:
<programlisting>int fd;
struct pollfd pfd;
fd = open("/proc/bus/usb/devices", O_RDONLY);
pfd = { fd, POLLIN, 0 };
for (;;) {
/* The first time through, this call will return immediately. */
poll(&amp;pfd, 1, -1);
/* To see what's changed, compare the file's previous and current
contents or scan the filesystem. (Scanning is more precise.) */
}</programlisting>
Note that this behavior is intended to be used for informational
and debug purposes. It would be more appropriate to use programs
such as udev or HAL to initialize a device or start a user-mode
helper program, for instance.
</para>
</sect1>
<sect1>
@ -740,7 +740,7 @@ usbdev_ioctl (int fd, int ifno, unsigned request, void *param)
<title>Synchronous I/O Support</title>
<para>Synchronous requests involve the kernel blocking
until until the user mode request completes, either by
until the user mode request completes, either by
finishing successfully or by reporting an error.
In most cases this is the simplest way to use usbfs,
although as noted above it does prevent performing I/O

View File

@ -224,13 +224,8 @@ static int skel_probe(struct usb_interface *interface,
Conversely, when the device is removed from the USB bus, the disconnect
function is called with the device pointer. The driver needs to clean any
private data that has been allocated at this time and to shut down any
pending urbs that are in the USB system. The driver also unregisters
itself from the devfs subsystem with the call:
pending urbs that are in the USB system.
</para>
<programlisting>
/* remove our devfs node */
devfs_unregister(skel->devfs);
</programlisting>
<para>
Now that the device is plugged into the system and the driver is bound to
the device, any of the functions in the file_operations structure that
@ -350,8 +345,7 @@ static inline void skel_delete (struct usb_skel *dev)
usb_buffer_free (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);
if (dev->write_urb != NULL)
usb_free_urb (dev->write_urb);
usb_free_urb (dev->write_urb);
kfree (dev);
}
</programlisting>

View File

@ -375,6 +375,46 @@ of information is needed by the kernel developers to help track down the
problem.
Managing bug reports
--------------------
One of the best ways to put into practice your hacking skills is by fixing
bugs reported by other people. Not only you will help to make the kernel
more stable, you'll learn to fix real world problems and you will improve
your skills, and other developers will be aware of your presence. Fixing
bugs is one of the best ways to earn merit amongst the developers, because
not many people like wasting time fixing other people's bugs.
To work in the already reported bug reports, go to http://bugzilla.kernel.org.
If you want to be advised of the future bug reports, you can subscribe to the
bugme-new mailing list (only new bug reports are mailed here) or to the
bugme-janitor mailing list (every change in the bugzilla is mailed here)
http://lists.osdl.org/mailman/listinfo/bugme-new
http://lists.osdl.org/mailman/listinfo/bugme-janitors
Managing bug reports
--------------------
One of the best ways to put into practice your hacking skills is by fixing
bugs reported by other people. Not only you will help to make the kernel
more stable, you'll learn to fix real world problems and you will improve
your skills, and other developers will be aware of your presence. Fixing
bugs is one of the best ways to get merits among other developers, because
not many people like wasting time fixing other people's bugs.
To work in the already reported bug reports, go to http://bugzilla.kernel.org.
If you want to be advised of the future bug reports, you can subscribe to the
bugme-new mailing list (only new bug reports are mailed here) or to the
bugme-janitor mailing list (every change in the bugzilla is mailed here)
http://lists.osdl.org/mailman/listinfo/bugme-new
http://lists.osdl.org/mailman/listinfo/bugme-janitors
Mailing lists
-------------

View File

@ -326,9 +326,12 @@ for events, they will all receive all events that come in.
For receiving commands, you have to individually register commands you
want to receive. Call ipmi_register_for_cmd() and supply the netfn
and command name for each command you want to receive. Only one user
may be registered for each netfn/cmd, but different users may register
for different commands.
and command name for each command you want to receive. You also
specify a bitmask of the channels you want to receive the command from
(or use IPMI_CHAN_ALL for all channels if you don't care). Only one
user may be registered for each netfn/cmd/channel, but different users
may register for different commands, or the same command if the
channel bitmasks do not overlap.
From userland, equivalent IOCTLs are provided to do these functions.
@ -361,6 +364,8 @@ You can change this at module load time (for a module) with:
regspacings=<sp1>,<sp2>,... regsizes=<size1>,<size2>,...
regshifts=<shift1>,<shift2>,...
slave_addrs=<addr1>,<addr2>,...
force_kipmid=<enable1>,<enable2>,...
unload_when_empty=[0|1]
Each of these except si_trydefaults is a list, the first item for the
first interface, second item for the second interface, etc.
@ -406,7 +411,18 @@ The slave_addrs specifies the IPMI address of the local BMC. This is
usually 0x20 and the driver defaults to that, but in case it's not, it
can be specified when the driver starts up.
When compiled into the kernel, the addresses can be specified on the
The force_ipmid parameter forcefully enables (if set to 1) or disables
(if set to 0) the kernel IPMI daemon. Normally this is auto-detected
by the driver, but systems with broken interrupts might need an enable,
or users that don't want the daemon (don't need the performance, don't
want the CPU hit) can disable it.
If unload_when_empty is set to 1, the driver will be unloaded if it
doesn't find any interfaces or all the interfaces fail to work. The
default is one. Setting to 0 is useful with the hotmod, but is
obviously only useful for modules.
When compiled into the kernel, the parameters can be specified on the
kernel command line as:
ipmi_si.type=<type1>,<type2>...
@ -416,6 +432,7 @@ kernel command line as:
ipmi_si.regsizes=<size1>,<size2>,...
ipmi_si.regshifts=<shift1>,<shift2>,...
ipmi_si.slave_addrs=<addr1>,<addr2>,...
ipmi_si.force_kipmid=<enable1>,<enable2>,...
It works the same as the module parameters of the same names.
@ -430,6 +447,25 @@ have high-res timers enabled in the kernel and you don't have
interrupts enabled, the driver will run VERY slowly. Don't blame me,
these interfaces suck.
The driver supports a hot add and remove of interfaces. This way,
interfaces can be added or removed after the kernel is up and running.
This is done using /sys/modules/ipmi_si/hotmod, which is a write-only
parameter. You write a string to this interface. The string has the
format:
<op1>[:op2[:op3...]]
The "op"s are:
add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
You can specify more than one interface on the line. The "opt"s are:
rsp=<regspacing>
rsi=<regsize>
rsh=<regshift>
irq=<irq>
ipmb=<ipmb slave addr>
and these have the same meanings as discussed above. Note that you
can also use this on the kernel command line for a more compact format
for specifying an interface. Note that when removing an interface,
only the first three parameters (si type, address type, and address)
are used for the comparison. Any options are ignored for removing.
The SMBus Driver
----------------
@ -457,12 +493,12 @@ BMCs specified on the smb_addr line will be detected.
Setting smb_dbg_probe to 1 will enable debugging of the probing and
detection process for BMCs on the SMBusses.
Discovering the IPMI compilant BMC on the SMBus can cause devices
Discovering the IPMI compliant BMC on the SMBus can cause devices
on the I2C bus to fail. The SMBus driver writes a "Get Device ID" IPMI
message as a block write to the I2C bus and waits for a response.
This action can be detrimental to some I2C devices. It is highly recommended
that the known I2c address be given to the SMBus driver in the smb_addr
parameter. The default adrress range will not be used when a smb_addr
parameter. The default address range will not be used when a smb_addr
parameter is provided.
When compiled into the kernel, the addresses can be specified on the
@ -491,7 +527,10 @@ used to control it:
modprobe ipmi_watchdog timeout=<t> pretimeout=<t> action=<action type>
preaction=<preaction type> preop=<preop type> start_now=x
nowayout=x
nowayout=x ifnum_to_use=n
ifnum_to_use specifies which interface the watchdog timer should use.
The default is -1, which means to pick the first one registered.
The timeout is the number of seconds to the action, and the pretimeout
is the amount of seconds before the reset that the pre-timeout panic will
@ -613,5 +652,9 @@ command line. The parameter is also available via the proc filesystem
in /proc/sys/dev/ipmi/poweroff_powercycle. Note that if the system
does not support power cycling, it will always do the power off.
The "ifnum_to_use" parameter specifies which interface the poweroff
code should use. The default is -1, which means to pick the first one
registered.
Note that if you have ACPI enabled, the system will prefer using ACPI to
power off.

View File

@ -219,7 +219,7 @@ into the field vector of each element contained in a second argument.
Note that the pre-assigned IOAPIC dev->irq is valid only if the device
operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at
using dev->irq by the device driver to request for interrupt service
may result unpredictabe behavior.
may result in unpredictable behavior.
For each MSI-X vector granted, a device driver is responsible for calling
other functions like request_irq(), enable_irq(), etc. to enable
@ -267,7 +267,7 @@ y = The number of MSI capable devices populated in the system.
vector reserved to avoid the case where some MSI-X capable
drivers may attempt to claim all available vector resources.
z = The number of MSI-X capable devices pupulated in the system.
z = The number of MSI-X capable devices populated in the system.
This policy ensures that maximum (x - y) is distributed
evenly among MSI-X capable devices.
@ -470,7 +470,68 @@ LOC: 324553 325068
ERR: 0
MIS: 0
6. FAQ
6. MSI quirks
Several PCI chipsets or devices are known to not support MSI.
The PCI stack provides 3 possible levels of MSI disabling:
* on a single device
* on all devices behind a specific bridge
* globally
6.1. Disabling MSI on a single device
Under some circumstances, it might be required to disable MSI on a
single device, It may be achived by either not calling pci_enable_msi()
or all, or setting the pci_dev->no_msi flag before (most of the time
in a quirk).
6.2. Disabling MSI below a bridge
The vast majority of MSI quirks are required by PCI bridges not
being able to route MSI between busses. In this case, MSI have to be
disabled on all devices behind this bridge. It is achieves by setting
the PCI_BUS_FLAGS_NO_MSI flag in the pci_bus->bus_flags of the bridge
subordinate bus. There is no need to set the same flag on bridges that
are below the broken brigde. When pci_enable_msi() is called to enable
MSI on a device, pci_msi_supported() takes care of checking the NO_MSI
flag in all parent busses of the device.
Some bridges actually support dynamic MSI support enabling/disabling
by changing some bits in their PCI configuration space (especially
the Hypertransport chipsets such as the nVidia nForce and Serverworks
HT2000). It may then be required to update the NO_MSI flag on the
corresponding devices in the sysfs hierarchy. To enable MSI support
on device "0000:00:0e", do:
echo 1 > /sys/bus/pci/devices/0000:00:0e/msi_bus
To disable MSI support, echo 0 instead of 1. Note that it should be
used with caution since changing this value might break interrupts.
6.3. Disabling MSI globally
Some extreme cases may require to disable MSI globally on the system.
For now, the only known case is a Serverworks PCI-X chipsets (MSI are
not supported on several busses that are not all connected to the
chipset in the Linux PCI hierarchy). In the vast majority of other
cases, disabling only behind a specific bridge is enough.
For debugging purpose, the user may also pass pci=nomsi on the kernel
command-line to explicitly disable MSI globally. But, once the appro-
priate quirks are added to the kernel, this option should not be
required anymore.
6.4. Finding why MSI cannot be enabled on a device
Assuming that MSI are not enabled on a device, you should look at
dmesg to find messages that quirks may output when disabling MSI
on some devices, some bridges or even globally.
Then, lspci -t gives the list of bridges above a device. Reading
/sys/bus/pci/devices/0000:00:0e/msi_bus will tell you whether MSI
are enabled (1) or disabled (0). In 0 is found in a single bridge
msi_bus file above the device, MSI cannot be enabled.
7. FAQ
Q1. Are there any limitations on using the MSI?

View File

@ -221,3 +221,41 @@ over a rather long period of time, but improvements are always welcome!
disable irq on a given acquisition of that lock will result in
deadlock as soon as the RCU callback happens to interrupt that
acquisition's critical section.
13. SRCU (srcu_read_lock(), srcu_read_unlock(), and synchronize_srcu())
may only be invoked from process context. Unlike other forms of
RCU, it -is- permissible to block in an SRCU read-side critical
section (demarked by srcu_read_lock() and srcu_read_unlock()),
hence the "SRCU": "sleepable RCU". Please note that if you
don't need to sleep in read-side critical sections, you should
be using RCU rather than SRCU, because RCU is almost always
faster and easier to use than is SRCU.
Also unlike other forms of RCU, explicit initialization
and cleanup is required via init_srcu_struct() and
cleanup_srcu_struct(). These are passed a "struct srcu_struct"
that defines the scope of a given SRCU domain. Once initialized,
the srcu_struct is passed to srcu_read_lock(), srcu_read_unlock()
and synchronize_srcu(). A given synchronize_srcu() waits only
for SRCU read-side critical sections governed by srcu_read_lock()
and srcu_read_unlock() calls that have been passd the same
srcu_struct. This property is what makes sleeping read-side
critical sections tolerable -- a given subsystem delays only
its own updates, not those of other subsystems using SRCU.
Therefore, SRCU is less prone to OOM the system than RCU would
be if RCU's read-side critical sections were permitted to
sleep.
The ability to sleep in read-side critical sections does not
come for free. First, corresponding srcu_read_lock() and
srcu_read_unlock() calls must be passed the same srcu_struct.
Second, grace-period-detection overhead is amortized only
over those updates sharing a given srcu_struct, rather than
being globally amortized as they are for other forms of RCU.
Therefore, SRCU should be used in preference to rw_semaphore
only in extremely read-intensive situations, or in situations
requiring SRCU's read-side deadlock immunity or low read-side
realtime latency.
Note that, rcu_assign_pointer() and rcu_dereference() relate to
SRCU just as they do to other forms of RCU.

View File

@ -45,7 +45,8 @@ o How can I see where RCU is currently used in the Linux kernel?
Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
"rcu_read_lock_bh", "rcu_read_unlock_bh", "call_rcu_bh",
"synchronize_rcu", and "synchronize_net".
"srcu_read_lock", "srcu_read_unlock", "synchronize_rcu",
"synchronize_net", and "synchronize_srcu".
o What guidelines should I follow when writing code that uses RCU?

View File

@ -28,6 +28,15 @@ nreaders This is the number of RCU reading threads supported.
To properly exercise RCU implementations with preemptible
read-side critical sections.
nfakewriters This is the number of RCU fake writer threads to run. Fake
writer threads repeatedly use the synchronous "wait for
current readers" function of the interface selected by
torture_type, with a delay between calls to allow for various
different numbers of writers running in parallel.
nfakewriters defaults to 4, which provides enough parallelism
to trigger special cases caused by multiple writers, such as
the synchronize_srcu() early return optimization.
stat_interval The number of seconds between output of torture
statistics (via printk()). Regardless of the interval,
statistics are printed when the module is unloaded.
@ -44,9 +53,12 @@ test_no_idle_hz Whether or not to test the ability of RCU to operate in
a kernel that disables the scheduling-clock interrupt to
idle CPUs. Boolean parameter, "1" to test, "0" otherwise.
torture_type The type of RCU to test: "rcu" for the rcu_read_lock()
API, "rcu_bh" for the rcu_read_lock_bh() API, and "srcu"
for the "srcu_read_lock()" API.
torture_type The type of RCU to test: "rcu" for the rcu_read_lock() API,
"rcu_sync" for rcu_read_lock() with synchronous reclamation,
"rcu_bh" for the rcu_read_lock_bh() API, "rcu_bh_sync" for
rcu_read_lock_bh() with synchronous reclamation, "srcu" for
the "srcu_read_lock()" API, and "sched" for the use of
preempt_disable() together with synchronize_sched().
verbose Enable debug printk()s. Default is disabled.
@ -118,6 +130,21 @@ o "Free-Block Circulation": Shows the number of torture structures
as it is only incremented if a torture structure's counter
somehow gets incremented farther than it should.
Different implementations of RCU can provide implementation-specific
additional information. For example, SRCU provides the following:
srcu-torture: rtc: f8cf46a8 ver: 355 tfle: 0 rta: 356 rtaf: 0 rtf: 346 rtmbe: 0
srcu-torture: Reader Pipe: 559738 939 0 0 0 0 0 0 0 0 0
srcu-torture: Reader Batch: 560434 243 0 0 0 0 0 0 0 0
srcu-torture: Free-Block Circulation: 355 354 353 352 351 350 349 348 347 346 0
srcu-torture: per-CPU(idx=1): 0(0,1) 1(0,1) 2(0,0) 3(0,1)
The first four lines are similar to those for RCU. The last line shows
the per-CPU counter state. The numbers in parentheses are the values
of the "old" and "current" counters for the corresponding CPU. The
"idx" value maps the "old" and "current" values to the underlying array,
and is useful for debugging.
USAGE

View File

@ -582,7 +582,7 @@ The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
and release a global reader-writer lock. The synchronize_rcu()
primitive write-acquires this same lock, then immediately releases
it. This means that once synchronize_rcu() exits, all RCU read-side
critical sections that were in progress before synchonize_rcu() was
critical sections that were in progress before synchronize_rcu() was
called are guaranteed to have completed -- there is no way that
synchronize_rcu() would have been able to write-acquire the lock
otherwise.
@ -750,7 +750,7 @@ Or, for those who prefer a side-by-side listing:
Either way, the differences are quite small. Read-side locking moves
to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
from a reader-writer lock to a simple spinlock, and a synchronize_rcu()
a reader-writer lock to a simple spinlock, and a synchronize_rcu()
precedes the kfree().
However, there is one potential catch: the read-side and update-side
@ -778,6 +778,8 @@ Markers for RCU read-side critical sections:
rcu_read_unlock
rcu_read_lock_bh
rcu_read_unlock_bh
srcu_read_lock
srcu_read_unlock
RCU pointer/list traversal:
@ -804,6 +806,7 @@ RCU grace period:
synchronize_net
synchronize_sched
synchronize_rcu
synchronize_srcu
call_rcu
call_rcu_bh

View File

@ -61,3 +61,14 @@ kernel patches.
Documentation/kernel-parameters.txt.
18: All new module parameters are documented with MODULE_PARM_DESC()
19: All new userspace interfaces are documented in Documentation/ABI/.
See Documentation/ABI/README for more information.
20: Check that it all passes `make headers_check'.
21: Has been checked with injection of at least slab and page-allocation
fauilures. See Documentation/fault-injection/.
If the new code is substantial, addition of subsystem-specific fault
injection might be appropriate.

View File

@ -59,11 +59,11 @@ Copyright: The copyright owner must agree to use of GPL.
are the same person/entity. If not, the name of
the person/entity authorizing use of GPL should be
listed in case it's necessary to verify the will of
the copright owner.
the copyright owner.
Interfaces: If your driver uses existing interfaces and behaves like
other drivers in the same class it will be much more likely
to be accepted than if it invents gratuitous new ones.
to be accepted than if it invents gratuitous new ones.
If you need to implement a common API over Linux and NT
drivers do it in userspace.
@ -88,7 +88,7 @@ Clarity: It helps if anyone can see how to fix the driver. It helps
it will go in the bitbucket.
Control: In general if there is active maintainance of a driver by
the author then patches will be redirected to them unless
the author then patches will be redirected to them unless
they are totally obvious and without need of checking.
If you want to be the contact and update point for the
driver it is a good idea to state this in the comments,
@ -100,7 +100,7 @@ What Criteria Do Not Determine Acceptance
Vendor: Being the hardware vendor and maintaining the driver is
often a good thing. If there is a stable working driver from
other people already in the tree don't expect 'we are the
vendor' to get your driver chosen. Ideally work with the
vendor' to get your driver chosen. Ideally work with the
existing driver author to build a single perfect driver.
Author: It doesn't matter if a large Linux company wrote the driver,
@ -116,17 +116,13 @@ Linux kernel master tree:
ftp.??.kernel.org:/pub/linux/kernel/...
?? == your country code, such as "us", "uk", "fr", etc.
Linux kernel mailing list:
Linux kernel mailing list:
linux-kernel@vger.kernel.org
[mail majordomo@vger.kernel.org to subscribe]
Linux Device Drivers, Third Edition (covers 2.6.10):
http://lwn.net/Kernel/LDD3/ (free version)
Kernel traffic:
Weekly summary of kernel list activity (much easier to read)
http://www.kerneltraffic.org/kernel-traffic/
LWN.net:
Weekly summary of kernel development activity - http://lwn.net/
2.6 API changes:
@ -145,11 +141,8 @@ KernelNewbies:
Linux USB project:
http://www.linux-usb.org/
How to NOT write kernel driver by arjanv@redhat.com
http://people.redhat.com/arjanv/olspaper.pdf
How to NOT write kernel driver by Arjan van de Ven:
http://www.fenrus.org/how-to-not-write-a-device-driver-paper.pdf
Kernel Janitor:
http://janitor.kernelnewbies.org/
--
Last updated on 17 Nov 2005.

