mac80211: fils_aead: Use crypto api CMAC shash rather than bare cipher

Switch the FILS AEAD code to use a cmac(aes) shash instantiated by the
crypto API rather than reusing the open coded implementation in
aes_cmac_vector(). This makes the code more understandable, and allows
platforms to implement cmac(aes) in a more secure (*) and efficient way
than is typically possible when using the AES cipher directly.

So replace the crypto_cipher by a crypto_shash, and update the aes_s2v()
routine to call the shash interface directly.

* In particular, the generic table based AES implementation is sensitive
  to known-plaintext timing attacks on the key, to which AES based MAC
  algorithms are especially vulnerable, given that their plaintext is not
  usually secret. Time invariant alternatives are available (e.g., based
  on SIMD algorithms), but may incur a setup cost that is prohibitive when
  operating on a single block at a time, which is why they don't usually
  expose the cipher API.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This commit is contained in:
Ard Biesheuvel 2017-02-06 10:49:27 +00:00 committed by Johannes Berg
parent b699b71d82
commit fe8de3da13
3 changed files with 34 additions and 45 deletions

View File

@ -6,6 +6,7 @@ config MAC80211
select CRYPTO_AES
select CRYPTO_CCM
select CRYPTO_GCM
select CRYPTO_CMAC
select CRC32
---help---
This option enables the hardware independent IEEE 802.11

View File

@ -11,10 +11,6 @@
#include <linux/crypto.h>
void gf_mulx(u8 *pad);
void aes_cmac_vector(struct crypto_cipher *tfm, size_t num_elem,
const u8 *addr[], const size_t *len, u8 *mac,
size_t mac_len);
struct crypto_cipher *ieee80211_aes_cmac_key_setup(const u8 key[],
size_t key_len);
void ieee80211_aes_cmac(struct crypto_cipher *tfm, const u8 *aad,

View File

@ -9,66 +9,58 @@
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include "ieee80211_i.h"
#include "aes_cmac.h"
#include "fils_aead.h"
static int aes_s2v(struct crypto_cipher *tfm,
static void gf_mulx(u8 *pad)
{
u64 a = get_unaligned_be64(pad);
u64 b = get_unaligned_be64(pad + 8);
put_unaligned_be64((a << 1) | (b >> 63), pad);
put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8);
}
static int aes_s2v(struct crypto_shash *tfm,
size_t num_elem, const u8 *addr[], size_t len[], u8 *v)
{
u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE];
u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {};
SHASH_DESC_ON_STACK(desc, tfm);
size_t i;
const u8 *data[2];
size_t data_len[2], data_elems;
desc->tfm = tfm;
/* D = AES-CMAC(K, <zero>) */
memset(tmp, 0, AES_BLOCK_SIZE);
data[0] = tmp;
data_len[0] = AES_BLOCK_SIZE;
aes_cmac_vector(tfm, 1, data, data_len, d, AES_BLOCK_SIZE);
crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d);
for (i = 0; i < num_elem - 1; i++) {
/* D = dbl(D) xor AES_CMAC(K, Si) */
gf_mulx(d); /* dbl */
aes_cmac_vector(tfm, 1, &addr[i], &len[i], tmp,
AES_BLOCK_SIZE);
crypto_shash_digest(desc, addr[i], len[i], tmp);
crypto_xor(d, tmp, AES_BLOCK_SIZE);
}
crypto_shash_init(desc);
if (len[i] >= AES_BLOCK_SIZE) {
/* len(Sn) >= 128 */
size_t j;
const u8 *pos;
/* T = Sn xorend D */
/* Use a temporary buffer to perform xorend on Sn (addr[i]) to
* avoid modifying the const input argument.
*/
data[0] = addr[i];
data_len[0] = len[i] - AES_BLOCK_SIZE;
pos = addr[i] + data_len[0];
for (j = 0; j < AES_BLOCK_SIZE; j++)
tmp[j] = pos[j] ^ d[j];
data[1] = tmp;
data_len[1] = AES_BLOCK_SIZE;
data_elems = 2;
crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE);
crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
} else {
/* len(Sn) < 128 */
/* T = dbl(D) xor pad(Sn) */
gf_mulx(d); /* dbl */
memset(tmp, 0, AES_BLOCK_SIZE);
memcpy(tmp, addr[i], len[i]);
tmp[len[i]] = 0x80;
crypto_xor(d, tmp, AES_BLOCK_SIZE);
data[0] = d;
data_len[0] = sizeof(d);
data_elems = 1;
crypto_xor(d, addr[i], len[i]);
d[len[i]] ^= 0x80;
}
/* V = AES-CMAC(K, T) */
aes_cmac_vector(tfm, data_elems, data, data_len, v, AES_BLOCK_SIZE);
crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v);
return 0;
}
@ -80,7 +72,7 @@ static int aes_siv_encrypt(const u8 *key, size_t key_len,
size_t len[], u8 *out)
{
u8 v[AES_BLOCK_SIZE];
struct crypto_cipher *tfm;
struct crypto_shash *tfm;
struct crypto_skcipher *tfm2;
struct skcipher_request *req;
int res;
@ -95,14 +87,14 @@ static int aes_siv_encrypt(const u8 *key, size_t key_len,
/* S2V */
tfm = crypto_alloc_cipher("aes", 0, 0);
tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
/* K1 for S2V */
res = crypto_cipher_setkey(tfm, key, key_len);
res = crypto_shash_setkey(tfm, key, key_len);
if (!res)
res = aes_s2v(tfm, num_elem, addr, len, v);
crypto_free_cipher(tfm);
crypto_free_shash(tfm);
if (res)
return res;
@ -157,7 +149,7 @@ static int aes_siv_decrypt(const u8 *key, size_t key_len,
size_t num_elem, const u8 *addr[], size_t len[],
u8 *out)
{
struct crypto_cipher *tfm;
struct crypto_shash *tfm;
struct crypto_skcipher *tfm2;
struct skcipher_request *req;
struct scatterlist src[1], dst[1];
@ -210,14 +202,14 @@ static int aes_siv_decrypt(const u8 *key, size_t key_len,
/* S2V */
tfm = crypto_alloc_cipher("aes", 0, 0);
tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
/* K1 for S2V */
res = crypto_cipher_setkey(tfm, key, key_len);
res = crypto_shash_setkey(tfm, key, key_len);
if (!res)
res = aes_s2v(tfm, num_elem, addr, len, check);
crypto_free_cipher(tfm);
crypto_free_shash(tfm);
if (res)
return res;
if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0)