IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs
for x2APIC. If 32-bit IDs are not enabled, disable the optimized map to
honor x86 architectural behavior if multiple vCPUs shared a physical APIC
ID. As called out in the changelog that added the hack, all CPUs whose
(possibly truncated) APIC ID matches the target are supposed to receive
the IPI.
KVM intentionally differs from real hardware, because real hardware
(Knights Landing) does just "x2apic_id & 0xff" to decide whether to
accept the interrupt in xAPIC mode and it can deliver one interrupt to
more than one physical destination, e.g. 0x123 to 0x123 and 0x23.
Applying the hack even when x2APIC is not fully enabled means KVM doesn't
correctly handle scenarios where the guest has aliased xAPIC IDs across
multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any
interrupts. It's extremely unlikely any real world guest aliases APIC
IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the
lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which
vCPU is "normal".
Furthermore, the hack is _not_ guaranteed to work! The hack works if and
only if the optimized APIC map is successfully allocated. If the map
allocation fails (unlikely), KVM will fall back to its unoptimized
behavior, which _does_ honor the architectural behavior.
Pivot on 32-bit x2APIC IDs being enabled as that is required to take
advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't
break existing setups unless they are way, way off in the weeds.
And an entry in KVM's errata to document the hack. Alternatively, KVM
could provide an actual x2APIC quirk and document the hack that way, but
there's unlikely to ever be a use case for disabling the quirk. Go the
errata route to avoid having to validate a quirk no one cares about.
Fixes: 5bd5db385b3e ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 14243b387137a ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN
and event channel delivery") the clever version of me left some helpful
notes for those who would come after him:
/*
* For the irqfd workqueue, using the main kvm->lock mutex is
* fine since this function is invoked from kvm_set_irq() with
* no other lock held, no srcu. In future if it will be called
* directly from a vCPU thread (e.g. on hypercall for an IPI)
* then it may need to switch to using a leaf-node mutex for
* serializing the shared_info mapping.
*/
mutex_lock(&kvm->lock);
In commit 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
the other version of me ran straight past that comment without reading it,
and introduced a potential deadlock by taking vcpu->mutex and kvm->lock
in the wrong order.
Solve this as originally suggested, by adding a leaf-node lock in the Xen
state rather than using kvm->lock for it.
Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-4-dwmw2@infradead.org>
[Rebase, add docs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix the PMCR_EL0 reset value after the PMU rework
- Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
- Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
- Put the Apple M2 on the naughty step for not being able to
correctly implement the vgic SEIS feature, just liek the M1
before it
- Reviewer updates: Alex is stepping down, replaced by Zenghui
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmO27gQPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDwioP/A0UE7ujSxv3dlBstBhmtzOoX64pRufX01Kr
1oF24M1VuTVLwl3pp1nWH10SVWv5kukYZJAJ/3tDJOaMt/Q9c0exPCPc95i2p/r7
OC9j8rZVZnjGN6sAP5zazIT67tSanyLDeCC+j4J1pw20r2tB67LKSOoozEb5How7
CX+Oa2OiEiI34jp33v3mFQ3VxY3714QUMBUK7n+L29IFXGmQp6dfbhn2iY3uNpoU
YYrkPzBLUC1H//oCx0qoDDCXXeOKMGuWP1At5GIDz6ZSCBVpKdVbftCC59Dk7dDz
7BdQ5JoEc15RTZajdopOog4RV4YHP8VszaClhCA1ML0Pd2Mf4UVLlPnn7F+3yR3r
pMgjlOAlLJwHiwggJZ0EQ0wFdx9LuGeu3OwckGE/JxeEwaMdzGAEfcFoAGZV0ExZ
7riiKS+NmtrkuE9wJfWOrpDiseymmUbuhHq+F/HDq/SP6UdezAylkcxZRuN/ZCRc
9XVhTcWu/UPxoaSSd/sB4l9X8Ey/cZe28+kV7eE/m2g79bZKxHd4UUOUymb/aJxj
og10A6i0B1DOWMtKJ9hEsB6wI6Hllrqcbo8ewX1znKoKbfHZDeU/N5D4ZvTz85sf
zyqbsSZPDxMOwBPYTqZqG65tEWWw68HIJ9cqQzKDehN1Xm1coNIWSPrUnBMpSsWJ
qDQNmIzf
=XBtQ
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/arm64 fixes for 6.2, take #1
- Fix the PMCR_EL0 reset value after the PMU rework
- Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
- Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
- Put the Apple M2 on the naughty step for not being able to
correctly implement the vgic SEIS feature, just liek the M1
before it
- Reviewer updates: Alex is stepping down, replaced by Zenghui
kvm->srcu is taken in KVM_RUN and several other vCPU ioctls, therefore
vcpu->mutex is susceptible to the same deadlock that is documented
for kvm->slots_lock. The same holds for kvm->lock, since kvm->lock
is held outside vcpu->mutex. Fix the documentation and rearrange it
to highlight the difference between these locks and kvm->slots_arch_lock,
and how kvm->slots_arch_lock can be useful while processing a vmexit.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler. In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.