View File

@ -173,15 +173,15 @@ For small patches you may want to CC the Trivial Patch Monkey
trivial@kernel.org managed by Adrian Bunk; which collects "trivial"
patches. Trivial patches must qualify for one of the following rules:
Spelling fixes in documentation
Spelling fixes which could break grep(1).
Spelling fixes which could break grep(1)
Warning fixes (cluttering with useless warnings is bad)
Compilation fixes (only if they are actually correct)
Runtime fixes (only if they actually fix things)
Removing use of deprecated functions/macros (eg. check_region).
Removing use of deprecated functions/macros (eg. check_region)
Contact detail and documentation fixes
Non-portable code replaced by portable code (even in arch-specific,
since people copy, as long as it's trivial)
Any fix by the author/maintainer of the file. (ie. patch monkey
Any fix by the author/maintainer of the file (ie. patch monkey
in re-transmission mode)
URL: <http://www.kernel.org/pub/linux/kernel/people/bunk/trivial/>
@ -209,6 +209,19 @@ Exception: If your mailer is mangling patches then someone may ask
you to re-send them using MIME.
WARNING: Some mailers like Mozilla send your messages with
---- message header ----
Content-Type: text/plain; charset=us-ascii; format=flowed
---- message header ----
The problem is that "format=flowed" makes some of the mailers
on receiving side to replace TABs with spaces and do similar
changes. Thus the patches from you can look corrupted.
To fix this just make your mozilla defaults/pref/mailnews.js file to look like:
pref("mailnews.send_plaintext_flowed", false); // RFC 2646=======
pref("mailnews.display.disable_format_flowed_support", true);
7) E-mail size.
@ -245,13 +258,13 @@ updated change.
It is quite common for Linus to "drop" your patch without comment.
That's the nature of the system. If he drops your patch, it could be
due to
* Your patch did not apply cleanly to the latest kernel version
* Your patch did not apply cleanly to the latest kernel version.
* Your patch was not sufficiently discussed on linux-kernel.
* A style issue (see section 2),
* An e-mail formatting issue (re-read this section)
* A technical problem with your change
* He gets tons of e-mail, and yours got lost in the shuffle
* You are being annoying (See Figure 1)
* A style issue (see section 2).
* An e-mail formatting issue (re-read this section).
* A technical problem with your change.
* He gets tons of e-mail, and yours got lost in the shuffle.
* You are being annoying.
When in doubt, solicit comments on linux-kernel mailing list.
@ -476,10 +489,10 @@ SECTION 3 - REFERENCES
Andrew Morton, "The perfect patch" (tpp).
<http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt>
Jeff Garzik, "Linux kernel patch submission format."
Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>
Greg Kroah-Hartman "How to piss off a kernel subsystem maintainer".
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/2005/03/31/>
<http://www.kroah.com/log/2005/07/08/>
<http://www.kroah.com/log/2005/10/19/>
@ -488,9 +501,9 @@ Greg Kroah-Hartman "How to piss off a kernel subsystem maintainer".
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>
Kernel Documentation/CodingStyle
Kernel Documentation/CodingStyle:
<http://sosdg.org/~coywolf/lxr/source/Documentation/CodingStyle>
Linus Torvald's mail on the canonical patch format:
Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
--

View File

@ -7,6 +7,8 @@
* Copyright (C) Balbir Singh, IBM Corp. 2006
* Copyright (c) Jay Lan, SGI. 2006
*
* Compile with
* gcc -I/usr/src/linux/include getdelays.c -o getdelays
*/
#include <stdio.h>
@ -35,13 +37,20 @@
#define NLA_DATA(na) ((void *)((char*)(na) + NLA_HDRLEN))
#define NLA_PAYLOAD(len) (len - NLA_HDRLEN)
#define err(code, fmt, arg...) do { printf(fmt, ##arg); exit(code); } while (0)
int done = 0;
int rcvbufsz=0;
#define err(code, fmt, arg...) \
do { \
fprintf(stderr, fmt, ##arg); \
exit(code); \
} while (0)
char name[100];
int dbg=0, print_delays=0;
int done;
int rcvbufsz;
char name[100];
int dbg;
int print_delays;
int print_io_accounting;
__u64 stime, utime;
#define PRINTF(fmt, arg...) { \
if (dbg) { \
printf(fmt, ##arg); \
@ -49,7 +58,7 @@ __u64 stime, utime;
}
/* Maximum size of response requested or message sent */
#define MAX_MSG_SIZE 256
#define MAX_MSG_SIZE 1024
/* Maximum number of cpus expected to be specified in a cpumask */
#define MAX_CPUS 32
/* Maximum length of pathname to log file */
@ -78,8 +87,9 @@ static int create_nl_socket(int protocol)
if (rcvbufsz)
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
&rcvbufsz, sizeof(rcvbufsz)) < 0) {
printf("Unable to set socket rcv buf size to %d\n",
rcvbufsz);
fprintf(stderr, "Unable to set socket rcv buf size "
"to %d\n",
rcvbufsz);
return -1;
}
@ -186,6 +196,15 @@ void print_delayacct(struct taskstats *t)
"count", "delay total", t->swapin_count, t->swapin_delay_total);
}
void print_ioacct(struct taskstats *t)
{
printf("%s: read=%llu, write=%llu, cancelled_write=%llu\n",
t->ac_comm,
(unsigned long long)t->read_bytes,
(unsigned long long)t->write_bytes,
(unsigned long long)t->cancelled_write_bytes);
}
int main(int argc, char *argv[])
{
int c, rc, rep_len, aggr_len, len2, cmd_type;
@ -208,7 +227,7 @@ int main(int argc, char *argv[])
struct msgtemplate msg;
while (1) {
c = getopt(argc, argv, "dw:r:m:t:p:v:l");
c = getopt(argc, argv, "diw:r:m:t:p:v:l");
if (c < 0)
break;
@ -217,6 +236,10 @@ int main(int argc, char *argv[])
printf("print delayacct stats ON\n");
print_delays = 1;
break;
case 'i':
printf("printing IO accounting\n");
print_io_accounting = 1;
break;
case 'w':
strncpy(logfile, optarg, MAX_FILENAME);
printf("write to file %s\n", logfile);
@ -238,14 +261,12 @@ int main(int argc, char *argv[])
if (!tid)
err(1, "Invalid tgid\n");
cmd_type = TASKSTATS_CMD_ATTR_TGID;
print_delays = 1;
break;
case 'p':
tid = atoi(optarg);
if (!tid)
err(1, "Invalid pid\n");
cmd_type = TASKSTATS_CMD_ATTR_PID;
print_delays = 1;
break;
case 'v':
printf("debug on\n");
@ -277,7 +298,7 @@ int main(int argc, char *argv[])
mypid = getpid();
id = get_family_id(nl_sd);
if (!id) {
printf("Error getting family id, errno %d", errno);
fprintf(stderr, "Error getting family id, errno %d\n", errno);
goto err;
}
PRINTF("family id %d\n", id);
@ -285,10 +306,10 @@ int main(int argc, char *argv[])
if (maskset) {
rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
TASKSTATS_CMD_ATTR_REGISTER_CPUMASK,
&cpumask, sizeof(cpumask));
&cpumask, strlen(cpumask) + 1);
PRINTF("Sent register cpumask, retval %d\n", rc);
if (rc < 0) {
printf("error sending register cpumask\n");
fprintf(stderr, "error sending register cpumask\n");
goto err;
}
}
@ -298,7 +319,7 @@ int main(int argc, char *argv[])
cmd_type, &tid, sizeof(__u32));
PRINTF("Sent pid/tgid, retval %d\n", rc);
if (rc < 0) {
printf("error sending tid/tgid cmd\n");
fprintf(stderr, "error sending tid/tgid cmd\n");
goto done;
}
}
@ -310,12 +331,15 @@ int main(int argc, char *argv[])
PRINTF("received %d bytes\n", rep_len);
if (rep_len < 0) {
printf("nonfatal reply error: errno %d\n", errno);
fprintf(stderr, "nonfatal reply error: errno %d\n",
errno);
continue;
}
if (msg.n.nlmsg_type == NLMSG_ERROR ||
!NLMSG_OK((&msg.n), rep_len)) {
printf("fatal reply error, errno %d\n", errno);
struct nlmsgerr *err = NLMSG_DATA(&msg);
fprintf(stderr, "fatal reply error, errno %d\n",
err->error);
goto done;
}
@ -355,6 +379,8 @@ int main(int argc, char *argv[])
count++;
if (print_delays)
print_delayacct((struct taskstats *) NLA_DATA(na));
if (print_io_accounting)
print_ioacct((struct taskstats *) NLA_DATA(na));
if (fd) {
if (write(fd, NLA_DATA(na), na->nla_len) < 0) {
err(1,"write error\n");
@ -364,7 +390,9 @@ int main(int argc, char *argv[])
goto done;
break;
default:
printf("Unknown nested nla_type %d\n", na->nla_type);
fprintf(stderr, "Unknown nested"
" nla_type %d\n",
na->nla_type);
break;
}
len2 += NLA_ALIGN(na->nla_len);
@ -373,7 +401,8 @@ int main(int argc, char *argv[])
break;
default:
printf("Unknown nla_type %d\n", na->nla_type);
fprintf(stderr, "Unknown nla_type %d\n",
na->nla_type);
break;
}
na = (struct nlattr *) (GENLMSG_DATA(&msg) + len);
@ -383,7 +412,7 @@ done:
if (maskset) {
rc = send_cmd(nl_sd, id, mypid, TASKSTATS_CMD_GET,
TASKSTATS_CMD_ATTR_DEREGISTER_CPUMASK,
&cpumask, sizeof(cpumask));
&cpumask, strlen(cpumask) + 1);
printf("Sent deregister mask, retval %d\n", rc);
if (rc < 0)
err(rc, "error sending deregister cpumask\n");

View File

@ -0,0 +1,161 @@
The struct taskstats
--------------------
This document contains an explanation of the struct taskstats fields.
There are three different groups of fields in the struct taskstats:
1) Common and basic accounting fields
If CONFIG_TASKSTATS is set, the taskstats inteface is enabled and
the common fields and basic accounting fields are collected for
delivery at do_exit() of a task.
2) Delay accounting fields
These fields are placed between
/* Delay accounting fields start */
and
/* Delay accounting fields end */
Their values are collected if CONFIG_TASK_DELAY_ACCT is set.
3) Extended accounting fields
These fields are placed between
/* Extended accounting fields start */
and
/* Extended accounting fields end */
Their values are collected if CONFIG_TASK_XACCT is set.
Future extension should add fields to the end of the taskstats struct, and
should not change the relative position of each field within the struct.
struct taskstats {
1) Common and basic accounting fields:
/* The version number of this struct. This field is always set to
* TAKSTATS_VERSION, which is defined in <linux/taskstats.h>.
* Each time the struct is changed, the value should be incremented.
*/
__u16 version;
/* The exit code of a task. */
__u32 ac_exitcode; /* Exit status */
/* The accounting flags of a task as defined in <linux/acct.h>
* Defined values are AFORK, ASU, ACOMPAT, ACORE, and AXSIG.
*/
__u8 ac_flag; /* Record flags */
/* The value of task_nice() of a task. */
__u8 ac_nice; /* task_nice */
/* The name of the command that started this task. */
char ac_comm[TS_COMM_LEN]; /* Command name */
/* The scheduling discipline as set in task->policy field. */
__u8 ac_sched; /* Scheduling discipline */
__u8 ac_pad[3];
__u32 ac_uid; /* User ID */
__u32 ac_gid; /* Group ID */
__u32 ac_pid; /* Process ID */
__u32 ac_ppid; /* Parent process ID */
/* The time when a task begins, in [secs] since 1970. */
__u32 ac_btime; /* Begin time [sec since 1970] */
/* The elapsed time of a task, in [usec]. */
__u64 ac_etime; /* Elapsed time [usec] */
/* The user CPU time of a task, in [usec]. */
__u64 ac_utime; /* User CPU time [usec] */
/* The system CPU time of a task, in [usec]. */
__u64 ac_stime; /* System CPU time [usec] */
/* The minor page fault count of a task, as set in task->min_flt. */
__u64 ac_minflt; /* Minor Page Fault Count */
/* The major page fault count of a task, as set in task->maj_flt. */
__u64 ac_majflt; /* Major Page Fault Count */
2) Delay accounting fields:
/* Delay accounting fields start
*
* All values, until the comment "Delay accounting fields end" are
* available only if delay accounting is enabled, even though the last
* few fields are not delays
*
* xxx_count is the number of delay values recorded
* xxx_delay_total is the corresponding cumulative delay in nanoseconds
*
* xxx_delay_total wraps around to zero on overflow
* xxx_count incremented regardless of overflow
*/
/* Delay waiting for cpu, while runnable
* count, delay_total NOT updated atomically
*/
__u64 cpu_count;
__u64 cpu_delay_total;
/* Following four fields atomically updated using task->delays->lock */
/* Delay waiting for synchronous block I/O to complete
* does not account for delays in I/O submission
*/
__u64 blkio_count;
__u64 blkio_delay_total;
/* Delay waiting for page fault I/O (swap in only) */
__u64 swapin_count;
__u64 swapin_delay_total;
/* cpu "wall-clock" running time
* On some architectures, value will adjust for cpu time stolen
* from the kernel in involuntary waits due to virtualization.
* Value is cumulative, in nanoseconds, without a corresponding count
* and wraps around to zero silently on overflow
*/
__u64 cpu_run_real_total;
/* cpu "virtual" running time
* Uses time intervals seen by the kernel i.e. no adjustment
* for kernel's involuntary waits due to virtualization.
* Value is cumulative, in nanoseconds, without a corresponding count
* and wraps around to zero silently on overflow
*/
__u64 cpu_run_virtual_total;
/* Delay accounting fields end */
/* version 1 ends here */
3) Extended accounting fields
/* Extended accounting fields start */
/* Accumulated RSS usage in duration of a task, in MBytes-usecs.
* The current rss usage is added to this counter every time
* a tick is charged to a task's system time. So, at the end we
* will have memory usage multiplied by system time. Thus an
* average usage per system time unit can be calculated.
*/
__u64 coremem; /* accumulated RSS usage in MB-usec */
/* Accumulated virtual memory usage in duration of a task.
* Same as acct_rss_mem1 above except that we keep track of VM usage.
*/
__u64 virtmem; /* accumulated VM usage in MB-usec */
/* High watermark of RSS usage in duration of a task, in KBytes. */
__u64 hiwater_rss; /* High-watermark of RSS usage */
/* High watermark of VM usage in duration of a task, in KBytes. */
__u64 hiwater_vm; /* High-water virtual memory usage */
/* The following four fields are I/O statistics of a task. */
__u64 read_char; /* bytes read */
__u64 write_char; /* bytes written */
__u64 read_syscalls; /* read syscalls */
__u64 write_syscalls; /* write syscalls */
/* Extended accounting fields end */
}

View File

@ -96,9 +96,9 @@ a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indicates
a pid/tgid will be followed by some stats.
b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose stats
is being returned.
are being returned.
c) TASKSTATS_TYPE_STATS: attribute with a struct taskstsats as payload. The
c) TASKSTATS_TYPE_STATS: attribute with a struct taskstats as payload. The
same structure is used for both per-pid and per-tgid stats.
3. New message sent by kernel whenever a task exits. The payload consists of a
@ -122,12 +122,12 @@ of atomicity).
However, maintaining per-process, in addition to per-task stats, within the
kernel has space and time overheads. To address this, the taskstats code
accumalates each exiting task's statistics into a process-wide data structure.
When the last task of a process exits, the process level data accumalated also
accumulates each exiting task's statistics into a process-wide data structure.
When the last task of a process exits, the process level data accumulated also
gets sent to userspace (along with the per-task data).
When a user queries to get per-tgid data, the sum of all other live threads in
the group is added up and added to the accumalated total for previously exited
the group is added up and added to the accumulated total for previously exited
threads of the same thread group.
Extending taskstats

View File

@ -7,7 +7,7 @@ not been observed, but it would be nice to eliminate any potential for
deadlock under memory pressure.
Because ATA over Ethernet is not fragmented by the kernel's IP code,
the destructore member of the struct sk_buff is available to the aoe
the destructor member of the struct sk_buff is available to the aoe
driver. By using a mempool for allocating all but the first few
sk_buffs, and by registering a destructor, we should be able to
efficiently allocate sk_buffs without introducing any potential for

View File

@ -24,8 +24,8 @@ The SA1100 serial port had its major/minor numbers officially assigned:
> 7 = /dev/cusa2 Callout device for ttySA2
>
If you're not using devfs, you must create those inodes in /dev
on the root filesystem used by your SA1100-based device:
You must create those inodes in /dev on the root filesystem used
by your SA1100-based device:
mknod ttySA0 c 204 5
mknod ttySA1 c 204 6

View File

@ -38,7 +38,7 @@ MTD
---
The NAND and NOR support has been merged from the linux-mtd project.
Any prolbems, see http://www.linux-mtd.infradead.org/ for more
Any problems, see http://www.linux-mtd.infradead.org/ for more
information or up-to-date versions of linux-mtd.

View File

@ -24,7 +24,7 @@ Headers
header include/asm-arm/arch-s3c2410/hardware.h which can be
included by #include <asm/arch/hardware.h>
A useful ammount of documentation can be found in the hardware
A useful amount of documentation can be found in the hardware
header on how the GPIO functions (and others) work.
Whilst a number of these functions do make some checks on what

View File

@ -80,7 +80,7 @@ Machines
Adding New Machines
-------------------
The archicture has been designed to support as many machines as can
The architecture has been designed to support as many machines as can
be configured for it in one kernel build, and any future additions
should keep this in mind before altering items outside of their own
machine files.

View File

@ -80,7 +80,7 @@ RTC
Watchdog
--------
The watchdog harware is the same as the S3C2410, and is supported by
The watchdog hardware is the same as the S3C2410, and is supported by
the s3c2410_wdt driver.

View File

@ -24,8 +24,10 @@ very similar behavior to the deadline IO scheduler.
Selecting IO schedulers
-----------------------
To choose IO schedulers at boot time, use the argument 'elevator=deadline'.
'noop' and 'as' (the default) are also available. IO schedulers are assigned
globally at boot time only presently.
'noop', 'as' and 'cfq' (the default) are also available. IO schedulers are
assigned globally at boot time only presently. It's also possible to change
the IO scheduler for a determined device on the fly, as described in
Documentation/block/switching-sched.txt.
Anticipatory IO scheduler Policies
@ -99,8 +101,8 @@ contrast, many write requests may be dispatched to the disk controller
at a time during a write batch. It is this characteristic that can make
the anticipatory scheduler perform anomalously with controllers supporting
TCQ, or with hardware striped RAID devices. Setting the antic_expire
queue paramter (see below) to zero disables this behavior, and the anticipatory
scheduler behaves essentially like the deadline scheduler.
queue parameter (see below) to zero disables this behavior, and the
anticipatory scheduler behaves essentially like the deadline scheduler.
When read anticipation is enabled (antic_expire is not zero), reads
are dispatched to the disk controller one at a time.

View File

@ -25,7 +25,7 @@ of the following three ways.
i. For devices which have queue depth greater than 1 (TCQ devices) and
support ordered tags, block layer can just issue the barrier as an
ordered request and the lower level driver, controller and drive
itself are responsible for making sure that the ordering contraint is
itself are responsible for making sure that the ordering constraint is
met. Most modern SCSI controllers/drives should support this.
NOTE: SCSI ordered tag isn't currently used due to limitation in the
@ -42,7 +42,7 @@ iii. Devices which have queue depth of 1. This is a degenerate case
of ii. Just keeping issue order suffices. Ancient SCSI
controllers/drives and IDE drives are in this category.
2. Forced flushing to physcial medium
2. Forced flushing to physical medium
Again, if you're not gonna do synchronization with disk drives (dang,
it sounds even more appealing now!), the reason you use I/O barriers
@ -56,7 +56,7 @@ There are four cases,
i. No write-back cache. Keeping requests ordered is enough.
ii. Write-back cache but no flush operation. There's no way to
gurantee physical-medium commit order. This kind of devices can't to
guarantee physical-medium commit order. This kind of devices can't to
I/O barriers.
iii. Write-back cache and flush operation but no FUA (forced unit

View File

@ -135,7 +135,7 @@ Some new queue property settings:
Sets two variables that limit the size of the request.
- The request queue's max_sectors, which is a soft size in
in units of 512 byte sectors, and could be dynamically varied
units of 512 byte sectors, and could be dynamically varied
by the core kernel.
- The request queue's max_hw_sectors, which is a hard limit
@ -183,7 +183,7 @@ it, the pci dma mapping routines and associated data structures have now been
modified to accomplish a direct page -> bus translation, without requiring
a virtual address mapping (unlike the earlier scheme of virtual address
-> bus translation). So this works uniformly for high-memory pages (which
do not have a correponding kernel virtual address space mapping) and
do not have a corresponding kernel virtual address space mapping) and
low-memory pages.
Note: Please refer to DMA-mapping.txt for a discussion on PCI high mem DMA
@ -391,7 +391,7 @@ forced such requests to be broken up into small chunks before being passed
on to the generic block layer, only to be merged by the i/o scheduler
when the underlying device was capable of handling the i/o in one shot.
Also, using the buffer head as an i/o structure for i/os that didn't originate
from the buffer cache unecessarily added to the weight of the descriptors
from the buffer cache unnecessarily added to the weight of the descriptors
which were generated for each such chunk.
The following were some of the goals and expectations considered in the
@ -403,14 +403,14 @@ i. Should be appropriate as a descriptor for both raw and buffered i/o -
for raw i/o.
ii. Ability to represent high-memory buffers (which do not have a virtual
address mapping in kernel address space).
iii.Ability to represent large i/os w/o unecessarily breaking them up (i.e
iii.Ability to represent large i/os w/o unnecessarily breaking them up (i.e
greater than PAGE_SIZE chunks in one shot)
iv. At the same time, ability to retain independent identity of i/os from
different sources or i/o units requiring individual completion (e.g. for
latency reasons)
v. Ability to represent an i/o involving multiple physical memory segments
(including non-page aligned page fragments, as specified via readv/writev)
without unecessarily breaking it up, if the underlying device is capable of
without unnecessarily breaking it up, if the underlying device is capable of
handling it.
vi. Preferably should be based on a memory descriptor structure that can be
passed around different types of subsystems or layers, maybe even
@ -783,7 +783,7 @@ all the outstanding requests. There's a third helper to do that:
blk_queue_invalidate_tags(request_queue_t *q)
Clear the internal block tag queue and readd all the pending requests
Clear the internal block tag queue and re-add all the pending requests
to the request queue. The driver will receive them again on the
next request_fn run, just like it did the first time it encountered
them.
@ -890,7 +890,7 @@ Aside:
Kvec i/o:
Ben LaHaise's aio code uses a slighly different structure instead
Ben LaHaise's aio code uses a slightly different structure instead
of kiobufs, called a kvec_cb. This contains an array of <page, offset, len>
tuples (very much like the networking code), together with a callback function
and data pointer. This is embedded into a brw_cb structure when passed
@ -988,7 +988,7 @@ elevator_exit_fn Allocate and free any elevator specific storage
for a queue.
4.2 Request flows seen by I/O schedulers
All requests seens by I/O schedulers strictly follow one of the following three
All requests seen by I/O schedulers strictly follow one of the following three
flows.
set_req_fn ->
@ -1013,7 +1013,7 @@ Characteristics:
i. Binary tree
AS and deadline i/o schedulers use red black binary trees for disk position
sorting and searching, and a fifo linked list for time-based searching. This
gives good scalability and good availablility of information. Requests are
gives good scalability and good availability of information. Requests are
almost always dispatched in disk sort order, so a cache is kept of the next
request in sort order to prevent binary tree lookups.
@ -1203,6 +1203,6 @@ temporarily map a bio into the virtual address space.
and Linus' comments - Jan 2001)
9.2 Discussions about kiobuf and bh design on lkml between sct, linus, alan
et al - Feb-March 2001 (many of the initial thoughts that led to bio were
brought up in this discusion thread)
brought up in this discussion thread)
9.3 Discussions on mempool on lkml - Dec 2001.

View File

@ -23,11 +23,11 @@ you can do so by typing:
read_expire (in ms)
-----------
The goal of the deadline io scheduler is to attempt to guarentee a start
The goal of the deadline io scheduler is to attempt to guarantee a start
service time for a request. As we focus mainly on read latencies, this is
tunable. When a read request first enters the io scheduler, it is assigned
a deadline that is the current time + the read_expire value in units of
miliseconds.
milliseconds.
write_expire (in ms)

View File

@ -80,7 +80,7 @@ the /proc filesystem entry which the "block" side of the driver creates as
the SCSI core may not yet be initialized (because the driver is a block
driver) and attempting to register it with the SCSI core in such a case
would cause a hang. This is best done via an initialization script
(typically in /etc/init.d, but could vary depending on distibution).
(typically in /etc/init.d, but could vary depending on distribution).
For example:
for x in /proc/driver/cciss/cciss[0-9]*
@ -152,7 +152,7 @@ side during the SCSI error recovery process, the cciss driver only
implements the first two of these actions, aborting the command, and
resetting the device. Additionally, most tape drives will not oblige
in aborting commands, and sometimes it appears they will not even
obey a reset coommand, though in most circumstances they will. In
obey a reset command, though in most circumstances they will. In
the case that the command cannot be aborted and the device cannot be
reset, the device will be set offline.

View File

@ -90,6 +90,41 @@ Notes
to create an ext2 filesystem on the disc.
Using the pktcdvd sysfs interface
---------------------------------
Since Linux 2.6.19, the pktcdvd module has a sysfs interface
and can be controlled by it. For example the "pktcdvd" tool uses
this interface. (see http://people.freenet.de/BalaGi#pktcdvd )
"pktcdvd" works similar to "pktsetup", e.g.:
# pktcdvd -a dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
# mount -t udf -o rw,noatime /dev/pktcdvd/dev_name /dvdram
# cp files /dvdram
# umount /dvdram
# pktcdvd -r dev_name
For a description of the sysfs interface look into the file:
Documentation/ABI/testing/sysfs-block-pktcdvd
Using the pktcdvd debugfs interface
-----------------------------------
To read pktcdvd device infos in human readable form, do:
# cat /debug/pktcdvd/pktcdvd[0-7]/info
For a description of the debugfs interface look into the file:
Documentation/ABI/testing/debugfs-pktcdvd
Links
-----

View File

@ -199,30 +199,6 @@ boxes this will leave gaps in the sequence of device names. ip2mkdev uses
Linux tty naming conventions: ttyF0 - ttyF255 for normal devices, and
cuf0 - cuf255 for callout devices.
If you are using devfs, existing devices are automatically created within
the devfs name space. Normal devices will be tts/F0 - tts/F255 and callout
devices will be cua/F0 - cua/F255. With devfs installed, ip2mkdev will
create symbolic links in /dev from the old conventional names to the newer
devfs names as follows:
/dev/ip2ipl[n] -> /dev/ip2/ipl[n] n = 0 - 3
/dev/ip2stat[n] -> /dev/ip2/stat[n] n = 0 - 3
/dev/ttyF[n] -> /dev/tts/F[n] n = 0 - 255
/dev/cuf[n] -> /dev/cua/F[n] n = 0 - 255
Only devices for existing ports and boards will be created.
IMPORTANT NOTE: The naming convention used for devfs by this driver
was changed from 1.2.12 to 1.2.13. The old naming convention was to
use ttf/%d for the tty device and cuf/%d for the cua device. That
has been changed to conform to an agreed-upon standard of placing
all the tty devices under tts. The device names are now tts/F%d for
the tty device and cua/F%d for the cua devices. If you were using
the older devfs names, you must update for the newer convention.
You do not need to run ip2mkdev if you are using devfs and only want to
use the devfs native device names.
4. USING THE DRIVERS
@ -256,57 +232,15 @@ cut out and run as "ip2mkdev" to create the necessary device files. To
use the ip2mkdev script, you must have procfs enabled and the proc file
system mounted on /proc.
You do not need to run ip2mkdev if you are using devfs and only want to
use the devfs native device names.
6. DEVFS
DEVFS is the DEVice File System available as an add on package for the
2.2.x kernels and available as a configuration option in 2.3.46 and higher.
Devfs allows for the automatic creation and management of device names
under control of the device drivers themselves. The Devfs namespace is
hierarchical and reduces the clutter present in the normal flat /dev
namespace. Devfs names and conventional device names may be intermixed.
A userspace daemon, devfsd, exists to allow for automatic creation and
management of symbolic links from the devfs name space to the conventional
names. More details on devfs can be found on the DEVFS home site at
<http://www.atnf.csiro.au/~rgooch/linux/> or in the file kernel
documentation files, .../linux/Documentation/filesystems/devfs/README.
If you are using devfs, existing devices are automatically created within
the devfs name space. Normal devices will be tts/F0 - tts/F255 and callout
devices will be cua/F0 - cua/F255. With devfs installed, ip2mkdev will
create symbolic links in /dev from the old conventional names to the newer
devfs names as follows:
/dev/ip2ipl[n] -> /dev/ip2/ipl[n] n = 0 - 3
/dev/ip2stat[n] -> /dev/ip2/stat[n] n = 0 - 3
/dev/ttyF[n] -> /dev/tts/F[n] n = 0 - 255
/dev/cuf[n] -> /dev/cua/F[n] n = 0 - 255
Only devices for existing ports and boards will be created.
IMPORTANT NOTE: The naming convention used for devfs by this driver
was changed from 1.2.12 to 1.2.13. The old naming convention was to
use ttf/%d for the tty device and cuf/%d for the cua device. That
has been changed to conform to an agreed-upon standard of placing
all the tty devices under tts. The device names are now tts/F%d for
the tty device and cua/F%d for the cua devices. If you were using
the older devfs names, you must update for the newer convention.
You do not need to run ip2mkdev if you are using devfs and only want to
use the devfs native device names.
7. NOTES
6. NOTES
This is a release version of the driver, but it is impossible to test it
in all configurations of Linux. If there is any anomalous behaviour that
does not match the standard serial port's behaviour please let us know.
8. ip2mkdev shell script
7. ip2mkdev shell script
Previously, this script was simply attached here. It is now attached as a
shar archive to make it easier to extract the script from the documentation.

View File

@ -1,7 +1,7 @@
The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 plattforms.
The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
This works better than on other plattforms, because the FSB of the CPU
This works better than on other platforms, because the FSB of the CPU
can be controlled independently from the PCI/AGP clock.
The module has two options:

View File

@ -1,5 +1,5 @@
CPU frequency and voltage scaling statictics in the Linux(TM) kernel
CPU frequency and voltage scaling statistics in the Linux(TM) kernel
L i n u x c p u f r e q - s t a t s d r i v e r
@ -18,8 +18,8 @@ Contents
1. Introduction
cpufreq-stats is a driver that provices CPU frequency statistics for each CPU.
This statistics is provided in /sysfs as a bunch of read_only interfaces. This
interface (when configured) will appear in a seperate directory under cpufreq
These statistics are provided in /sysfs as a bunch of read_only interfaces. This
interface (when configured) will appear in a separate directory under cpufreq
in /sysfs (<sysfs root>/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU.
Various statistics will form read_only files under this directory.
@ -53,7 +53,7 @@ drwxr-xr-x 3 root root 0 May 14 15:58 ..
This gives the amount of time spent in each of the frequencies supported by
this CPU. The cat output will have "<frequency> <time>" pair in each line, which
will mean this CPU spent <time> usertime units of time at <frequency>. Output
will have one line for each of the supported freuencies. usertime units here
will have one line for each of the supported frequencies. usertime units here
is 10mS (similar to other time exported in /proc).
--------------------------------------------------------------------------------
@ -115,7 +115,7 @@ basic statistics which includes time_in_state and total_trans.
"CPU frequency translation statistics details" (CONFIG_CPU_FREQ_STAT_DETAILS)
provides fine grained cpufreq stats by trans_table. The reason for having a
seperate config option for trans_table is:
separate config option for trans_table is:
- trans_table goes against the traditional /sysfs rule of one value per
interface. It provides a whole bunch of value in a 2 dimensional matrix
form.

View File

@ -57,7 +57,7 @@ selected for each specific use.
Basically, it's the following flow graph:
CPU can be set to switch independetly | CPU can only be set
CPU can be set to switch independently | CPU can only be set
within specific "limits" | to specific frequencies
"CPUfreq policy"
@ -109,7 +109,7 @@ directory.
2.4 Ondemand
------------
The CPUfreq govenor "ondemand" sets the CPU depending on the
The CPUfreq governor "ondemand" sets the CPU depending on the
current usage. To do this the CPU must have the capability to
switch the frequency very quickly. There are a number of sysfs file
accessible parameters:
@ -137,11 +137,11 @@ have to be made in a row before the CPU frequency is actually lower.
If set to '1' then the frequency decreases as quickly as it increases,
if set to '2' it decreases at half the rate of the increase.
ignore_nice_load: this parameter takes a value of '0' or '1', when set
to '0' (its default) then all processes are counted towards towards the
'cpu utilisation' value. When set to '1' then processes that are
ignore_nice_load: this parameter takes a value of '0' or '1'. When
set to '0' (its default), all processes are counted towards the
'cpu utilisation' value. When set to '1', the processes that are
run with a 'nice' value will not count (and thus be ignored) in the
overal usage calculation. This is useful if you are running a CPU
overall usage calculation. This is useful if you are running a CPU
intensive calculation on your laptop that you do not care how long it
takes to complete as you can 'nice' it and prevent it from taking part
in the deciding process of whether to increase your CPU frequency.

View File

@ -46,7 +46,7 @@ maxcpus=n Restrict boot time cpus to n. Say if you have 4 cpus, using
maxcpus=2 will only boot 2. You can choose to bring the
other cpus later online, read FAQ's for more info.
additional_cpus*=n Use this to limit hotpluggable cpus. This option sets
additional_cpus=n (*) Use this to limit hotpluggable cpus. This option sets
cpu_possible_map = cpu_present_map + additional_cpus
(*) Option valid only for following architectures
@ -54,8 +54,8 @@ additional_cpus*=n Use this to limit hotpluggable cpus. This option sets
ia64 and x86_64 use the number of disabled local apics in ACPI tables MADT
to determine the number of potentially hot-pluggable cpus. The implementation
should only rely on this to count the #of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesnt
should only rely on this to count the # of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesn't
mark such hot-pluggable cpus as disabled entries, one could use this
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
@ -101,15 +101,15 @@ cpu_possible_map/for_each_possible_cpu() to iterate.
Never use anything other than cpumask_t to represent bitmap of CPUs.
#include <linux/cpumask.h>
#include <linux/cpumask.h>
for_each_possible_cpu - Iterate over cpu_possible_map
for_each_online_cpu - Iterate over cpu_online_map
for_each_present_cpu - Iterate over cpu_present_map
for_each_cpu_mask(x,mask) - Iterate over some random collection of cpu mask.
for_each_possible_cpu - Iterate over cpu_possible_map
for_each_online_cpu - Iterate over cpu_online_map
for_each_present_cpu - Iterate over cpu_present_map
for_each_cpu_mask(x,mask) - Iterate over some random collection of cpu mask.
#include <linux/cpu.h>
lock_cpu_hotplug() and unlock_cpu_hotplug():
#include <linux/cpu.h>
lock_cpu_hotplug() and unlock_cpu_hotplug():
The above calls are used to inhibit cpu hotplug operations. While holding the
cpucontrol mutex, cpu_online_map will not change. If you merely need to avoid
@ -120,7 +120,7 @@ will work as long as stop_machine_run() is used to take a cpu down.
CPU Hotplug - Frequently Asked Questions.
Q: How to i enable my kernel to support CPU hotplug?
Q: How to enable my kernel to support CPU hotplug?
A: When doing make defconfig, Enable CPU hotplug support
"Processor type and Features" -> Support for Hotpluggable CPUs
@ -141,39 +141,39 @@ A: You should now notice an entry in sysfs.
Check if sysfs is mounted, using the "mount" command. You should notice
an entry as shown below in the output.
....
none on /sys type sysfs (rw)
....
....
none on /sys type sysfs (rw)
....
if this is not mounted, do the following.
If this is not mounted, do the following.
#mkdir /sysfs
#mount -t sysfs sys /sys
#mkdir /sysfs
#mount -t sysfs sys /sys
now you should see entries for all present cpu, the following is an example
Now you should see entries for all present cpu, the following is an example
in a 8-way system.
#pwd
#/sys/devices/system/cpu
#ls -l
total 0
drwxr-xr-x 10 root root 0 Sep 19 07:44 .
drwxr-xr-x 13 root root 0 Sep 19 07:45 ..
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu0
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu1
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu2
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu3
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu4
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu5
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu6
drwxr-xr-x 3 root root 0 Sep 19 07:48 cpu7
#pwd
#/sys/devices/system/cpu
#ls -l
total 0
drwxr-xr-x 10 root root 0 Sep 19 07:44 .
drwxr-xr-x 13 root root 0 Sep 19 07:45 ..
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu0
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu1
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu2
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu3
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu4
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu5
drwxr-xr-x 3 root root 0 Sep 19 07:44 cpu6
drwxr-xr-x 3 root root 0 Sep 19 07:48 cpu7
Under each directory you would find an "online" file which is the control
file to logically online/offline a processor.
Q: Does hot-add/hot-remove refer to physical add/remove of cpus?
A: The usage of hot-add/remove may not be very consistently used in the code.
CONFIG_CPU_HOTPLUG enables logical online/offline capability in the kernel.
CONFIG_HOTPLUG_CPU enables logical online/offline capability in the kernel.
To support physical addition/removal, one would need some BIOS hooks and
the platform should have something like an attention button in PCI hotplug.
CONFIG_ACPI_HOTPLUG_CPU enables ACPI support for physical add/remove of CPUs.
@ -181,17 +181,17 @@ CONFIG_ACPI_HOTPLUG_CPU enables ACPI support for physical add/remove of CPUs.
Q: How do i logically offline a CPU?
A: Do the following.
#echo 0 > /sys/devices/system/cpu/cpuX/online
#echo 0 > /sys/devices/system/cpu/cpuX/online
once the logical offline is successful, check
Once the logical offline is successful, check
#cat /proc/interrupts
#cat /proc/interrupts
you should now not see the CPU that you removed. Also online file will report
You should now not see the CPU that you removed. Also online file will report
the state as 0 when a cpu if offline and 1 when its online.
#To display the current cpu state.
#cat /sys/devices/system/cpu/cpuX/online
#To display the current cpu state.
#cat /sys/devices/system/cpu/cpuX/online
Q: Why cant i remove CPU0 on some systems?
A: Some architectures may have some special dependency on a certain CPU.
@ -234,8 +234,8 @@ Q: If i have some kernel code that needs to be aware of CPU arrival and
departure, how to i arrange for proper notification?
A: This is what you would need in your kernel code to receive notifications.
#include <linux/cpu.h>
static int __cpuinit foobar_cpu_callback(struct notifier_block *nfb,
#include <linux/cpu.h>
static int __cpuinit foobar_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
@ -279,10 +279,10 @@ Q: I don't see my action being called for all CPUs already up and running?
A: Yes, CPU notifiers are called only when new CPUs are on-lined or offlined.
If you need to perform some action for each cpu already in the system, then
for_each_online_cpu(i) {
for_each_online_cpu(i) {
foobar_cpu_callback(&foobar_cpu_notifier, CPU_UP_PREPARE, i);
foobar_cpu_callback(&foobar-cpu_notifier, CPU_ONLINE, i);
}
foobar_cpu_callback(&foobar_cpu_notifier, CPU_ONLINE, i);
}
Q: If i would like to develop cpu hotplug support for a new architecture,
what do i need at a minimum?
@ -307,38 +307,38 @@ Q: I need to ensure that a particular cpu is not removed when there is some
work specific to this cpu is in progress.
A: First switch the current thread context to preferred cpu
int my_func_on_cpu(int cpu)
{
cpumask_t saved_mask, new_mask = CPU_MASK_NONE;
int curr_cpu, err = 0;
int my_func_on_cpu(int cpu)
{
cpumask_t saved_mask, new_mask = CPU_MASK_NONE;
int curr_cpu, err = 0;
saved_mask = current->cpus_allowed;
cpu_set(cpu, new_mask);
err = set_cpus_allowed(current, new_mask);
saved_mask = current->cpus_allowed;
cpu_set(cpu, new_mask);
err = set_cpus_allowed(current, new_mask);
if (err)
return err;
if (err)
return err;
/*
* If we got scheduled out just after the return from
* set_cpus_allowed() before running the work, this ensures
* we stay locked.
*/
curr_cpu = get_cpu();
/*
* If we got scheduled out just after the return from
* set_cpus_allowed() before running the work, this ensures
* we stay locked.
*/
curr_cpu = get_cpu();
if (curr_cpu != cpu) {
err = -EAGAIN;
goto ret;
} else {
/*
* Do work : But cant sleep, since get_cpu() disables preempt
*/
}
ret:
put_cpu();
set_cpus_allowed(current, saved_mask);
return err;
}
if (curr_cpu != cpu) {
err = -EAGAIN;
goto ret;
} else {
/*
* Do work : But cant sleep, since get_cpu() disables preempt
*/
}
ret:
put_cpu();
set_cpus_allowed(current, saved_mask);
return err;
}
Q: How do we determine how many CPUs are available for hotplug.

View File

@ -217,11 +217,11 @@ exclusive cpuset. Also, the use of a Linux virtual file system (vfs)
to represent the cpuset hierarchy provides for a familiar permission
and name space for cpusets, with a minimum of additional kernel code.
The cpus file in the root (top_cpuset) cpuset is read-only.
It automatically tracks the value of cpu_online_map, using a CPU
hotplug notifier. If and when memory nodes can be hotplugged,
we expect to make the mems file in the root cpuset read-only
as well, and have it track the value of node_online_map.
The cpus and mems files in the root (top_cpuset) cpuset are
read-only. The cpus file automatically tracks the value of
cpu_online_map using a CPU hotplug notifier, and the mems file
automatically tracks the value of node_online_map using the
cpuset_track_online_nodes() hook.
1.4 What are exclusive cpusets ?

View File

@ -26,7 +26,7 @@ The type of **_id is int.
The type of siblings is cpumask_t.
To be consistent on all architectures, the 4 attributes should have
deafult values if their values are unavailable. Below is the rule.
default values if their values are unavailable. Below is the rule.
1) physical_package_id: If cpu has no physical package id, -1 is the
default value.
2) core_id: If cpu doesn't support multi-core, its core id is 0.

View File

@ -4,7 +4,7 @@ for updating BIOS images on Dell servers and desktops.
Scope:
This document discusses the functionality of the rbu driver only.
It does not cover the support needed from aplications to enable the BIOS to
It does not cover the support needed from applications to enable the BIOS to
update itself with the image downloaded in to the memory.
Overview:
@ -16,8 +16,8 @@ OpenManage and Dell Update packages (DUP).
Libsmbios can also be used to update BIOS on Dell systems go to
http://linux.dell.com/libsmbios/ for details.
Dell_RBU driver supports BIOS update using the monilothic image and packetized
image methods. In case of moniolithic the driver allocates a contiguous chunk
Dell_RBU driver supports BIOS update using the monolithic image and packetized
image methods. In case of monolithic the driver allocates a contiguous chunk
of physical pages having the BIOS image. In case of packetized the app
using the driver breaks the image in to packets of fixed sizes and the driver
would place each packet in contiguous physical memory. The driver also
@ -41,7 +41,7 @@ The driver supports two types of update mechanism; monolithic and packetized.
These update mechanism depends upon the BIOS currently running on the system.
Most of the Dell systems support a monolithic update where the BIOS image is
copied to a single contiguous block of physical memory.
In case of packet mechanism the single memory can be broken in smaller chuks
In case of packet mechanism the single memory can be broken in smaller chunks
of contiguous memory and the BIOS image is scattered in these packets.
By default the driver uses monolithic memory for the update type. This can be
@ -52,11 +52,11 @@ echo packet > /sys/devices/platform/dell_rbu/image_type
In packet update mode the packet size has to be given before any packets can
be downloaded. It is done as below
echo XXXX > /sys/devices/platform/dell_rbu/packet_size
In the packet update mechanism, the user neesd to create a new file having
In the packet update mechanism, the user needs to create a new file having
packets of data arranged back to back. It can be done as follows
The user creates packets header, gets the chunk of the BIOS image and
placs it next to the packetheader; now, the packetheader + BIOS image chunk
added to geather should match the specified packet_size. This makes one
places it next to the packetheader; now, the packetheader + BIOS image chunk
added together should match the specified packet_size. This makes one
packet, the user needs to create more such packets out of the entire BIOS
image file and then arrange all these packets back to back in to one single
file.
@ -93,8 +93,8 @@ read back the image downloaded.
NOTE:
This driver requires a patch for firmware_class.c which has the modified
request_firmware_nowait function.
Also after updating the BIOS image an user mdoe application neeeds to execute
code which message the BIOS update request to the BIOS. So on the next reboot
the BIOS knows about the new image downloaded and it updates it self.
Also don't unload the rbu drive if the image has to be updated.
Also after updating the BIOS image a user mode application needs to execute
code which sends the BIOS update request to the BIOS. So on the next reboot
the BIOS knows about the new image downloaded and it updates itself.
Also don't unload the rbu driver if the image has to be updated.

View File

@ -3,7 +3,7 @@
Maintained by Torben Mathiasen <device@lanana.org>
Last revised: 15 May 2006
Last revised: 29 November 2006
This list is the Linux Device List, the official registry of allocated
device numbers and /dev directory nodes for the Linux operating
@ -92,8 +92,9 @@ Your cooperation is appreciated.
7 = /dev/full Returns ENOSPC on write
8 = /dev/random Nondeterministic random number gen.
9 = /dev/urandom Faster, less secure random number gen.
10 = /dev/aio Asyncronous I/O notification interface
10 = /dev/aio Asynchronous I/O notification interface
11 = /dev/kmsg Writes to this come out as printk's
1 block RAM disk
0 = /dev/ram0 First RAM disk
1 = /dev/ram1 Second RAM disk
@ -122,7 +123,7 @@ Your cooperation is appreciated.
devices are on major 128 and above and use the PTY
master multiplex (/dev/ptmx) to acquire a PTY on
demand.
2 block Floppy disks
0 = /dev/fd0 Controller 0, drive 0, autodetect
1 = /dev/fd1 Controller 0, drive 1, autodetect
@ -257,7 +258,7 @@ Your cooperation is appreciated.
129 = /dev/vcsa1 tty1 text/attribute contents
...
191 = /dev/vcsa63 tty63 text/attribute contents
NOTE: These devices permit both read and write access.
7 block Loopback devices
@ -411,7 +412,7 @@ Your cooperation is appreciated.
207 = /dev/video/em8300_sp EM8300 DVD decoder subpicture
208 = /dev/compaq/cpqphpc Compaq PCI Hot Plug Controller
209 = /dev/compaq/cpqrid Compaq Remote Insight Driver
210 = /dev/impi/bt IMPI coprocessor block transfer
210 = /dev/impi/bt IMPI coprocessor block transfer
211 = /dev/impi/smic IMPI coprocessor stream interface
212 = /dev/watchdogs/0 First watchdog device
213 = /dev/watchdogs/1 Second watchdog device
@ -506,6 +507,7 @@ Your cooperation is appreciated.
33 = /dev/patmgr1 Sequencer patch manager
34 = /dev/midi02 Third MIDI port
50 = /dev/midi03 Fourth MIDI port
14 block BIOS harddrive callback support {2.6}
0 = /dev/dos_hda First BIOS harddrive whole disk
64 = /dev/dos_hdb Second BIOS harddrive whole disk
@ -527,6 +529,7 @@ Your cooperation is appreciated.
16 char Non-SCSI scanners
0 = /dev/gs4500 Genius 4500 handheld scanner
16 block GoldStar CD-ROM
0 = /dev/gscd GoldStar CD-ROM
@ -548,6 +551,7 @@ Your cooperation is appreciated.
0 = /dev/ttyC0 First Cyclades port
...
31 = /dev/ttyC31 32nd Cyclades port
19 block "Double" compressed disk
0 = /dev/double0 First compressed disk
...
@ -563,6 +567,7 @@ Your cooperation is appreciated.
0 = /dev/cub0 Callout device for ttyC0
...
31 = /dev/cub31 Callout device for ttyC31
20 block Hitachi CD-ROM (under development)
0 = /dev/hitcd Hitachi CD-ROM
@ -582,7 +587,7 @@ Your cooperation is appreciated.
This device is used on the ARM-based Acorn RiscPC.
Partitions are handled the same way as for IDE disks
(see major number 3).
(see major number 3).
22 char Digiboard serial card
0 = /dev/ttyD0 First Digiboard port
@ -591,7 +596,7 @@ Your cooperation is appreciated.
22 block Second IDE hard disk/CD-ROM interface
0 = /dev/hdc Master: whole disk (or CD-ROM)
64 = /dev/hdd Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
@ -639,6 +644,7 @@ Your cooperation is appreciated.
26 char Quanta WinVision frame grabber {2.6}
0 = /dev/wvisfgrab Quanta WinVision frame grabber
26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0
1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
@ -670,6 +676,7 @@ Your cooperation is appreciated.
37 = /dev/nrawqft1 Unit 1, no rewind-on-close, no file marks
38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks
27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
@ -681,6 +688,7 @@ Your cooperation is appreciated.
1 = /dev/staliomem1 Second Stallion card I/O memory
2 = /dev/staliomem2 Third Stallion card I/O memory
3 = /dev/staliomem3 Fourth Stallion card I/O memory
28 char Atari SLM ACSI laser printer (68k/Atari)
0 = /dev/slm0 First SLM laser printer
1 = /dev/slm1 Second SLM laser printer
@ -690,6 +698,7 @@ Your cooperation is appreciated.
1 = /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1
2 = /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2
3 = /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3
28 block ACSI disk (68k/Atari)
0 = /dev/ada First ACSI disk whole disk
16 = /dev/adb Second ACSI disk whole disk
@ -750,6 +759,7 @@ Your cooperation is appreciated.
31 char MPU-401 MIDI
0 = /dev/mpu401data MPU-401 data port
1 = /dev/mpu401stat MPU-401 status port
31 block ROM/flash memory card
0 = /dev/rom0 First ROM card (rw)
...
@ -801,7 +811,7 @@ Your cooperation is appreciated.
34 block Fourth IDE hard disk/CD-ROM interface
0 = /dev/hdg Master: whole disk (or CD-ROM)
64 = /dev/hdh Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
@ -818,6 +828,7 @@ Your cooperation is appreciated.
129 = /dev/smpte1 Second MIDI port, SMPTE timed
130 = /dev/smpte2 Third MIDI port, SMPTE timed
131 = /dev/smpte3 Fourth MIDI port, SMPTE timed
35 block Slow memory ramdisk
0 = /dev/slram Slow memory ramdisk
@ -828,6 +839,7 @@ Your cooperation is appreciated.
16 = /dev/tap0 First Ethertap device
...
31 = /dev/tap15 16th Ethertap device
36 block MCA ESDI hard disk
0 = /dev/eda First ESDI disk whole disk
64 = /dev/edb Second ESDI disk whole disk
@ -882,6 +894,7 @@ Your cooperation is appreciated.
40 char Matrox Meteor frame grabber {2.6}
0 = /dev/mmetfgrab Matrox Meteor frame grabber
40 block Syquest EZ135 parallel port removable drive
0 = /dev/eza Parallel EZ135 drive, whole disk
@ -893,6 +906,7 @@ Your cooperation is appreciated.
41 char Yet Another Micro Monitor
0 = /dev/yamm Yet Another Micro Monitor
41 block MicroSolutions BackPack parallel port CD-ROM
0 = /dev/bpcd BackPack CD-ROM
@ -901,6 +915,7 @@ Your cooperation is appreciated.
the parallel port ATAPI CD-ROM driver at major number 46.
42 char Demo/sample use
42 block Demo/sample use
This number is intended for use in sample code, as
@ -918,6 +933,7 @@ Your cooperation is appreciated.
0 = /dev/ttyI0 First virtual modem
...
63 = /dev/ttyI63 64th virtual modem
43 block Network block devices
0 = /dev/nb0 First network block device
1 = /dev/nb1 Second network block device
@ -934,12 +950,13 @@ Your cooperation is appreciated.
0 = /dev/cui0 Callout device for ttyI0
...
63 = /dev/cui63 Callout device for ttyI63
44 block Flash Translation Layer (FTL) filesystems
0 = /dev/ftla FTL on first Memory Technology Device
16 = /dev/ftlb FTL on second Memory Technology Device
32 = /dev/ftlc FTL on third Memory Technology Device
...
240 = /dev/ftlp FTL on 16th Memory Technology Device
240 = /dev/ftlp FTL on 16th Memory Technology Device
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
@ -958,6 +975,7 @@ Your cooperation is appreciated.
191 = /dev/ippp63 64th SyncPPP device
255 = /dev/isdninfo ISDN monitor interface
45 block Parallel port IDE disk devices
0 = /dev/pda First parallel port IDE disk
16 = /dev/pdb Second parallel port IDE disk
@ -1044,6 +1062,7 @@ Your cooperation is appreciated.
1 = /dev/dcbri1 Second DataComm card
2 = /dev/dcbri2 Third DataComm card
3 = /dev/dcbri3 Fourth DataComm card
52 block Mylex DAC960 PCI RAID controller; fifth controller
0 = /dev/rd/c4d0 First disk, whole disk
8 = /dev/rd/c4d1 Second disk, whole disk
@ -1093,7 +1112,8 @@ Your cooperation is appreciated.
55 char DSP56001 digital signal processor
0 = /dev/dsp56k First DSP56001
55 block Mylex DAC960 PCI RAID controller; eigth controller
55 block Mylex DAC960 PCI RAID controller; eighth controller
0 = /dev/rd/c7d0 First disk, whole disk
8 = /dev/rd/c7d1 Second disk, whole disk
...
@ -1130,6 +1150,7 @@ Your cooperation is appreciated.
0 = /dev/cup0 Callout device for ttyP0
1 = /dev/cup1 Callout device for ttyP1
...
58 block Reserved for logical volume manager
59 char sf firewall package
@ -1149,6 +1170,7 @@ Your cooperation is appreciated.
NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda0 etc
60-63 char LOCAL/EXPERIMENTAL USE
60-63 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
@ -1434,7 +1456,6 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
78 char PAM Software's multimodem boards
0 = /dev/ttyM0 First PAM modem
1 = /dev/ttyM1 Second PAM modem
@ -1450,13 +1471,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
79 char PAM Software's multimodem boards - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1
...
79 block Compaq Intelligent Drive Array, eigth controller
79 block Compaq Intelligent Drive Array, eighth controller
0 = /dev/ida/c7d0 First logical drive whole disk
16 = /dev/ida/c7d1 Second logical drive whole disk
...
@ -1466,7 +1486,6 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
80 char Photometrics AT200 CCD camera
0 = /dev/at200 Photometrics AT200 CCD camera
@ -1679,7 +1698,7 @@ Your cooperation is appreciated.
1 = /dev/dcxx1 Second capture card
...
94 block IBM S/390 DASD block storage
94 block IBM S/390 DASD block storage
0 = /dev/dasda First DASD device, major
1 = /dev/dasda1 First DASD device, block 1
2 = /dev/dasda2 First DASD device, block 2
@ -1695,7 +1714,7 @@ Your cooperation is appreciated.
1 = /dev/ipnat NAT control device/log file
2 = /dev/ipstate State information log file
3 = /dev/ipauth Authentication control device/log file
...
...
96 char Parallel port ATAPI tape devices
0 = /dev/pt0 First parallel port ATAPI tape
@ -1705,7 +1724,7 @@ Your cooperation is appreciated.
129 = /dev/npt1 Second p.p. ATAPI tape, no rewind
...
96 block Inverse NAND Flash Translation Layer
96 block Inverse NAND Flash Translation Layer
0 = /dev/inftla First INFTL layer
16 = /dev/inftlb Second INFTL layer
...
@ -1900,7 +1919,7 @@ Your cooperation is appreciated.
1 = /dev/av1 Second A/V card
...
111 block Compaq Next Generation Drive Array, eigth controller
111 block Compaq Next Generation Drive Array, eighth controller
0 = /dev/cciss/c7d0 First logical drive, whole disk
16 = /dev/cciss/c7d1 Second logical drive, whole disk
...
@ -1937,7 +1956,6 @@ Your cooperation is appreciated.
...
113 block IBM iSeries virtual CD-ROM
0 = /dev/iseries/vcda First virtual CD-ROM
1 = /dev/iseries/vcdb Second virtual CD-ROM
...
@ -2005,7 +2023,7 @@ Your cooperation is appreciated.
116 char Advanced Linux Sound Driver (ALSA)
116 block MicroMemory battery backed RAM adapter (NVRAM)
Supports 16 boards, 15 paritions each.
Supports 16 boards, 15 partitions each.
Requested by neilb at cse.unsw.edu.au.
0 = /dev/umem/d0 Whole of first board
@ -2059,11 +2077,12 @@ Your cooperation is appreciated.
...
119 char VMware virtual network control
0 = /dev/vnet0 1st virtual network
1 = /dev/vnet1 2nd virtual network
0 = /dev/vmnet0 1st virtual network
1 = /dev/vmnet1 2nd virtual network
...
120-127 char LOCAL/EXPERIMENTAL USE
120-127 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
@ -2075,7 +2094,6 @@ Your cooperation is appreciated.
nodes; instead they should be accessed through the
/dev/ptmx cloning interface.
128 block SCSI disk devices (128-143)
0 = /dev/sddy 129th SCSI disk whole disk
16 = /dev/sddz 130th SCSI disk whole disk
@ -2087,7 +2105,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
129 block SCSI disk devices (144-159)
0 = /dev/sdeo 145th SCSI disk whole disk
16 = /dev/sdep 146th SCSI disk whole disk
@ -2123,7 +2140,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
132 block SCSI disk devices (192-207)
0 = /dev/sdgk 193rd SCSI disk whole disk
16 = /dev/sdgl 194th SCSI disk whole disk
@ -2135,7 +2151,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
133 block SCSI disk devices (208-223)
0 = /dev/sdha 209th SCSI disk whole disk
16 = /dev/sdhb 210th SCSI disk whole disk
@ -2147,7 +2162,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
134 block SCSI disk devices (224-239)
0 = /dev/sdhq 225th SCSI disk whole disk
16 = /dev/sdhr 226th SCSI disk whole disk
@ -2159,7 +2173,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
135 block SCSI disk devices (240-255)
0 = /dev/sdig 241st SCSI disk whole disk
16 = /dev/sdih 242nd SCSI disk whole disk
@ -2171,7 +2184,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
136-143 char Unix98 PTY slaves
0 = /dev/pts/0 First Unix98 pseudo-TTY
1 = /dev/pts/1 Second Unix98 pesudo-TTY
@ -2384,6 +2396,7 @@ Your cooperation is appreciated.
...
159 char RESERVED
159 block RESERVED
160 char General Purpose Instrument Bus (GPIB)
@ -2427,7 +2440,7 @@ Your cooperation is appreciated.
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.
partitions is 31.
162 char Raw block device interface
0 = /dev/rawctl Raw I/O control device
@ -2483,7 +2496,6 @@ Your cooperation is appreciated.
171 char Reserved for IEEE 1394 (Firewire)
172 char Moxa Intellio serial card
0 = /dev/ttyMX0 First Moxa port
1 = /dev/ttyMX1 Second Moxa port
@ -2555,7 +2567,7 @@ Your cooperation is appreciated.
132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
133 = /dev/usb/sisusbvga1 First SiSUSB VGA device
...
140 = /dev/usb/sisusbvga8 Eigth SISUSB VGA device
140 = /dev/usb/sisusbvga8 Eighth SISUSB VGA device
144 = /dev/usb/lcd USB LCD device
160 = /dev/usb/legousbtower0 1st USB Legotower device
...
@ -2568,7 +2580,7 @@ Your cooperation is appreciated.
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Third USB block device
...
...
181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclock0 First Conrad radio clock
@ -2654,7 +2666,7 @@ Your cooperation is appreciated.
32 = /dev/mvideo/status2 Third device
...
...
240 = /dev/mvideo/status15 16th device
240 = /dev/mvideo/status15 16th device
...
195 char Nvidia graphics devices
@ -2792,6 +2804,10 @@ Your cooperation is appreciated.
...
185 = /dev/ttyNX15 Hilscher netX serial port 15
186 = /dev/ttyJ0 JTAG1 DCC protocol based serial port emulation
187 = /dev/ttyUL0 Xilinx uartlite - port 0
...
190 = /dev/ttyUL3 Xilinx uartlite - port 3
191 = /dev/xvc0 Xen virtual console - port 0
205 char Low-density serial ports (alternate device)
0 = /dev/culu0 Callout device for ttyLU0
@ -2829,7 +2845,6 @@ Your cooperation is appreciated.
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1
206 char OnStream SC-x0 tape devices
0 = /dev/osst0 First OnStream SCSI tape, mode 0
1 = /dev/osst1 Second OnStream SCSI tape, mode 0
@ -2919,7 +2934,6 @@ Your cooperation is appreciated.
...
212 char LinuxTV.org DVB driver subsystem
0 = /dev/dvb/adapter0/video0 first video decoder of first card
1 = /dev/dvb/adapter0/audio0 first audio decoder of first card
2 = /dev/dvb/adapter0/sec0 (obsolete/unused)
@ -3005,9 +3019,9 @@ Your cooperation is appreciated.
2 = /dev/3270/tub2 Second 3270 terminal
...
229 char IBM iSeries virtual console
0 = /dev/iseries/vtty0 First console port
1 = /dev/iseries/vtty1 Second console port
229 char IBM iSeries/pSeries virtual console
0 = /dev/hvc0 First console port
1 = /dev/hvc1 Second console port
...
230 char IBM iSeries virtual tape
@ -3080,18 +3094,20 @@ Your cooperation is appreciated.
234-239 UNASSIGNED
240-254 char LOCAL/EXPERIMENTAL USE
240-254 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.
255 char RESERVED
255 block RESERVED
This major is reserved to assist the expansion to a
larger number space. No device nodes with this major
should ever be created on the filesystem.
(This is probaly not true anymore, but I'll leave it
(This is probably not true anymore, but I'll leave it
for now /Torben)
---LARGE MAJORS!!!!!---
@ -3112,7 +3128,20 @@ Your cooperation is appreciated.
257 char Phoenix Technologies Cryptographic Services Driver
0 = /dev/ptlsec Crypto Services Driver
257 block SSFDC Flash Translation Layer filesystem
0 = /dev/ssfdca First SSFDC layer
8 = /dev/ssfdcb Second SSFDC layer
16 = /dev/ssfdcc Third SSFDC layer
24 = /dev/ssfdcd 4th SSFDC layer
32 = /dev/ssfdce 5th SSFDC layer
40 = /dev/ssfdcf 6th SSFDC layer
48 = /dev/ssfdcg 7th SSFDC layer
56 = /dev/ssfdch 8th SSFDC layer
258 block ROM/Flash read-only translation layer
0 = /dev/blockrom0 First ROM card's translation layer interface
1 = /dev/blockrom1 Second ROM card's translation layer interface
...
**** ADDITIONAL /dev DIRECTORY ENTRIES
@ -3202,7 +3231,7 @@ for a session; this includes virtual consoles, serial ports, and
pseudoterminals (PTYs).
All terminal devices share a common set of capabilities known as line
diciplines; these include the common terminal line dicipline as well
disciplines; these include the common terminal line discipline as well
as SLIP and PPP modes.
All terminal devices are named similarly; this section explains the
@ -3282,7 +3311,7 @@ port TTY, for which no alternate device would exist.
Pseudoterminals (PTYs)
Pseudoterminals, or PTYs, are used to create login sessions or provide
other capabilities requiring a TTY line dicipline (including SLIP or
other capabilities requiring a TTY line discipline (including SLIP or
PPP capability) to arbitrary data-generation processes. Each PTY has
a master side, named /dev/pty[p-za-e][0-9a-f], and a slave side, named
/dev/tty[p-za-e][0-9a-f]. The kernel arbitrates the use of PTYs by

View File

@ -12,7 +12,7 @@ device. The following device classes have been identified:
Each device class defines a set of semantics and a programming interface
that devices of that class adhere to. Device drivers are the
implemention of that programming interface for a particular device on
implementation of that programming interface for a particular device on
a particular bus.
Device classes are agnostic with respect to what bus a device resides

View File

@ -178,7 +178,7 @@ the driver to that device.
A driver's probe() may return a negative errno value to indicate that
the driver did not bind to this device, in which case it should have
released all reasources it allocated.
released all resources it allocated.
int (*remove) (struct device * dev);

View File

@ -57,7 +57,7 @@ the two.
The PCI bus layer freely accesses the fields of struct device. It knows about
the structure of struct pci_dev, and it should know the structure of struct
device. Individual PCI device drivers that have been converted the the current
device. Individual PCI device drivers that have been converted to the current
driver model generally do not and should not touch the fields of struct device,
unless there is a strong compelling reason to do so.

View File

@ -1,99 +1,131 @@
Platform Devices and Drivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See <linux/platform_device.h> for the driver model interface to the
platform bus: platform_device, and platform_driver. This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
like those used to integrate peripherals on many system-on-chip
processors, or some "legacy" PC interconnects; as opposed to large
formally specified ones like PCI or USB.
Platform devices
~~~~~~~~~~~~~~~~
Platform devices are devices that typically appear as autonomous
entities in the system. This includes legacy port-based devices and
host bridges to peripheral buses.
host bridges to peripheral buses, and most controllers integrated
into system-on-chip platforms. What they usually have in common
is direct addressing from a CPU bus. Rarely, a platform_device will
be connected through a segment of some other kind of bus; but its
registers will still be directly addressible.
Platform devices are given a name, used in driver binding, and a
list of resources such as addresses and IRQs.
struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;
};
Platform drivers
~~~~~~~~~~~~~~~~
Drivers for platform devices are typically very simple and
unstructured. Either the device was present at a particular I/O port
and the driver was loaded, or it was not. There was no possibility
of hotplugging or alternative discovery besides probing at a specific
I/O address and expecting a specific response.
Platform drivers follow the standard driver model convention, where
discovery/enumeration is handled outside the drivers, and drivers
provide probe() and remove() methods. They support power management
and shutdown notifications using the standard conventions.
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
Note that probe() should general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
Platform drivers register themselves the normal way:
int platform_driver_register(struct platform_driver *drv);
Or, in common situations where the device is known not to be hot-pluggable,
the probe() routine can live in an init section to reduce the driver's
runtime memory footprint:
int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
Other Architectures, Modern Firmware, and new Platforms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These devices are not always at the legacy I/O ports. This is true on
other architectures and on some modern architectures. In most cases,
the drivers are modified to discover the devices at other well-known
ports for the given platform. However, the firmware in these systems
does usually know where exactly these devices reside, and in some
cases, it's the only way of discovering them.
Device Enumeration
~~~~~~~~~~~~~~~~~~
As a rule, platform specific (and often board-specific) setup code wil
register platform devices:
int platform_device_register(struct platform_device *pdev);
int platform_add_devices(struct platform_device **pdevs, int ndev);
The general rule is to register only those devices that actually exist,
but in some cases extra devices might be registered. For example, a kernel
might be configured to work with an external network adapter that might not
be populated on all boards, or likewise to work with an integrated controller
that some boards might not hook up to any peripherals.
In some cases, boot firmware will export tables describing the devices
that are populated on a given board. Without such tables, often the
only way for system setup code to set up the correct devices is to build
a kernel for a specific target board. Such board-specific kernels are
common with embedded and custom systems development.
In many cases, the memory and IRQ resources associated with the platform
device are not enough to let the device's driver work. Board setup code
will often provide additional information using the device's platform_data
field to hold additional information.
Embedded systems frequently need one or more clocks for platform devices,
which are normally kept off until they're actively needed (to save power).
System setup also associates those clocks with the device, so that that
calls to clk_get(&pdev->dev, clock_name) return them as needed.
The Platform Bus
~~~~~~~~~~~~~~~~
A platform bus has been created to deal with these issues. First and
foremost, it groups all the legacy devices under a common bus, and
gives them a common parent if they don't already have one.
Device Naming and Driver Binding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The platform_device.dev.bus_id is the canonical name for the devices.
It's built from two components:
But, besides the organizational benefits, the platform bus can also
accommodate firmware-based enumeration.
* platform_device.name ... which is also used to for driver matching.
* platform_device.id ... the device instance number, or else "-1"
to indicate there's only one.
Device Discovery
~~~~~~~~~~~~~~~~
The platform bus has no concept of probing for devices. Devices
discovery is left up to either the legacy drivers or the
firmware. These entities are expected to notify the platform of
devices that it discovers via the bus's add() callback:
These are catenated, so name/id "serial"/0 indicates bus_id "serial.0", and
"serial/3" indicates bus_id "serial.3"; both would use the platform_driver
named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)
and use the platform_driver called "my_rtc".
platform_bus.add(parent,bus_id).
Driver binding is performed automatically by the driver core, invoking
driver probe() after finding a match between device and driver. If the
probe() succeeds, the driver and device are bound as usual. There are
three different ways to find such a match:
- Whenever a device is registered, the drivers for that bus are
checked for matches. Platform devices should be registered very
early during system boot.
Bus IDs
~~~~~~~
Bus IDs are the canonical names for the devices. There is no globally
standard addressing mechanism for legacy devices. In the IA-32 world,
we have Pnp IDs to use, as well as the legacy I/O ports. However,
neither tell what the device really is or have any meaning on other
platforms.
- When a driver is registered using platform_driver_register(), all
unbound devices on that bus are checked for matches. Drivers
usually register later during booting, or by module loading.
Since both PnP IDs and the legacy I/O ports (and other standard I/O
ports for specific devices) have a 1:1 mapping, we map the
platform-specific name or identifier to a generic name (at least
within the scope of the kernel).
For example, a serial driver might find a device at I/O 0x3f8. The
ACPI firmware might also discover a device with PnP ID (_HID)
PNP0501. Both correspond to the same device and should be mapped to the
canonical name 'serial'.
The bus_id field should be a concatenation of the canonical name and
the instance of that type of device. For example, the device at I/O
port 0x3f8 should have a bus_id of "serial0". This places the
responsibility of enumerating devices of a particular type up to the
discovery mechanism. But, they are the entity that should know best
(as opposed to the platform bus driver).
Drivers
~~~~~~~
Drivers for platform devices should have a name that is the same as
the canonical name of the devices they support. This allows the
platform bus driver to do simple matching with the basic data
structures to determine if a driver supports a certain device.
For example, a legacy serial driver should have a name of 'serial' and
register itself with the platform bus.
Driver Binding
~~~~~~~~~~~~~~
Legacy drivers assume they are bound to the device once they start up
and probe an I/O port. Divorcing them from this will be a difficult
process. However, that shouldn't prevent us from implementing
firmware-based enumeration.
The firmware should notify the platform bus about devices before the
legacy drivers have had a chance to load. Once the drivers are loaded,
they driver model core will attempt to bind the driver to any
previously-discovered devices. Once that has happened, it will be free
to discover any other devices it pleases.
- Registering a driver using platform_driver_probe() works just like
using platform_driver_register(), except that the the driver won't
be probed later if another device registers. (Which is OK, since
this interface is only for use with non-hotpluggable devices.)

View File

@ -92,7 +92,7 @@ struct device represents a single device. It mainly contains metadata
describing the relationship the device has to other entities.
- Embedd a struct device in the bus-specific device type.
- Embed a struct device in the bus-specific device type.
struct pci_dev {

View File

@ -45,9 +45,9 @@ Assumptions and Introduction
by circuitry on the card and is often presented uncompressed.
For a PAL TV signal encoded at a resolution of 768x576 24-bit
color pixels over 25 frames per second - a fair amount of data
is generated and must be proceesed by the PC before it can be
is generated and must be processed by the PC before it can be
displayed on the video monitor screen. Some Analogue TV cards
for PC's have onboard MPEG2 encoders which permit the raw
for PCs have onboard MPEG2 encoders which permit the raw
digital data stream to be presented to the PC in an encoded
and compressed form - similar to the form that is used in
Digital TV.

View File

@ -5,7 +5,7 @@ Hardware supported by the linuxtv.org DVB drivers
frontends (i.e. tuner / demodulator units) used, usually without
changing the product name, revision number or specs. Some cards
are also available in versions with different frontends for
DVB-S/DVB-C/DVB-T. Thus the frontend drivers are listed seperately.
DVB-S/DVB-C/DVB-T. Thus the frontend drivers are listed separately.
Note 1: There is no guarantee that every frontend driver works
out of the box with every card, because of different wiring.
@ -22,10 +22,10 @@ o Frontends drivers:
- ves1x93 : Alps BSRV2 (ves1893 demodulator) and dbox2 (ves1993)
- cx24110 : Conexant HM1221/HM1811 (cx24110 or cx24106 demod, cx24108 PLL)
- grundig_29504-491 : Grundig 29504-491 (Philips TDA8083 demodulator), tsa5522 PLL
- mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLL
- mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLLi, Technisat Sky2Pc with bios Rev. 2.3
- stv0299 : Alps BSRU6 (tsa5059 PLL), LG TDQB-S00x (tsa5059 PLL),
LG TDQF-S001F (sl1935 PLL), Philips SU1278 (tua6100 PLL),
Philips SU1278SH (tsa5059 PLL), Samsung TBMU24112IMB
Philips SU1278SH (tsa5059 PLL), Samsung TBMU24112IMB, Technisat Sky2Pc with bios Rev. 2.6
DVB-C:
- ves1820 : various (ves1820 demodulator, sp5659c or spXXXX PLL)
- at76c651 : Atmel AT76c651(B) with DAT7021 PLL

View File

@ -32,7 +32,7 @@ This application requires the following to function properly as of now.
descrambler to function,
eg: $ ca_zap channels.conf "TMC"
(d) Hopeflly Enjoy your favourite subscribed channel as you do with
(d) Hopefully enjoy your favourite subscribed channel as you do with
a FTA card.
(3) Currently ca_zap, and dst_test, both are meant for demonstration
@ -65,13 +65,13 @@ Modules that have been tested by this driver at present are
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With the High Level CI approach any new card with almost any random
architecture can be implemented with this style, the definitions
insidethe switch statement can be easily adapted for any card, thereby
inside the switch statement can be easily adapted for any card, thereby
eliminating the need for any additional ioctls.
The disadvantage is that the driver/hardware has to manage the rest. For
the application programmer it would be as simple as sending/receiving an
array to/from the CI ioctls as defined in the Linux DVB API. No changes
have been made in the API to accomodate this feature.
have been made in the API to accommodate this feature.
* Why the need for another CI interface ?
@ -102,7 +102,7 @@ This CI interface follows the CI high level interface, which is not
implemented by most applications. Hence this area is revisited.
This CI interface is quite different in the case that it tries to
accomodate all other CI based devices, that fall into the other categories
accommodate all other CI based devices, that fall into the other categories.
This means that this CI interface handles the EN50221 style tags in the
Application layer only and no session management is taken care of by the

View File

@ -5,7 +5,7 @@ Some very frequently asked questions about linuxtv-dvb
It's not a bug, it's a feature. Because the frontends have
significant power requirements (and hence get very hot), they
are powered down if they are unused (i.e. if the frontend device
is closed). The dvb-core.o module paramter "dvb_shutdown_timeout"
is closed). The dvb-core.o module parameter "dvb_shutdown_timeout"
allow you to change the timeout (default 5 seconds). Setting the
timeout to 0 disables the timeout feature.
@ -138,7 +138,7 @@ Some very frequently asked questions about linuxtv-dvb
- v4l2-common: common functions for Video4Linux-2 drivers
- v4l1-compat: backward compatiblity layer for Video4Linux-1 legacy
- v4l1-compat: backward compatibility layer for Video4Linux-1 legacy
applications
- dvb-core: DVB core module. This provides you with the
@ -153,7 +153,7 @@ Some very frequently asked questions about linuxtv-dvb
- video-buf: capture helper module for the saa7146_vv driver. This
one is responsible to handle capture buffers.
- dvb-ttpci: The main driver for AV7110 based, full-featued
- dvb-ttpci: The main driver for AV7110 based, full-featured
DVB-S/C/T cards
eof

View File

@ -0,0 +1,77 @@
eCryptfs: A stacked cryptographic filesystem for Linux
eCryptfs is free software. Please see the file COPYING for details.
For documentation, please see the files in the doc/ subdirectory. For
building and installation instructions please see the INSTALL file.
Maintainer: Phillip Hellewell
Lead developer: Michael A. Halcrow <mhalcrow@us.ibm.com>
Developers: Michael C. Thompson
Kent Yoder
Web Site: http://ecryptfs.sf.net
This software is currently undergoing development. Make sure to
maintain a backup copy of any data you write into eCryptfs.
eCryptfs requires the userspace tools downloadable from the
SourceForge site:
http://sourceforge.net/projects/ecryptfs/
Userspace requirements include:
- David Howells' userspace keyring headers and libraries (version
1.0 or higher), obtainable from
http://people.redhat.com/~dhowells/keyutils/
- Libgcrypt
NOTES
In the beta/experimental releases of eCryptfs, when you upgrade
eCryptfs, you should copy the files to an unencrypted location and
then copy the files back into the new eCryptfs mount to migrate the
files.
MOUNT-WIDE PASSPHRASE
Create a new directory into which eCryptfs will write its encrypted
files (i.e., /root/crypt). Then, create the mount point directory
(i.e., /mnt/crypt). Now it's time to mount eCryptfs:
mount -t ecryptfs /root/crypt /mnt/crypt
You should be prompted for a passphrase and a salt (the salt may be
blank).
Try writing a new file:
echo "Hello, World" > /mnt/crypt/hello.txt
The operation will complete. Notice that there is a new file in
/root/crypt that is at least 12288 bytes in size (depending on your
host page size). This is the encrypted underlying file for what you
just wrote. To test reading, from start to finish, you need to clear
the user session keyring:
keyctl clear @u
Then umount /mnt/crypt and mount again per the instructions given
above.
cat /mnt/crypt/hello.txt
NOTES
eCryptfs version 0.1 should only be mounted on (1) empty directories
or (2) directories containing files only created by eCryptfs. If you
mount a directory that has pre-existing files not created by eCryptfs,
then behavior is undefined. Do not run eCryptfs in higher verbosity
levels unless you are doing so for the sole purpose of debugging or
development, since secret values will be written out to the system log
in that case.
Mike Halcrow
mhalcrow@us.ibm.com

View File

@ -18,7 +18,7 @@ The EISA infrastructure is made up of three parts :
- The bus code implements most of the generic code. It is shared
among all the architectures that the EISA code runs on. It
implements bus probing (detecting EISA cards avaible on the bus),
implements bus probing (detecting EISA cards available on the bus),
allocates I/O resources, allows fancy naming through sysfs, and
offers interfaces for driver to register.
@ -62,7 +62,7 @@ res : root device I/O resource
bus_base_addr : slot 0 address on this bus
slots : max slot number to probe
force_probe : Probe even when slot 0 is empty (no EISA mainboard)
dma_mask : Default DMA mask. Usualy the bridge device dma_mask.
dma_mask : Default DMA mask. Usually the bridge device dma_mask.
bus_nr : unique bus id, set by eisa_root_register
** Driver :
@ -84,7 +84,7 @@ struct eisa_driver {
id_table : an array of NULL terminated EISA id strings,
followed by an empty string. Each string can
optionnaly be paired with a driver-dependant value
optionally be paired with a driver-dependant value
(driver_data).
driver : a generic driver, such as described in

View File

@ -10,7 +10,7 @@ int verify_area(int type, const void * addr, unsigned long size)
function (which has since been replaced by access_ok()).
This function verified that the memory area starting at address
addr and of size size was accessible for the operation specified
'addr' and of size 'size' was accessible for the operation specified
in type (read or write). To do this, verify_read had to look up the
virtual memory area (vma) that contained the address addr. In the
normal case (correctly working program), this test was successful.

View File

@ -0,0 +1,4 @@
#!/bin/bash
echo 1 > /proc/self/make-it-fail
exec $*

View File

@ -0,0 +1,31 @@
#!/bin/bash
#
# Usage: failmodule <failname> <modulename> [stacktrace-depth]
#
# <failname>: "failslab", "fail_alloc_page", or "fail_make_request"
#
# <modulename>: module name that you want to inject faults.
#
# [stacktrace-depth]: the maximum number of stacktrace walking allowed
#
STACKTRACE_DEPTH=5
if [ $# -gt 2 ]; then
STACKTRACE_DEPTH=$3
fi
if [ ! -d /debug/$1 ]; then
echo "Fault-injection $1 does not exist" >&2
exit 1
fi
if [ ! -d /sys/module/$2 ]; then
echo "Module $2 does not exist" >&2
exit 1
fi
# Disable any fault injection
echo 0 > /debug/$1/stacktrace-depth
echo `cat /sys/module/$2/sections/.text` > /debug/$1/require-start
echo `cat /sys/module/$2/sections/.exit.text` > /debug/$1/require-end
echo $STACKTRACE_DEPTH > /debug/$1/stacktrace-depth

View File

@ -0,0 +1,225 @@
Fault injection capabilities infrastructure
===========================================
See also drivers/md/faulty.c and "every_nth" module option for scsi_debug.
Available fault injection capabilities
--------------------------------------
o failslab
injects slab allocation failures. (kmalloc(), kmem_cache_alloc(), ...)
o fail_page_alloc
injects page allocation failures. (alloc_pages(), get_free_pages(), ...)
o fail_make_request
injects disk IO errors on devices permitted by setting
/sys/block/<device>/make-it-fail or
/sys/block/<device>/<partition>/make-it-fail. (generic_make_request())
Configure fault-injection capabilities behavior
-----------------------------------------------
o debugfs entries
fault-inject-debugfs kernel module provides some debugfs entries for runtime
configuration of fault-injection capabilities.
- /debug/fail*/probability:
likelihood of failure injection, in percent.
Format: <percent>
Note that one-failure-per-hundred is a very high error rate
for some testcases. Consider setting probability=100 and configure
/debug/fail*/interval for such testcases.
- /debug/fail*/interval:
specifies the interval between failures, for calls to
should_fail() that pass all the other tests.
Note that if you enable this, by setting interval>1, you will
probably want to set probability=100.
- /debug/fail*/times:
specifies how many times failures may happen at most.
A value of -1 means "no limit".
- /debug/fail*/space:
specifies an initial resource "budget", decremented by "size"
on each call to should_fail(,size). Failure injection is
suppressed until "space" reaches zero.
- /debug/fail*/verbose
Format: { 0 | 1 | 2 }
specifies the verbosity of the messages when failure is
injected. '0' means no messages; '1' will print only a single
log line per failure; '2' will print a call trace too -- useful
to debug the problems revealed by fault injection.
- /debug/fail*/task-filter:
Format: { 'Y' | 'N' }
A value of 'N' disables filtering by process (default).
Any positive value limits failures to only processes indicated by
/proc/<pid>/make-it-fail==1.
- /debug/fail*/require-start:
- /debug/fail*/require-end:
- /debug/fail*/reject-start:
- /debug/fail*/reject-end:
specifies the range of virtual addresses tested during
stacktrace walking. Failure is injected only if some caller
in the walked stacktrace lies within the required range, and
none lies within the rejected range.
Default required range is [0,ULONG_MAX) (whole of virtual address space).
Default rejected range is [0,0).
- /debug/fail*/stacktrace-depth:
specifies the maximum stacktrace depth walked during search
for a caller within [require-start,require-end) OR
[reject-start,reject-end).
- /debug/fail_page_alloc/ignore-gfp-highmem:
Format: { 'Y' | 'N' }
default is 'N', setting it to 'Y' won't inject failures into
highmem/user allocations.
- /debug/failslab/ignore-gfp-wait:
- /debug/fail_page_alloc/ignore-gfp-wait:
Format: { 'Y' | 'N' }
default is 'N', setting it to 'Y' will inject failures
only into non-sleep allocations (GFP_ATOMIC allocations).
o Boot option
In order to inject faults while debugfs is not available (early boot time),
use the boot option:
failslab=
fail_page_alloc=
fail_make_request=<interval>,<probability>,<space>,<times>
How to add new fault injection capability
-----------------------------------------
o #include <linux/fault-inject.h>
o define the fault attributes
DECLARE_FAULT_INJECTION(name);
Please see the definition of struct fault_attr in fault-inject.h
for details.
o provide a way to configure fault attributes
- boot option
If you need to enable the fault injection capability from boot time, you can
provide boot option to configure it. There is a helper function for it:
setup_fault_attr(attr, str);
- debugfs entries
failslab, fail_page_alloc, and fail_make_request use this way.
Helper functions:
init_fault_attr_entries(entries, attr, name);
void cleanup_fault_attr_entries(entries);
- module parameters
If the scope of the fault injection capability is limited to a
single kernel module, it is better to provide module parameters to
configure the fault attributes.
o add a hook to insert failures
Upon should_fail() returning true, client code should inject a failure.
should_fail(attr, size);
Application Examples
--------------------
o inject slab allocation failures into module init/cleanup code
------------------------------------------------------------------------------
#!/bin/bash
FAILCMD=Documentation/fault-injection/failcmd.sh
BLACKLIST="root_plug evbug"
FAILNAME=failslab
echo Y > /debug/$FAILNAME/task-filter
echo 10 > /debug/$FAILNAME/probability
echo 100 > /debug/$FAILNAME/interval
echo -1 > /debug/$FAILNAME/times
echo 2 > /debug/$FAILNAME/verbose
echo 1 > /debug/$FAILNAME/ignore-gfp-wait
blacklist()
{
echo $BLACKLIST | grep $1 > /dev/null 2>&1
}
oops()
{
dmesg | grep BUG > /dev/null 2>&1
}
find /lib/modules/`uname -r` -name '*.ko' -exec basename {} .ko \; |
while read i
do
oops && exit 1
if ! blacklist $i
then
echo inserting $i...
bash $FAILCMD modprobe $i
fi
done
lsmod | awk '{ if ($3 == 0) { print $1 } }' |
while read i
do
oops && exit 1
if ! blacklist $i
then
echo removing $i...
bash $FAILCMD modprobe -r $i
fi
done
------------------------------------------------------------------------------
o inject slab allocation failures only for a specific module
------------------------------------------------------------------------------
#!/bin/bash
FAILMOD=Documentation/fault-injection/failmodule.sh
echo injecting errors into the module $1...
modprobe $1
bash $FAILMOD failslab $1 10
echo 25 > /debug/failslab/probability
------------------------------------------------------------------------------

View File

@ -163,7 +163,7 @@ from the console layer before unloading the driver. The VGA driver cannot be
unloaded if it is still bound to the console layer. (See
Documentation/console/console.txt for more information).
This is more complicated in the case of the the framebuffer console (fbcon),
This is more complicated in the case of the framebuffer console (fbcon),
because fbcon is an intermediate layer between the console and the drivers:
console ---> fbcon ---> fbdev drivers ---> hardware

View File

@ -9,8 +9,9 @@ Intel 810/815 Framebuffer driver
================================================================
A. Introduction
This is a framebuffer driver for various Intel 810/815 compatible
graphics devices. These would include:
graphics devices. These include:
Intel 810
Intel 810E
@ -21,136 +22,136 @@ graphics devices. These would include:
B. Features
- Choice of using Discrete Video Timings, VESA Generalized Timing
- Choice of using Discrete Video Timings, VESA Generalized Timing
Formula, or a framebuffer specific database to set the video mode
- Supports a variable range of horizontal and vertical resolution, and
vertical refresh rates if the VESA Generalized Timing Formula is
- Supports a variable range of horizontal and vertical resolution and
vertical refresh rates if the VESA Generalized Timing Formula is
enabled.
- Supports color depths of 8, 16, 24 and 32 bits per pixel
- Supports color depths of 8, 16, 24 and 32 bits per pixel
- Supports pseudocolor, directcolor, or truecolor visuals
- Full and optimized hardware acceleration at 8, 16 and 24 bpp
- Full and optimized hardware acceleration at 8, 16 and 24 bpp
- Robust video state save and restore
- MTRR support
- MTRR support
- Utilizes user-entered monitor specifications to automatically
calculate required video mode parameters.
- Can concurrently run with xfree86 running with native i810 drivers
- Can concurrently run with xfree86 running with native i810 drivers
- Hardware Cursor Support
- Supports EDID probing either by DDC/I2C or through the BIOS
C. List of available options
a. "video=i810fb"
a. "video=i810fb"
enables the i810 driver
Recommendation: required
b. "xres:<value>"
b. "xres:<value>"
select horizontal resolution in pixels. (This parameter will be
ignored if 'mode_option' is specified. See 'o' below).
Recommendation: user preference
Recommendation: user preference
(default = 640)
c. "yres:<value>"
select vertical resolution in scanlines. If Discrete Video Timings
is enabled, this will be ignored and computed as 3*xres/4. (This
parameter will be ignored if 'mode_option' is specified. See 'o'
below)
below)
Recommendation: user preference
(default = 480)
d. "vyres:<value>"
d. "vyres:<value>"
select virtual vertical resolution in scanlines. If (0) or none
is specified, this will be computed against maximum available memory.
is specified, this will be computed against maximum available memory.
Recommendation: do not set
(default = 480)
e. "vram:<value>"
select amount of system RAM in MB to allocate for the video memory
select amount of system RAM in MB to allocate for the video memory
Recommendation: 1 - 4 MB.
(default = 4)
f. "bpp:<value>"
select desired pixel depth
f. "bpp:<value>"
select desired pixel depth
Recommendation: 8
(default = 8)
g. "hsync1/hsync2:<value>"
select the minimum and maximum Horizontal Sync Frequency of the
monitor in KHz. If a using a fixed frequency monitor, hsync1 must
g. "hsync1/hsync2:<value>"
select the minimum and maximum Horizontal Sync Frequency of the
monitor in kHz. If using a fixed frequency monitor, hsync1 must
be equal to hsync2. If EDID probing is successful, these will be
ignored and values will be taken from the EDID block.
Recommendation: check monitor manual for correct values
default (29/30)
(default = 29/30)
h. "vsync1/vsync2:<value>"
h. "vsync1/vsync2:<value>"
select the minimum and maximum Vertical Sync Frequency of the monitor
in Hz. You can also use this option to lock your monitor's refresh
in Hz. You can also use this option to lock your monitor's refresh
rate. If EDID probing is successful, these will be ignored and values
will be taken from the EDID block.
Recommendation: check monitor manual for correct values
(default = 60/60)
IMPORTANT: If you need to clamp your timings, try to give some
leeway for computational errors (over/underflows). Example: if
IMPORTANT: If you need to clamp your timings, try to give some
leeway for computational errors (over/underflows). Example: if
using vsync1/vsync2 = 60/60, make sure hsync1/hsync2 has at least
a 1 unit difference, and vice versa.
i. "voffset:<value>"
select at what offset in MB of the logical memory to allocate the
i. "voffset:<value>"
select at what offset in MB of the logical memory to allocate the
framebuffer memory. The intent is to avoid the memory blocks
used by standard graphics applications (XFree86). The default
offset (16 MB for a 64MB aperture, 8 MB for a 32MB aperture) will
avoid XFree86's usage and allows up to 7MB/15MB of framebuffer
memory. Depending on your usage, adjust the value up or down,
(0 for maximum usage, 31/63 MB for the least amount). Note, an
offset (16 MB for a 64 MB aperture, 8 MB for a 32 MB aperture) will
avoid XFree86's usage and allows up to 7 MB/15 MB of framebuffer
memory. Depending on your usage, adjust the value up or down
(0 for maximum usage, 31/63 MB for the least amount). Note, an
arbitrary setting may conflict with XFree86.
Recommendation: do not set
(default = 8 or 16 MB)
j. "accel"
enable text acceleration. This can be enabled/reenabled anytime
by using 'fbset -accel true/false'.
j. "accel"
enable text acceleration. This can be enabled/reenabled anytime
by using 'fbset -accel true/false'.
Recommendation: enable
(default = not set)
(default = not set)
k. "mtrr"
k. "mtrr"
enable MTRR. This allows data transfers to the framebuffer memory
to occur in bursts which can significantly increase performance.
Not very helpful with the i810/i815 because of 'shared memory'.
Not very helpful with the i810/i815 because of 'shared memory'.
Recommendation: do not set
(default = not set)
(default = not set)
l. "extvga"
if specified, secondary/external VGA output will always be enabled.
Useful if the BIOS turns off the VGA port when no monitor is attached.
The external VGA monitor can then be attached without rebooting.
The external VGA monitor can then be attached without rebooting.
Recommendation: do not set
(default = not set)
m. "sync"
m. "sync"
Forces the hardware engine to do a "sync" or wait for the hardware
to finish before starting another instruction. This will produce a
to finish before starting another instruction. This will produce a
more stable setup, but will be slower.
Recommendation: do not set
@ -162,6 +163,7 @@ C. List of available options
Recommendation: do not set
(default = not set)
o. <xres>x<yres>[-<bpp>][@<refresh>]
The driver will now accept specification of boot mode option. If this
is specified, the options 'xres' and 'yres' will be ignored. See
@ -183,8 +185,8 @@ append="video=i810fb:vram:2,xres:1024,yres:768,bpp:8,hsync1:30,hsync2:55, \
vsync1:50,vsync2:85,accel,mtrr"
This will initialize the framebuffer to 1024x768 at 8bpp. The framebuffer
will use 2 MB of System RAM. MTRR support will be enabled. The refresh rate
will be computed based on the hsync1/hsync2 and vsync1/vsync2 values.
will use 2 MB of System RAM. MTRR support will be enabled. The refresh rate
will be computed based on the hsync1/hsync2 and vsync1/vsync2 values.
IMPORTANT:
You must include hsync1, hsync2, vsync1 and vsync2 to enable video modes
@ -194,10 +196,10 @@ vsync1 and vsync2 parameters. These parameters will be taken from the EDID
block.
E. Module options
The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
(1 for TRUE, and 0 for FALSE) for those options which don't need a value.
The module parameters are essentially similar to the kernel
parameters. The main difference is that you need to include a Boolean value
(1 for TRUE, and 0 for FALSE) for those options which don't need a value.
Example, to enable MTRR, include "mtrr=1".
@ -214,62 +216,62 @@ Or just add the following to /etc/modprobe.conf
options i810fb vram=2 xres=1024 bpp=16 hsync1=30 hsync2=55 vsync1=50 \
vsync2=85 accel=1 mtrr=1
and just do a
and just do a
modprobe i810fb
F. Setup
a. Do your usual method of configuring the kernel.
a. Do your usual method of configuring the kernel.
make menuconfig/xconfig/config
b. Under "Code Maturity Options", enable "Prompt for experimental/
incomplete code/drivers".
b. Under "Code maturity level options" enable "Prompt for development
and/or incomplete code/drivers".
c. Enable agpgart support for the Intel 810/815 on-board graphics.
This is required. The option is under "Character Devices"
This is required. The option is under "Character Devices".
d. Under "Graphics Support", select "Intel 810/815" either statically
or as a module. Choose "use VESA Generalized Timing Formula" if
you need to maximize the capability of your display. To be on the
safe side, you can leave this unselected.
you need to maximize the capability of your display. To be on the
safe side, you can leave this unselected.
e. If you want support for DDC/I2C probing (Plug and Play Displays),
set 'Enable DDC Support' to 'y'. To make this option appear, set
'use VESA Generalized Timing Formula' to 'y'.
f. If you want a framebuffer console, enable it under "Console
Drivers"
f. If you want a framebuffer console, enable it under "Console
Drivers".
g. Compile your kernel.
h. Load the driver as described in sections D and E.
g. Compile your kernel.
h. Load the driver as described in section D and E.
i. Try the DirectFB (http://www.directfb.org) + the i810 gfxdriver
patch to see the chipset in action (or inaction :-).
G. Acknowledgment:
1. Geert Uytterhoeven - his excellent howto and the virtual
framebuffer driver code made this possible.
2. Jeff Hartmann for his agpgart code.
1. Geert Uytterhoeven - his excellent howto and the virtual
framebuffer driver code made this possible.
2. Jeff Hartmann for his agpgart code.
3. The X developers. Insights were provided just by reading the
XFree86 source code.
4. Intel(c). For this value-oriented chipset driver and for
providing documentation.
providing documentation.
5. Matt Sottek. His inputs and ideas helped in making some
optimizations possible.
optimizations possible.
H. Home Page:
A more complete, and probably updated information is provided at
http://i810fb.sourceforge.net.
http://i810fb.sourceforge.net.
###########################
Tony

View File

@ -1,16 +1,19 @@
Intel 830M/845G/852GM/855GM/865G/915G Framebuffer driver
Intel 830M/845G/852GM/855GM/865G/915G/945G Framebuffer driver
================================================================
A. Introduction
This is a framebuffer driver for various Intel 810/815 compatible
This is a framebuffer driver for various Intel 8xx/9xx compatible
graphics devices. These would include:
Intel 830M
Intel 810E845G
Intel 845G
Intel 852GM
Intel 855GM
Intel 865G
Intel 915G
Intel 915GM
Intel 945G
Intel 945GM
B. List of available options
@ -78,19 +81,27 @@ C. Kernel booting
Separate each option/option-pair by commas (,) and the option from its value
with an equals sign (=) as in the following:
video=i810fb:option1,option2=value2
video=intelfb:option1,option2=value2
Sample Usage
------------
In /etc/lilo.conf, add the line:
append="video=intelfb:800x600-32@75,accel,hwcursor,vram=8"
append="video=intelfb:mode=800x600-32@75,accel,hwcursor,vram=8"
This will initialize the framebuffer to 800x600 at 32bpp and 75Hz. The
framebuffer will use 8 MB of System RAM. hw acceleration of text and cursor
will be enabled.
Remarks
-------
If setting this parameter doesn't work (you stay in a 80x25 text-mode),
you might need to set the "vga=<mode>" parameter too - see vesafb.txt
in this directory.
D. Module options
The module parameters are essentially similar to the kernel

View File

@ -72,7 +72,7 @@ information. Additionally, "modinfo sisfb" gives an overview over all
supported options including some explanation.
The desired display mode can be specified using the keyword "mode" with
a parameter in one of the follwing formats:
a parameter in one of the following formats:
- XxYxDepth or
- XxY-Depth or
- XxY-Depth@Rate or

View File

@ -48,12 +48,12 @@ Module Usage
Module insertion:
# insmod sstfb.o
you should see some strange output frome the board:
you should see some strange output from the board:
a big blue square, a green and a red small squares and a vertical
white rectangle. why ? the function's name is self explanatory :
white rectangle. why? the function's name is self-explanatory:
"sstfb_test()"...
(if you don't have a second monitor, you'll have to plug your monitor
directely to the 2D videocard to see what you're typing)
directly to the 2D videocard to see what you're typing)
# con2fb /dev/fbx /dev/ttyx
bind a tty to the new frame buffer. if you already have a frame
buffer driver, the voodoo fb will likely be /dev/fb1. if not,
@ -72,12 +72,12 @@ Module Usage
Kernel/Modules Options
You can pass some otions to sstfb module, and via the kernel command
line when the driver is compiled in :
You can pass some options to the sstfb module, and via the kernel
command line when the driver is compiled in:
for module : insmod sstfb.o option1=value1 option2=value2 ...
in kernel : video=sstfb:option1,option2:value2,option3 ...
sstfb supports the folowing options :
sstfb supports the following options :
Module Kernel Description
@ -95,11 +95,11 @@ inverse=1 inverse Supposed to enable inverse console.
clipping=1 clipping Enable or disable clipping.
clipping=0 noclipping With clipping enabled, all offscreen
reads and writes are disgarded.
reads and writes are discarded.
Default: enable clipping.
gfxclk=x gfxclk:x Force graphic clock frequency (in MHz).
Be carefull with this option, it may be
Be careful with this option, it may be
DANGEROUS.
Default: auto
50Mhz for Voodoo 1,
@ -137,23 +137,23 @@ Bugs
- The driver is 16 bpp only, 24/32 won't work.
- The driver is not your_favorite_toy-safe. this includes SMP...
[Actually from inspection it seems to be safe - Alan]
- when using XFree86 FBdev (X over fbdev) you may see strange color
- When using XFree86 FBdev (X over fbdev) you may see strange color
patterns at the border of your windows (the pixels lose the lowest
byte -> basicaly the blue component nd some of the green) . I'm unable
byte -> basically the blue component and some of the green). I'm unable
to reproduce this with XFree86-3.3, but one of the testers has this
problem with XFree86-4. apparently recent Xfree86-4.x solve this
problem with XFree86-4. Apparently recent Xfree86-4.x solve this
problem.
- I didn't really test changing the palette, so you may find some weird
things when playing with that.
- Sometimes the driver will not recognise the DAC , and the
initialisation will fail. this is specificaly true for
voodoo 2 boards , but it should be solved in recent versions. please
contact me .
- the 24/32 is not likely to work anytime soon , knowing that the
hardware does ... unusual thigs in 24/32 bpp
- When used with anther video board, current limitations of linux
console subsystem can cause some troubles, specificaly, you should
disable software scrollback , as it can oops badly ...
- Sometimes the driver will not recognise the DAC, and the
initialisation will fail. This is specifically true for
voodoo 2 boards, but it should be solved in recent versions. Please
contact me.
- The 24/32 is not likely to work anytime soon, knowing that the
hardware does ... unusual things in 24/32 bpp.
- When used with another video board, current limitations of the linux
console subsystem can cause some troubles, specifically, you should
disable software scrollback, as it can oops badly ...
Todo
@ -161,7 +161,7 @@ Todo
- Buy more coffee.
- test/port to other arch.
- try to add panning using tweeks with front and back buffer .
- try to implement accel on voodoo2 , this board can actualy do a
- try to implement accel on voodoo2, this board can actually do a
lot in 2D even if it was sold as a 3D only board ...
ghoz.

View File

@ -29,34 +29,45 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: drivers that were depending on OBSOLETE_OSS_DRIVER
(config options already removed)
When: before 2.6.19
Why: OSS drivers with ALSA replacements
Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN
When: November 2006
Why: Deprecated in favour of the new ioctl-based rawiso interface, which is
more efficient. You should really be using libraw1394 for raw1394
access anyway.
Who: Jody McIntyre <scjody@modernduck.com>
When: June 2007
Why: Deprecated in favour of the more efficient and robust rawiso interface.
Affected are applications which use the deprecated part of libraw1394
(raw1394_iso_write, raw1394_start_iso_write, raw1394_start_iso_rcv,
raw1394_stop_iso_rcv) or bypass libraw1394.
Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: sbp2: module parameter "force_inquiry_hack"
When: July 2006
Why: Superceded by parameter "workarounds". Both parameters are meant to be
used ad-hoc and for single devices only, i.e. not in modprobe.conf,
therefore the impact of this feature replacement should be low.
What: dv1394 driver (CONFIG_IEEE1394_DV1394)
When: June 2007
Why: Replaced by raw1394 + userspace libraries, notably libiec61883. This
shift of application support has been indicated on www.linux1394.org
and developers' mailinglists for quite some time. Major applications
have been converted, with the exception of ffmpeg and hence xine.
Piped output of dvgrab2 is a partial equivalent to dv1394.
Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: ieee1394 core's unused exports (CONFIG_IEEE1394_EXPORT_FULL_API)
When: January 2007
Why: There are no projects known to use these exported symbols, except
dfg1394 (uses one symbol whose functionality is core-internal now).
Who: Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: ieee1394's *_oui sysfs attributes (CONFIG_IEEE1394_OUI_DB)
When: January 2007
Files: drivers/ieee1394/: oui.db, oui2c.sh
Why: big size, little value
Who: Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: Video4Linux API 1 ioctls and video_decoder.h from Video devices.
When: July 2006
When: December 2006
Why: V4L1 AP1 was replaced by V4L2 API. during migration from 2.4 to 2.6
series. The old API have lots of drawbacks and don't provide enough
means to work with all video and audio standards. The newer API is
@ -87,18 +98,6 @@ Who: Dominik Brodowski <linux@brodo.de>
---------------------------
What: ip_queue and ip6_queue (old ipv4-only and ipv6-only netfilter queue)
When: December 2005
Why: This interface has been obsoleted by the new layer3-independent
"nfnetlink_queue". The Kernel interface is compatible, so the old
ip[6]tables "QUEUE" targets still work and will transparently handle
all packets into nfnetlink queue number 0. Userspace users will have
to link against API-compatible library on top of libnfnetlink_queue
instead of the current 'libipq'.
Who: Harald Welte <laforge@netfilter.org>
---------------------------
What: remove EXPORT_SYMBOL(kernel_thread)
When: August 2006
Files: arch/*/kernel/*_ksyms.c
@ -119,15 +118,6 @@ Who: Arjan van de Ven
---------------------------
What: START_ARRAY ioctl for md
When: July 2006
Files: drivers/md/md.c
Why: Not reliable by design - can fail when most needed.
Alternatives exist
Who: NeilBrown <neilb@suse.de>
---------------------------
What: eepro100 network driver
When: January 2007
Why: replaced by the e100 driver
@ -190,7 +180,7 @@ Who: Greg Kroah-Hartman <gregkh@suse.de>
---------------------------
What: USB driver API moves to EXPORT_SYMBOL_GPL
When: Febuary 2008
When: February 2008
Files: include/linux/usb.h, drivers/usb/core/driver.c
Why: The USB subsystem has changed a lot over time, and it has been
possible to create userspace USB drivers using usbfs/libusb/gadgetfs
@ -217,50 +207,6 @@ Who: Nick Piggin <npiggin@suse.de>
---------------------------
What: Support for the MIPS EV96100 evaluation board
When: September 2006
Why: Does no longer build since at least November 15, 2003, apparently
no userbase left.
Who: Ralf Baechle <ralf@linux-mips.org>
---------------------------
What: Support for the Momentum / PMC-Sierra Jaguar ATX evaluation board
When: September 2006
Why: Does no longer build since quite some time, and was never popular,
due to the platform being replaced by successor models. Apparently
no user base left. It also is one of the last users of
WANT_PAGE_VIRTUAL.
Who: Ralf Baechle <ralf@linux-mips.org>
---------------------------
What: Support for the Momentum Ocelot, Ocelot 3, Ocelot C and Ocelot G
When: September 2006
Why: Some do no longer build and apparently there is no user base left
for these platforms.
Who: Ralf Baechle <ralf@linux-mips.org>
---------------------------
What: Support for MIPS Technologies' Altas and SEAD evaluation board
When: September 2006
Why: Some do no longer build and apparently there is no user base left
for these platforms. Hardware out of production since several years.
Who: Ralf Baechle <ralf@linux-mips.org>
---------------------------
What: Support for the IT8172-based platforms, ITE 8172G and Globespan IVR
When: September 2006
Why: Code does no longer build since at least 2.6.0, apparently there is
no user base left for these platforms. Hardware out of production
since several years and hardly a trace of the manufacturer left on
the net.
Who: Ralf Baechle <ralf@linux-mips.org>
---------------------------
What: Interrupt only SA_* flags
When: Januar 2007
Why: The interrupt related SA_* flags are replaced by IRQF_* to move them
@ -270,17 +216,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
---------------------------
What: i2c-ite and i2c-algo-ite drivers
When: September 2006
Why: These drivers never compiled since they were added to the kernel
tree 5 years ago. This feature removal can be reevaluated if
someone shows interest in the drivers, fixes them and takes over
maintenance.
http://marc.theaimsgroup.com/?l=linux-mips&m=115040510817448
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Bridge netfilter deferred IPv4/IPv6 output hook calling
When: January 2007
Why: The deferred output hooks are a layering violation causing unusual
@ -297,23 +232,8 @@ Who: Patrick McHardy <kaber@trash.net>
---------------------------
What: frame diverter
When: November 2006
Why: The frame diverter is included in most distribution kernels, but is
broken. It does not correctly handle many things:
- IPV6
- non-linear skb's
- network device RCU on removal
- input frames not correctly checked for protocol errors
It also adds allocation overhead even if not enabled.
It is not clear if anyone is still using it.
Who: Stephen Hemminger <shemminger@osdl.org>
---------------------------
What: PHYSDEVPATH, PHYSDEVBUS, PHYSDEVDRIVER in the uevent environment
When: Oktober 2008
When: October 2008
Why: The stacking of class devices makes these values misleading and
inconsistent.
Class devices should not carry any of these properties, and bus
@ -321,3 +241,21 @@ Why: The stacking of class devices makes these values misleading and
Who: Kay Sievers <kay.sievers@suse.de>
---------------------------
What: i2c-isa
When: December 2006
Why: i2c-isa is a non-sense and doesn't fit in the device driver
model. Drivers relying on it are better implemented as platform
drivers.
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: IPv4 only connection tracking/NAT/helpers
When: 2.6.22
Why: The new layer 3 independant connection tracking replaces the old
IPv4 only version. After some stabilization of the new code the
old one will be removed.
Who: Patrick McHardy <kaber@trash.net>
---------------------------

View File

@ -26,8 +26,6 @@ cramfs.txt
- info on the cram filesystem for small storage (ROMs etc).
dentry-locking.txt
- info on the RCU-based dcache locking model.
devfs/
- directory containing devfs documentation.
directory-locking
- info about the locking scheme used for directory operations.
dlmfs.txt
@ -36,6 +34,8 @@ ext2.txt
- info, mount options and specifications for the Ext2 filesystem.
ext3.txt
- info, mount options and specifications for the Ext3 filesystem.
ext4.txt
- info, mount options and specifications for the Ext4 filesystem.
files.txt
- info on file management in the Linux kernel.
fuse.txt

View File

@ -124,7 +124,7 @@ sync_fs: no no read
write_super_lockfs: ?
unlockfs: ?
statfs: no no no
remount_fs: no yes maybe (see below)
remount_fs: yes yes maybe (see below)
clear_inode: no
umount_begin: yes no no
show_options: no (vfsmount->sem)
@ -356,10 +356,9 @@ The last two are called only from check_disk_change().
prototypes:
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t,
loff_t);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int,

View File

@ -3,7 +3,7 @@ Mount options for ADFS
uid=nnn All files in the partition will be owned by
user id nnn. Default 0 (root).
gid=nnn All files in the partition willbe in group
gid=nnn All files in the partition will be in group
nnn. Default 0 (root).
ownmask=nnn The permission mask for ADFS 'owner' permissions
will be nnn. Default 0700.

View File

@ -7,7 +7,7 @@ WARNING
Make sure you understand that this is alpha software. This means that the
implementation is neither complete nor well-tested.
I DISCLAIM ALL RESPONSIBILTY FOR ANY POSSIBLE BAD EFFECTS OF THIS CODE!
I DISCLAIM ALL RESPONSIBILITY FOR ANY POSSIBLE BAD EFFECTS OF THIS CODE!
LICENSE
=====
@ -22,7 +22,7 @@ He has been working on the code since Aug 13, 2001. See the changelog for
details.
Original Author: Makoto Kato <m_kato@ga2.so-net.ne.jp>
His orriginal code can still be found at:
His original code can still be found at:
<http://hp.vector.co.jp/authors/VA008030/bfs/>
Does anyone know of a more current email address for Makoto? He doesn't
respond to the address given above...
@ -39,7 +39,7 @@ Which is it, BFS or BEFS?
================
Be, Inc said, "BeOS Filesystem is officially called BFS, not BeFS".
But Unixware Boot Filesystem is called bfs, too. And they are already in
the kernel. Because of this nameing conflict, on Linux the BeOS
the kernel. Because of this naming conflict, on Linux the BeOS
filesystem is called befs.
HOW TO INSTALL
@ -57,7 +57,7 @@ if the patching step fails (i.e. there are rejected hunks), you can try to
figure it out yourself (it shouldn't be hard), or mail the maintainer
(Will Dyson <will_dyson@pobox.com>) for help.
step 2. Configuretion & make kernel
step 2. Configuration & make kernel
The linux kernel has many compile-time options. Most of them are beyond the
scope of this document. I suggest the Kernel-HOWTO document as a good general

View File

@ -1,5 +1,5 @@
configfs - Userspace-driven kernel object configuation.
configfs - Userspace-driven kernel object configuration.
Joel Becker <joel.becker@oracle.com>
@ -209,7 +209,7 @@ will happen for write(2).
[struct config_group]
A config_item cannot live in a vaccum. The only way one can be created
A config_item cannot live in a vacuum. The only way one can be created
is via mkdir(2) on a config_group. This will trigger creation of a
child item.
@ -254,7 +254,7 @@ using the group _init() functions on the group.
Finally, when userspace calls rmdir(2) on the item or group,
ct_group_ops->drop_item() is called. As a config_group is also a
config_item, it is not necessary for a seperate drop_group() method.
config_item, it is not necessary for a separate drop_group() method.
The subsystem must config_item_put() the reference that was initialized
upon item allocation. If a subsystem has no work to do, it may omit
the ct_group_ops->drop_item() method, and configfs will call
@ -275,7 +275,7 @@ directory is not empty.
[struct configfs_subsystem]
A subsystem must register itself, ususally at module_init time. This
A subsystem must register itself, usually at module_init time. This
tells configfs to make the subsystem appear in the file tree.
struct configfs_subsystem {
@ -406,7 +406,7 @@ that condition is met.
Far better would be an explicit action notifying the subsystem that the
config_item is ready to go. More importantly, an explicit action allows
the subsystem to provide feedback as to whether the attibutes are
the subsystem to provide feedback as to whether the attributes are
initialized in a way that makes sense. configfs provides this as
committable items.
@ -422,7 +422,7 @@ support mkdir(2) or rmdir(2) either. It only allows rename(2). The
"pending" directory does allow mkdir(2) and rmdir(2). An item is
created in the "pending" directory. Its attributes can be modified at
will. Userspace commits the item by renaming it into the "live"
directory. At this point, the subsystem recieves the ->commit_item()
directory. At this point, the subsystem receives the ->commit_item()
callback. If all required attributes are filled to satisfaction, the
method returns zero and the item is moved to the "live" directory.

View File

@ -82,7 +82,7 @@ own descendent. Moreover, there is exactly one cross-directory rename
Consider the object blocking the cross-directory rename. One
of its descendents is locked by cross-directory rename (otherwise we
would again have an infinite set of of contended objects). But that
would again have an infinite set of contended objects). But that
means that cross-directory rename is taking locks out of order. Due
to (2) the order hadn't changed since we had acquired filesystem lock.
But locking rules for cross-directory rename guarantee that we do not

View File

@ -68,7 +68,7 @@ request for an already acquired lock will not generate another DLM
call. Userspace programs are assumed to handle their own local
locking.
Two levels of locks are supported - Shared Read, and Exlcusive.
Two levels of locks are supported - Shared Read, and Exclusive.
Also supported is a Trylock operation.
For information on the libo2dlm interface, please see o2dlm.h,

View File

@ -205,7 +205,7 @@ Reserved Space
In ext2, there is a mechanism for reserving a certain number of blocks
for a particular user (normally the super-user). This is intended to
allow for the system to continue functioning even if non-priveleged users
allow for the system to continue functioning even if non-privileged users
fill up all the space available to them (this is independent of filesystem
quotas). It also keeps the filesystem from filling up entirely which
helps combat fragmentation.

View File

@ -0,0 +1,236 @@
Ext4 Filesystem
===============
This is a development version of the ext4 filesystem, an advanced level
of the ext3 filesystem which incorporates scalability and reliability
enhancements for supporting large filesystems (64 bit) in keeping with
increasing disk capacities and state-of-the-art feature requirements.
Mailing list: linux-ext4@vger.kernel.org
1. Quick usage instructions:
===========================
- Grab updated e2fsprogs from
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs-interim/
This is a patchset on top of e2fsprogs-1.39, which can be found at
ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/
- It's still mke2fs -j /dev/hda1
- mount /dev/hda1 /wherever -t ext4dev
- To enable extents,
mount /dev/hda1 /wherever -t ext4dev -o extents
- The filesystem is compatible with the ext3 driver until you add a file
which has extents (ie: `mount -o extents', then create a file).
NOTE: The "extents" mount flag is temporary. It will soon go away and
extents will be enabled by the "-o extents" flag to mke2fs or tune2fs
- When comparing performance with other filesystems, remember that
ext3/4 by default offers higher data integrity guarantees than most. So
when comparing with a metadata-only journalling filesystem, use `mount -o
data=writeback'. And you might as well use `mount -o nobh' too along
with it. Making the journal larger than the mke2fs default often helps
performance with metadata-intensive workloads.
2. Features
===========
2.1 Currently available
* ability to use filesystems > 16TB
* extent format reduces metadata overhead (RAM, IO for access, transactions)
* extent format more robust in face of on-disk corruption due to magics,
* internal redunancy in tree
2.1 Previously available, soon to be enabled by default by "mkefs.ext4":
* dir_index and resize inode will be on by default
* large inodes will be used by default for fast EAs, nsec timestamps, etc
2.2 Candidate features for future inclusion
There are several under discussion, whether they all make it in is
partly a function of how much time everyone has to work on them:
* improved file allocation (multi-block alloc, delayed alloc; basically done)
* fix 32000 subdirectory limit (patch exists, needs some e2fsck work)
* nsec timestamps for mtime, atime, ctime, create time (patch exists,
needs some e2fsck work)
* inode version field on disk (NFSv4, Lustre; prototype exists)
* reduced mke2fs/e2fsck time via uninitialized groups (prototype exists)
* journal checksumming for robustness, performance (prototype exists)
* persistent file preallocation (e.g for streaming media, databases)
Features like metadata checksumming have been discussed and planned for
a bit but no patches exist yet so I'm not sure they're in the near-term
roadmap.
The big performance win will come with mballoc and delalloc. CFS has
been using mballoc for a few years already with Lustre, and IBM + Bull
did a lot of benchmarking on it. The reason it isn't in the first set of
patches is partly a manageability issue, and partly because it doesn't
directly affect the on-disk format (outside of much better allocation)
so it isn't critical to get into the first round of changes. I believe
Alex is working on a new set of patches right now.
3. Options
==========
When mounting an ext4 filesystem, the following option are accepted:
(*) == default
extents ext4 will use extents to address file data. The
file system will no longer be mountable by ext3.
journal=update Update the ext4 file system's journal to the current
format.
journal=inum When a journal already exists, this option is ignored.
Otherwise, it specifies the number of the inode which
will represent the ext4 file system's journal file.
journal_dev=devnum When the external journal device's major/minor numbers
have changed, this option allows the user to specify
the new journal location. The journal device is
identified through its new major/minor numbers encoded
in devnum.
noload Don't load the journal on mounting.
data=journal All data are committed into the journal prior to being
written into the main file system.
data=ordered (*) All data are forced directly out to the main file
system prior to its metadata being committed to the
journal.
data=writeback Data ordering is not preserved, data may be written
into the main file system after its metadata has been
committed to the journal.
commit=nrsec (*) Ext4 can be told to sync all its data and metadata
every 'nrsec' seconds. The default value is 5 seconds.
This means that if you lose your power, you will lose
as much as the latest 5 seconds of work (your
filesystem will not be damaged though, thanks to the
journaling). This default value (or any low value)
will hurt performance, but it's good for data-safety.
Setting it to 0 will have the same effect as leaving
it at the default (5 seconds).
Setting it to very large values will improve
performance.
barrier=1 This enables/disables barriers. barrier=0 disables
it, barrier=1 enables it.
orlov (*) This enables the new Orlov block allocator. It is
enabled by default.
oldalloc This disables the Orlov block allocator and enables
the old block allocator. Orlov should have better
performance - we'd like to get some feedback if it's
the contrary for you.
user_xattr Enables Extended User Attributes. Additionally, you
need to have extended attribute support enabled in the
kernel configuration (CONFIG_EXT4_FS_XATTR). See the
attr(5) manual page and http://acl.bestbits.at/ to
learn more about extended attributes.
nouser_xattr Disables Extended User Attributes.
acl Enables POSIX Access Control Lists support.
Additionally, you need to have ACL support enabled in
the kernel configuration (CONFIG_EXT4_FS_POSIX_ACL).
See the acl(5) manual page and http://acl.bestbits.at/
for more information.
noacl This option disables POSIX Access Control List
support.
reservation
noreservation
bsddf (*) Make 'df' act like BSD.
minixdf Make 'df' act like Minix.
check=none Don't do extra checking of bitmaps on mount.
nocheck
debug Extra debugging information is sent to syslog.
errors=remount-ro(*) Remount the filesystem read-only on an error.
errors=continue Keep going on a filesystem error.
errors=panic Panic and halt the machine if an error occurs.
grpid Give objects the same group ID as their creator.
bsdgroups
nogrpid (*) New objects have the group ID of their creator.
sysvgroups
resgid=n The group ID which may use the reserved blocks.
resuid=n The user ID which may use the reserved blocks.
sb=n Use alternate superblock at this location.
quota
noquota
grpquota
usrquota
bh (*) ext4 associates buffer heads to data pages to
nobh (a) cache disk block mapping information
(b) link pages into transaction to provide
ordering guarantees.
"bh" option forces use of buffer heads.
"nobh" option tries to avoid associating buffer
heads (supported only for "writeback" mode).
Data Mode
---------
There are 3 different data modes:
* writeback mode
In data=writeback mode, ext4 does not journal data at all. This mode provides
a similar level of journaling as that of XFS, JFS, and ReiserFS in its default
mode - metadata journaling. A crash+recovery can cause incorrect data to
appear in files which were written shortly before the crash. This mode will
typically provide the best ext4 performance.
* ordered mode
In data=ordered mode, ext4 only officially journals metadata, but it logically
groups metadata and data blocks into a single unit called a transaction. When
it's time to write the new metadata out to disk, the associated data blocks
are written first. In general, this mode performs slightly slower than
writeback but significantly faster than journal mode.
* journal mode
data=journal mode provides full data and metadata journaling. All new data is
written to the journal first, and then to its final location.
In the event of a crash, the journal can be replayed, bringing both data and
metadata into a consistent state. This mode is the slowest except when data
needs to be read from and written to disk at the same time where it
outperforms all others modes.
References
==========
kernel source: <file:fs/ext4/>
<file:fs/jbd2/>
programs: http://e2fsprogs.sourceforge.net/
http://ext2resize.sourceforge.net
useful links: http://fedoraproject.org/wiki/ext3-devel
http://www.bullopensource.org/ext4/

View File

@ -55,7 +55,7 @@ the fdtable structure -
2. Reading of the fdtable as described above must be protected
by rcu_read_lock()/rcu_read_unlock().
3. For any update to the the fd table, files->file_lock must
3. For any update to the fd table, files->file_lock must
be held.
4. To look up the file structure given an fd, a reader

View File

@ -51,6 +51,22 @@ homepage:
http://fuse.sourceforge.net/
Filesystem type
~~~~~~~~~~~~~~~
The filesystem type given to mount(2) can be one of the following:
'fuse'
This is the usual way to mount a FUSE filesystem. The first
argument of the mount system call may contain an arbitrary string,
which is not interpreted by the kernel.
'fuseblk'
The filesystem is block device based. The first argument of the
mount system call is interpreted as the name of the device.
Mount options
~~~~~~~~~~~~~
@ -94,6 +110,11 @@ Mount options
The default is infinite. Note that the size of read requests is
limited anyway to 32 pages (which is 128kbyte on i386).
'blksize=N'
Set the block size for the filesystem. The default is 512. This
option is only valid for 'fuseblk' type mounts.
Control filesystem
~~~~~~~~~~~~~~~~~~
@ -111,7 +132,7 @@ For each connection the following files exist within this directory:
'waiting'
The number of requests which are waiting to be transfered to
The number of requests which are waiting to be transferred to
userspace or being processed by the filesystem daemon. If there is
no filesystem activity and 'waiting' is non-zero, then the
filesystem is hung or deadlocked.
@ -136,7 +157,7 @@ following will happen:
2) If the request is not yet sent to userspace AND the signal is not
fatal, then an 'interrupted' flag is set for the request. When
the request has been successfully transfered to userspace and
the request has been successfully transferred to userspace and
this flag is set, an INTERRUPT request is queued.
3) If the request is already sent to userspace, then an INTERRUPT

View File

@ -0,0 +1,43 @@
Global File System
------------------
http://sources.redhat.com/cluster/
GFS is a cluster file system. It allows a cluster of computers to
simultaneously use a block device that is shared between them (with FC,
iSCSI, NBD, etc). GFS reads and writes to the block device like a local
file system, but also uses a lock module to allow the computers coordinate
their I/O so file system consistency is maintained. One of the nifty
features of GFS is perfect consistency -- changes made to the file system
on one machine show up immediately on all other machines in the cluster.
GFS uses interchangable inter-node locking mechanisms. Different lock
modules can plug into GFS and each file system selects the appropriate
lock module at mount time. Lock modules include:
lock_nolock -- allows gfs to be used as a local file system
lock_dlm -- uses a distributed lock manager (dlm) for inter-node locking
The dlm is found at linux/fs/dlm/
In addition to interfacing with an external locking manager, a gfs lock
module is responsible for interacting with external cluster management
systems. Lock_dlm depends on user space cluster management systems found
at the URL above.
To use gfs as a local file system, no external clustering systems are
needed, simply:
$ mkfs -t gfs2 -p lock_nolock -j 1 /dev/block_device
$ mount -t gfs2 /dev/block_device /dir
GFS2 is not on-disk compatible with previous versions of GFS.
The following man pages can be found at the URL above:
gfs2_fsck to repair a filesystem
gfs2_grow to expand a filesystem online
gfs2_jadd to add journals to a filesystem online
gfs2_tool to manipulate, examine and tune a filesystem
gfs2_quota to examine and change quota values in a filesystem
mount.gfs2 to help mount(8) mount a filesystem
mkfs.gfs2 to make a filesystem

View File

@ -274,7 +274,7 @@ History
Fixed race-condition in buffer code - it is in all filesystems in Linux;
when reading device (cat /dev/hda) while creating files on it, files
could be damaged
2.02 Woraround for bug in breada in Linux. breada could cause accesses beyond
2.02 Workaround for bug in breada in Linux. breada could cause accesses beyond
end of partition
2.03 Char, block devices and pipes are correctly created
Fixed non-crashing race in unlink (Alexander Viro)

View File

@ -13,7 +13,7 @@ Table of contents
- Using NTFS volume and stripe sets
- The Device-Mapper driver
- The Software RAID / MD driver
- Limitiations when using the MD driver
- Limitations when using the MD driver
- ChangeLog
@ -43,7 +43,7 @@ There is plenty of additional information on the linux-ntfs web site
at http://linux-ntfs.sourceforge.net/
The web site has a lot of additional information, such as a comprehensive
FAQ, documentation on the NTFS on-disk format, informaiton on the Linux-NTFS
FAQ, documentation on the NTFS on-disk format, information on the Linux-NTFS
userspace utilities, etc.
@ -337,7 +337,7 @@ Finally, for a mirrored volume, i.e. raid level 1, the table would look like
this (note all values are in 512-byte sectors):
--- cut here ---
# Ofs Size Raid Log Number Region Should Number Source Start Taget Start
# Ofs Size Raid Log Number Region Should Number Source Start Target Start
# in of the type type of log size sync? of Device in Device in
# vol volume params mirrors Device Device
0 2056320 mirror core 2 16 nosync 2 /dev/hda1 0 /dev/hdb1 0
@ -383,14 +383,14 @@ Software RAID / MD driver. For which you need to set up your /etc/raidtab
appropriately (see man 5 raidtab).
Linear volume sets, i.e. linear raid, as well as stripe sets, i.e. raid level
0, have been tested and work fine (though see section "Limitiations when using
0, have been tested and work fine (though see section "Limitations when using
the MD driver with NTFS volumes" especially if you want to use linear raid).
Even though untested, there is no reason why mirrors, i.e. raid level 1, and
stripes with parity, i.e. raid level 5, should not work, too.
You have to use the "persistent-superblock 0" option for each raid-disk in the
NTFS volume/stripe you are configuring in /etc/raidtab as the persistent
superblock used by the MD driver would damange the NTFS volume.
superblock used by the MD driver would damage the NTFS volume.
Windows by default uses a stripe chunk size of 64k, so you probably want the
"chunk-size 64k" option for each raid-disk, too.
@ -435,7 +435,7 @@ setup correctly to avoid the possibility of causing damage to the data on the
ntfs volume.
Limitiations when using the Software RAID / MD driver
Limitations when using the Software RAID / MD driver
-----------------------------------------------------
Using the md driver will not work properly if any of your NTFS partitions have
@ -599,7 +599,7 @@ Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
- Major bug fixes for reading files and volumes in corner cases which
were being hit by Windows 2k/XP users.
2.1.2:
- Major bug fixes aleviating the hangs in statfs experienced by some
- Major bug fixes alleviating the hangs in statfs experienced by some
users.
2.1.1:
- Update handling of compressed files so people no longer get the

View File

@ -30,7 +30,7 @@ Caveats
Features which OCFS2 does not support yet:
- sparse files
- extended attributes
- shared writeable mmap
- shared writable mmap
- loopback is supported, but data written will not
be cluster coherent.
- quotas
@ -54,3 +54,6 @@ errors=panic Panic and halt the machine if an error occurs.
intr (*) Allow signals to interrupt cluster operations.
nointr Do not allow signals to interrupt cluster
operations.
atime_quantum=60(*) OCFS2 will not update atime unless this number
of seconds has passed since the last update.
Set to zero to always update atime.

View File

@ -39,6 +39,8 @@ Table of Contents
2.9 Appletalk
2.10 IPX
2.11 /proc/sys/fs/mqueue - POSIX message queues filesystem
2.12 /proc/<pid>/oom_adj - Adjust the oom-killer score
2.13 /proc/<pid>/oom_score - Display current oom-killer score
------------------------------------------------------------------------------
Preface
@ -408,7 +410,7 @@ VmallocChunk: 111088 kB
this memory, making it slower to access than lowmem.
LowTotal:
LowFree: Lowmem is memory which can be used for everything that
highmem can be used for, but it is also availble for the
highmem can be used for, but it is also available for the
kernel's use for its own data structures. Among many
other things, it is where everything from the Slab is
allocated. Bad things happen when you're out of lowmem.
@ -1218,9 +1220,9 @@ applications are using mlock(), or if you are running with no swap then
you probably should increase the lower_zone_protection setting.
The units of this tunable are fairly vague. It is approximately equal
to "megabytes". So setting lower_zone_protection=100 will protect around 100
to "megabytes," so setting lower_zone_protection=100 will protect around 100
megabytes of the lowmem zone from user allocations. It will also make
those 100 megabytes unavaliable for use by applications and by
those 100 megabytes unavailable for use by applications and by
pagecache, so there is a cost.
The effects of this tunable may be observed by monitoring
@ -1253,7 +1255,7 @@ to allocate (but not use) more memory than is actually available.
address space are refused. Used for a typical system. It
ensures a seriously wild allocation fails while allowing
overcommit to reduce swap usage. root is allowed to
allocate slighly more memory in this mode. This is the
allocate slightly more memory in this mode. This is the
default.
1 - Always overcommit. Appropriate for some scientific
@ -1536,10 +1538,10 @@ TCP settings
tcp_ecn
-------
This file controls the use of the ECN bit in the IPv4 headers, this is a new
This file controls the use of the ECN bit in the IPv4 headers. This is a new
feature about Explicit Congestion Notification, but some routers and firewalls
block trafic that has this bit set, so it could be necessary to echo 0 to
/proc/sys/net/ipv4/tcp_ecn, if you want to talk to this sites. For more info
block traffic that has this bit set, so it could be necessary to echo 0 to
/proc/sys/net/ipv4/tcp_ecn if you want to talk to these sites. For more info
you could read RFC2481.
tcp_retrans_collapse
@ -1586,7 +1588,7 @@ Enable the strict RFC793 interpretation of the TCP urgent pointer field. The
default is to use the BSD compatible interpretation of the urgent pointer
pointing to the first byte after the urgent data. The RFC793 interpretation is
to have it point to the last byte of urgent data. Enabling this option may
lead to interoperatibility problems. Disabled by default.
lead to interoperability problems. Disabled by default.
tcp_syncookies
--------------
@ -1731,7 +1733,7 @@ error_burst and error_cost
These parameters are used to limit how many ICMP destination unreachable to
send from the host in question. ICMP destination unreachable messages are
sent when we can not reach the next hop, while trying to transmit a packet.
sent when we cannot reach the next hop while trying to transmit a packet.
It will also print some error messages to kernel logs if someone is ignoring
our ICMP redirects. The higher the error_cost factor is, the fewer
destination unreachable and error messages will be let through. Error_burst
@ -1855,7 +1857,7 @@ proxy_qlen
Maximum queue length of the delayed proxy arp timer. (see proxy_delay).
app_solcit
app_solicit
----------
Determines the number of requests to send to the user level ARP daemon. Use 0
@ -1962,6 +1964,22 @@ a queue must be less or equal then msg_max.
maximum message size value (it is every message queue's attribute set during
its creation).
2.12 /proc/<pid>/oom_adj - Adjust the oom-killer score
------------------------------------------------------
This file can be used to adjust the score used to select which processes
should be killed in an out-of-memory situation. Giving it a high score will
increase the likelihood of this process being killed by the oom-killer. Valid
values are in the range -16 to +15, plus the special value -17, which disables
oom-killing altogether for this process.
2.13 /proc/<pid>/oom_score - Display current oom-killer score
-------------------------------------------------------------
------------------------------------------------------------------------------
This file can be used to check the current score used by the oom-killer is for
any given <pid>. Use it together with /proc/<pid>/oom_adj to tune which
process should be killed in an out-of-memory situation.
------------------------------------------------------------------------------
Summary

View File

@ -84,7 +84,7 @@ FILES
/ibox
The second SPU to CPU communication mailbox. This file is similar to
the first mailbox file, but can be read in blocking I/O mode, and the
poll familiy of system calls can be used to wait for it. The possible
poll family of system calls can be used to wait for it. The possible
operations on an open ibox file are:
read(2)
@ -105,7 +105,7 @@ FILES
/wbox
The CPU to SPU communation mailbox. It is write-only can can be written
The CPU to SPU communation mailbox. It is write-only and can be written
in units of 32 bits. If the mailbox is full, write() will block and
poll can be used to wait for it becoming empty again. The possible
operations on an open wbox file are: write(2) If a count smaller than
@ -210,7 +210,7 @@ FILES
/signal2
The two signal notification channels of an SPU. These are read-write
files that operate on a 32 bit word. Writing to one of these files
triggers an interrupt on the SPU. The value writting to the signal
triggers an interrupt on the SPU. The value written to the signal
files can be read from the SPU through a channel read or from host user
space through the file. After the value has been read by the SPU, it
is reset to zero. The possible operations on an open signal1 or sig-
@ -359,7 +359,7 @@ ERRORS
EFAULT npc is not a valid pointer or status is neither NULL nor a valid
pointer.
EINTR A signal occured while spu_run was in progress. The npc value
EINTR A signal occurred while spu_run was in progress. The npc value
has been updated to the new program counter value if necessary.
EINVAL fd is not a file descriptor returned from spu_create(2).

View File

@ -238,7 +238,7 @@ Top Level Directory Layout
The sysfs directory arrangement exposes the relationship of kernel
data structures.
The top level sysfs diretory looks like:
The top level sysfs directory looks like:
block/
bus/

View File

@ -1,11 +1,8 @@
This is the implementation of the SystemV/Coherent filesystem for Linux.
It implements all of
- Xenix FS,
- SystemV/386 FS,
- Coherent FS.
This is version beta 4.
To install:
* Answer the 'System V and Coherent filesystem support' question with 'y'
when configuring the kernel.
@ -28,11 +25,173 @@ Bugs in the present implementation:
for this FS on hard disk yet.
Please report any bugs and suggestions to
Bruno Haible <haible@ma2s2.mathematik.uni-karlsruhe.de>
Pascal Haible <haible@izfm.uni-stuttgart.de>
Krzysztof G. Baranowski <kgb@manjak.knm.org.pl>
These filesystems are rather similar. Here is a comparison with Minix FS:
Bruno Haible
<haible@ma2s2.mathematik.uni-karlsruhe.de>
* Linux fdisk reports on partitions
- Minix FS 0x81 Linux/Minix
- Xenix FS ??
- SystemV FS ??
- Coherent FS 0x08 AIX bootable
* Size of a block or zone (data allocation unit on disk)
- Minix FS 1024
- Xenix FS 1024 (also 512 ??)
- SystemV FS 1024 (also 512 and 2048)
- Coherent FS 512
* General layout: all have one boot block, one super block and
separate areas for inodes and for directories/data.
On SystemV Release 2 FS (e.g. Microport) the first track is reserved and
all the block numbers (including the super block) are offset by one track.
* Byte ordering of "short" (16 bit entities) on disk:
- Minix FS little endian 0 1
- Xenix FS little endian 0 1
- SystemV FS little endian 0 1
- Coherent FS little endian 0 1
Of course, this affects only the file system, not the data of files on it!
* Byte ordering of "long" (32 bit entities) on disk:
- Minix FS little endian 0 1 2 3
- Xenix FS little endian 0 1 2 3
- SystemV FS little endian 0 1 2 3
- Coherent FS PDP-11 2 3 0 1
Of course, this affects only the file system, not the data of files on it!
* Inode on disk: "short", 0 means non-existent, the root dir ino is:
- Minix FS 1
- Xenix FS, SystemV FS, Coherent FS 2
* Maximum number of hard links to a file:
- Minix FS 250
- Xenix FS ??
- SystemV FS ??
- Coherent FS >=10000
* Free inode management:
- Minix FS a bitmap
- Xenix FS, SystemV FS, Coherent FS
There is a cache of a certain number of free inodes in the super-block.
When it is exhausted, new free inodes are found using a linear search.
* Free block management:
- Minix FS a bitmap
- Xenix FS, SystemV FS, Coherent FS
Free blocks are organized in a "free list". Maybe a misleading term,
since it is not true that every free block contains a pointer to
the next free block. Rather, the free blocks are organized in chunks
of limited size, and every now and then a free block contains pointers
to the free blocks pertaining to the next chunk; the first of these
contains pointers and so on. The list terminates with a "block number"
0 on Xenix FS and SystemV FS, with a block zeroed out on Coherent FS.
* Super-block location:
- Minix FS block 1 = bytes 1024..2047
- Xenix FS block 1 = bytes 1024..2047
- SystemV FS bytes 512..1023
- Coherent FS block 1 = bytes 512..1023
* Super-block layout:
- Minix FS
unsigned short s_ninodes;
unsigned short s_nzones;
unsigned short s_imap_blocks;
unsigned short s_zmap_blocks;
unsigned short s_firstdatazone;
unsigned short s_log_zone_size;
unsigned long s_max_size;
unsigned short s_magic;
- Xenix FS, SystemV FS, Coherent FS
unsigned short s_firstdatazone;
unsigned long s_nzones;
unsigned short s_fzone_count;
unsigned long s_fzones[NICFREE];
unsigned short s_finode_count;
unsigned short s_finodes[NICINOD];
char s_flock;
char s_ilock;
char s_modified;
char s_rdonly;
unsigned long s_time;
short s_dinfo[4]; -- SystemV FS only
unsigned long s_free_zones;
unsigned short s_free_inodes;
short s_dinfo[4]; -- Xenix FS only
unsigned short s_interleave_m,s_interleave_n; -- Coherent FS only
char s_fname[6];
char s_fpack[6];
then they differ considerably:
Xenix FS
char s_clean;
char s_fill[371];
long s_magic;
long s_type;
SystemV FS
long s_fill[12 or 14];
long s_state;
long s_magic;
long s_type;
Coherent FS
unsigned long s_unique;
Note that Coherent FS has no magic.
* Inode layout:
- Minix FS
unsigned short i_mode;
unsigned short i_uid;
unsigned long i_size;
unsigned long i_time;
unsigned char i_gid;
unsigned char i_nlinks;
unsigned short i_zone[7+1+1];
- Xenix FS, SystemV FS, Coherent FS
unsigned short i_mode;
unsigned short i_nlink;
unsigned short i_uid;
unsigned short i_gid;
unsigned long i_size;
unsigned char i_zone[3*(10+1+1+1)];
unsigned long i_atime;
unsigned long i_mtime;
unsigned long i_ctime;
* Regular file data blocks are organized as
- Minix FS
7 direct blocks
1 indirect block (pointers to blocks)
1 double-indirect block (pointer to pointers to blocks)
- Xenix FS, SystemV FS, Coherent FS
10 direct blocks
1 indirect block (pointers to blocks)
1 double-indirect block (pointer to pointers to blocks)
1 triple-indirect block (pointer to pointers to pointers to blocks)
* Inode size, inodes per block
- Minix FS 32 32
- Xenix FS 64 16
- SystemV FS 64 16
- Coherent FS 64 8
* Directory entry on disk
- Minix FS
unsigned short inode;
char name[14/30];
- Xenix FS, SystemV FS, Coherent FS
unsigned short inode;
char name[14];
* Dir entry size, dir entries per block
- Minix FS 16/32 64/32
- Xenix FS 16 64
- SystemV FS 16 64
- Coherent FS 16 32
* How to implement symbolic links such that the host fsck doesn't scream:
- Minix FS normal
- Xenix FS kludge: as regular files with chmod 1000
- SystemV FS ??
- Coherent FS kludge: as regular files with chmod 1000
Notation: We often speak of a "block" but mean a zone (the allocation unit)
and not the disk driver's notion of "block".

View File

@ -39,7 +39,7 @@ tmpfs has the following uses:
tmpfs /dev/shm tmpfs defaults 0 0
Remember to create the directory that you intend to mount tmpfs on
if necessary (/dev/shm is automagically created if you use devfs).
if necessary.
This mount is _not_ needed for SYSV shared memory. The internal
mount is used for that. (In the 2.3 kernel versions it was
@ -63,7 +63,7 @@ size: The limit of allocated bytes for this tmpfs instance. The
nr_blocks: The same as size, but in blocks of PAGE_CACHE_SIZE.
nr_inodes: The maximum number of inodes for this instance. The default
is half of the number of your physical RAM pages, or (on a
a machine with highmem) the number of lowmem RAM pages,
machine with highmem) the number of lowmem RAM pages,
whichever is the lower.
These parameters accept a suffix k, m or g for kilo, mega and giga and

View File

@ -7,8 +7,17 @@ If you encounter problems with reading UDF discs using this driver,
please report them to linux_udf@hpesjro.fc.hp.com, which is the
developer's list.
Write support requires a block driver which supports writing. The current
scsi and ide cdrom drivers do not support writing.
Write support requires a block driver which supports writing. Currently
dvd+rw drives and media support true random sector writes, and so a udf
filesystem on such devices can be directly mounted read/write. CD-RW
media however, does not support this. Instead the media can be formatted
for packet mode using the utility cdrwtool, then the pktcdvd driver can
be bound to the underlying cd device to provide the required buffering
and read-modify-write cycles to allow the filesystem random sector writes
while providing the hardware with only full packet writes. While not
required for dvd+rw media, use of the pktcdvd driver often enhances
performance due to very poor read-modify-write support supplied internally
by drive firmware.
-------------------------------------------------------------------------------
The following mount options are supported:

View File

@ -35,7 +35,7 @@ iocharset=name -- Character set to use for converting between the
you should consider the following option instead.
utf8=<bool> -- UTF-8 is the filesystem safe version of Unicode that
is used by the console. It can be be enabled for the
is used by the console. It can be enabled for the
filesystem with this option. If 'uni_xlate' gets set,
UTF-8 gets disabled.

View File

@ -410,7 +410,7 @@ otherwise noted.
put_link: called by the VFS to release resources allocated by
follow_link(). The cookie returned by follow_link() is passed
to to this method as the last parameter. It is used by
to this method as the last parameter. It is used by
filesystems such as NFS where page cache is not stable
(i.e. page that was installed when the symbolic link walk
started might not be in the page cache at the end of the
@ -699,9 +699,9 @@ This describes how the VFS can manipulate an open file. As of kernel
struct file_operations {
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

View File

@ -1,307 +0,0 @@
Intro
=====
This file describes some issues involved when using the "ftape"
floppy tape device driver that comes with the Linux kernel.
ftape has a home page at
http://ftape.dot-heine.de/
which contains further information about ftape. Please cross check
this WWW address against the address given (if any) in the MAINTAINERS
file located in the top level directory of the Linux kernel source
tree.
NOTE: This is an unmaintained set of drivers, and it is not guaranteed to work.
If you are interested in taking over maintenance, contact Claus-Justus Heine
<ch@dot-heine.de>, the former maintainer.
Contents
========
A minus 1: Ftape documentation
A. Changes
1. Goal
2. I/O Block Size
3. Write Access when not at EOD (End Of Data) or BOT (Begin Of Tape)
4. Formatting
5. Interchanging cartridges with other operating systems
B. Debugging Output
1. Introduction
2. Tuning the debugging output
C. Boot and load time configuration
1. Setting boot time parameters
2. Module load time parameters
3. Ftape boot- and load time options
4. Example kernel parameter setting
5. Example module parameter setting
D. Support and contacts
*******************************************************************************
A minus 1. Ftape documentation
==============================
Unluckily, the ftape-HOWTO is out of date. This really needs to be
changed. Up to date documentation as well as recent development
versions of ftape and useful links to related topics can be found at
the ftape home page at
http://ftape.dot-heine.de/
*******************************************************************************
A. Changes
==========
1. Goal
~~~~
The goal of all that incompatibilities was to give ftape an interface
that resembles the interface provided by SCSI tape drives as close
as possible. Thus any Unix backup program that is known to work
with SCSI tape drives should also work.
The concept of a fixed block size for read/write transfers is
rather unrelated to this SCSI tape compatibility at the file system
interface level. It developed out of a feature of zftape, a
block wise user transparent on-the-fly compression. That compression
support will not be dropped in future releases for compatibility
reasons with previous releases of zftape.
2. I/O Block Size
~~~~~~~~~~~~~~
The block size defaults to 10k which is the default block size of
GNU tar.
The block size can be tuned either during kernel configuration or
at runtime with the MTIOCTOP ioctl using the MTSETBLK operation
(i.e. do "mt -f /dev/qft0" setblk #BLKSZ). A block size of 0
switches to variable block size mode i.e. "mt setblk 0" switches
off the block size restriction. However, this disables zftape's
built in on-the-fly compression which doesn't work with variable
block size mode.
The BLKSZ parameter must be given as a byte count and must be a
multiple of 32k or 0, i.e. use "mt setblk 32768" to switch to a
block size of 32k.
The typical symptom of a block size mismatch is an "invalid
argument" error message.
3. Write Access when not at EOD (End Of Data) or BOT (Begin Of Tape)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
zftape (the file system interface of ftape-3.x) denies write access
to the tape cartridge when it isn't positioned either at BOT or
EOD.
4. Formatting
~~~~~~~~~~
ftape DOES support formatting of floppy tape cartridges. You need the
`ftformat' program that is shipped with the modules version of ftape.
Please get the latest version of ftape from
ftp://sunsite.unc.edu/pub/Linux/kernel/tapes
or from the ftape home page at
http://ftape.dot-heine.de/
`ftformat' is contained in the `./contrib/' subdirectory of that
separate ftape package.
5. Interchanging cartridges with other operating systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The internal emulation of Unix tape device file marks has changed
completely. ftape now uses the volume table segment as specified
by the QIC-40/80/3010/3020/113 standards to emulate file marks. As
a consequence there is limited support to interchange cartridges
with other operating systems.
To be more precise: ftape will detect volumes written by other OS's
programs and other OS's programs will detect volumes written by
ftape.
However, it isn't possible to extract the data dumped to the tape
by some MSDOS program with ftape. This exceeds the scope of a
kernel device driver. If you need such functionality, then go ahead
and write a user space utility that is able to do that. ftape already
provides all kernel level support necessary to do that.
*******************************************************************************
B. Debugging Output
================
1. Introduction
~~~~~~~~~~~~
The ftape driver can be very noisy in that is can print lots of
debugging messages to the kernel log files and the system console.
While this is useful for debugging it might be annoying during
normal use and enlarges the size of the driver by several kilobytes.
To reduce the size of the driver you can trim the maximal amount of
debugging information available during kernel configuration. Please
refer to the kernel configuration script and its on-line help
functionality.
The amount of debugging output maps to the "tracing" boot time
option and the "ft_tracing" modules option as follows:
0 bugs
1 + errors (with call-stack dump)
2 + warnings
3 + information
4 + more information
5 + program flow
6 + fdc/dma info
7 + data flow
8 + everything else
2. Tuning the debugging output
~~~~~~~~~~~~~~~~~~~~~~~~~~~
To reduce the amount of debugging output printed to the system
console you can
i) trim the debugging output at run-time with
mt -f /dev/nqft0 setdensity #DBGLVL
where "#DBGLVL" is a number between 0 and 9
ii) trim the debugging output at module load time with
modprobe ftape ft_tracing=#DBGLVL
Of course, this applies only if you have configured ftape to be
compiled as a module.
iii) trim the debugging output during system boot time. Add the
following to the kernel command line:
ftape=#DBGLVL,tracing
Please refer also to the next section if you don't know how to
set boot time parameters.
*******************************************************************************
C. Boot and load time configuration
================================
1. Setting boot time parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Assuming that you use lilo, the LI)nux LO)ader, boot time kernel
parameters can be set by adding a line
append some_kernel_boot_time_parameter
to `/etc/lilo.conf' or at real boot time by typing in the options
at the prompt provided by LILO. I can't give you advice on how to
specify those parameters with other loaders as I don't use them.
For ftape, each "some_kernel_boot_time_parameter" looks like
"ftape=value,option". As an example, the debugging output can be
increased with
ftape=4,tracing
NOTE: the value precedes the option name.
2. Module load time parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Module parameters can be specified either directly when invoking
the program 'modprobe' at the shell prompt:
modprobe ftape ft_tracing=4
or by editing the file `/etc/modprobe.conf' in which case they take
effect each time when the module is loaded with `modprobe' (please
refer to the respective manual pages). Thus, you should add a line
options ftape ft_tracing=4
to `/etc/modprobe.conf` if you intend to increase the debugging
output of the driver.
3. Ftape boot- and load time options
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i. Controlling the amount of debugging output
DBGLVL has to be replaced by a number between 0 and 8.
module | kernel command line
-----------------------|----------------------
ft_tracing=DBGLVL | ftape=DBGLVL,tracing
ii. Hardware setup
BASE is the base address of your floppy disk controller,
IRQ and DMA give its interrupt and DMA channel, respectively.
BOOL is an integer, "0" means "no"; any other value means
"yes". You don't need to specify anything if connecting your tape
drive to the standard floppy disk controller. All of these
values have reasonable defaults. The defaults can be modified
during kernel configuration, i.e. while running "make config",
"make menuconfig" or "make xconfig" in the top level directory
of the Linux kernel source tree. Please refer also to the on
line documentation provided during that kernel configuration
process.
ft_probe_fc10 is set to a non-zero value if you wish for ftape to
probe for a Colorado FC-10 or FC-20 controller.
ft_mach2 is set to a non-zero value if you wish for ftape to probe
for a Mountain MACH-2 controller.
module | kernel command line
-----------------------|----------------------
ft_fdc_base=BASE | ftape=BASE,ioport
ft_fdc_irq=IRQ | ftape=IRQ,irq
ft_fdc_dma=DMA | ftape=DMA,dma
ft_probe_fc10=BOOL | ftape=BOOL,fc10
ft_mach2=BOOL | ftape=BOOL,mach2
ft_fdc_threshold=THR | ftape=THR,threshold
ft_fdc_rate_limit=RATE | ftape=RATE,datarate
4. Example kernel parameter setting
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To configure ftape to probe for a Colorado FC-10/FC-20 controller
and to increase the amount of debugging output a little bit, add
the following line to `/etc/lilo.conf':
append ftape=1,fc10 ftape=4,tracing
5. Example module parameter setting
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To do the same, but with ftape compiled as a loadable kernel
module, add the following line to `/etc/modprobe.conf':
options ftape ft_probe_fc10=1 ft_tracing=4
*******************************************************************************
D. Support and contacts
====================
Ftape is distributed under the GNU General Public License. There is
absolutely no warranty for this software. However, you can reach
the current maintainer of the ftape package under the email address
given in the MAINTAINERS file which is located in the top level
directory of the Linux kernel source tree. There you'll find also
the relevant mailing list to use as a discussion forum and the web
page to query for the most recent documentation, related work and
development versions of ftape.
Changelog:
==========
~1996: Original Document
10-24-2004: General cleanup and updating, noting additional module options.
James Nelson <james4765@gmail.com>

View File

@ -59,7 +59,7 @@ the following things on the "Kernel Hacking" tab:
Then build as usual, download to the board and execute. Note that if
"Immediate activation" was selected, then the kernel will wait for GDB to
attach. If not, then the kernel will boot immediately and GDB will have to
interupt it or wait for an exception to occur if before doing anything with
interrupt it or wait for an exception to occur before doing anything with
the kernel.

View File

@ -156,7 +156,7 @@ with the main kernel in this regard. Hence the debug mode code (gdbstub) is
almost completely self-contained. The only external code used is the
sprintf family of functions.
Futhermore, break.S is so complicated because single-step mode does not
Furthermore, break.S is so complicated because single-step mode does not
switch off on entry to an exception. That means unless manually disabled,
single-stepping will blithely go on stepping into things like interrupts.
See gdbstub.txt for more information.

View File

@ -233,7 +233,7 @@ related kernel services:
(*) __debug_mmu.iamr[]
(*) __debug_mmu.damr[]
These receive the current IAMR and DAMR contents. These can be viewed with with the _amr
These receive the current IAMR and DAMR contents. These can be viewed with the _amr
GDB macro:
(gdb) _amr

View File

@ -57,7 +57,7 @@ What's left to be done for 32-bit UIDs on all Linux architectures:
Other filesystems have not been checked yet.
- The ncpfs and smpfs filesystems can not presently use 32-bit UIDs in
- The ncpfs and smpfs filesystems cannot presently use 32-bit UIDs in
all ioctl()s. Some new ioctl()s have been added with 32-bit UIDs, but
more are needed. (as well as new user<->kernel data structures)

Some files were not shown because too many files have changed in this diff Show More