The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm-arm64/s1ptw-write-fault:
: .
: Fix S1PTW fault handling that was until then always taken
: as a write. From the cover letter:
:
: `Recent developments on the EFI front have resulted in guests that
: simply won't boot if the page tables are in a read-only memslot and
: that you're a bit unlucky in the way S2 gets paged in... The core
: issue is related to the fact that we treat a S1PTW as a write, which
: is close enough to what needs to be done. Until to get to RO memslots.
:
: The first patch fixes this and is definitely a stable candidate. It
: splits the faulting of page tables in two steps (RO translation fault,
: followed by a writable permission fault -- should it even happen).
: The second one documents the slightly odd behaviour of PTW writes to
: RO memslot, which do not result in a KVM_MMIO exit. The last patch is
: totally optional, only tangentially related, and randomly repainting
: stuff (maybe that's contagious, who knows)."
:
: .
KVM: arm64: Convert FSC_* over to ESR_ELx_FSC_*
KVM: arm64: Document the behaviour of S1PTW faults on RO memslots
KVM: arm64: Fix S1PTW handling on RO memslots
Signed-off-by: Marc Zyngier <maz@kernel.org>
Although the KVM API says that a write to a RO memslot must result
in a KVM_EXIT_MMIO describing the write, the arm64 architecture
doesn't provide the *data* written by a Stage-1 page table walk
(we only get the address).
Since there isn't much userspace can do with so little information
anyway, document the fact that such an access results in a guest
exception, not an exit. This is consistent with the guest being
terminally broken anyway.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Drop kvm_count_lock and instead protect kvm_usage_count with kvm_lock now
that KVM hooks CPU hotplug during the ONLINE phase, which can sleep.
Previously, KVM hooked the STARTING phase, which is not allowed to sleep
and thus could not take kvm_lock (a mutex). This effectively allows the
task that's initiating hardware enabling/disabling to preempted and/or
migrated.
Note, the Documentation/virt/kvm/locking.rst statement that kvm_count_lock
is "raw" because hardware enabling/disabling needs to be atomic with
respect to migration is wrong on multiple fronts. First, while regular
spinlocks can be preempted, the task holding the lock cannot be migrated.
Second, preventing migration is not required. on_each_cpu() disables
preemption, which ensures that cpus_hardware_enabled correctly reflects
hardware state. The task may be preempted/migrated between bumping
kvm_usage_count and invoking on_each_cpu(), but that's perfectly ok as
kvm_usage_count is still protected, e.g. other tasks that call
hardware_enable_all() will be blocked until the preempted/migrated owner
exits its critical section.
KVM does have lockless accesses to kvm_usage_count in the suspend/resume
flows, but those are safe because all tasks must be frozen prior to
suspending CPUs, and a task cannot be frozen while it holds one or more
locks (userspace tasks are frozen via a fake signal).
Preemption doesn't need to be explicitly disabled in the hotplug path.
The hotplug thread is pinned to the CPU that's being hotplugged, and KVM
only cares about having a stable CPU, i.e. to ensure hardware is enabled
on the correct CPU. Lockep, i.e. check_preemption_disabled(), plays nice
with this state too, as is_percpu_thread() is true for the hotplug thread.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acquire a new mutex, vendor_module_lock, in kvm_x86_vendor_init() while
doing hardware setup to ensure that concurrent calls are fully serialized.
KVM rejects attempts to load vendor modules if a different module has
already been loaded, but doesn't handle the case where multiple vendor
modules are loaded at the same time, and module_init() doesn't run under
the global module_mutex.
Note, in practice, this is likely a benign bug as no platform exists that
supports both SVM and VMX, i.e. barring a weird VM setup, one of the
vendor modules is guaranteed to fail a support check before modifying
common KVM state.
Alternatively, KVM could perform an atomic CMPXCHG on .hardware_enable,
but that comes with its own ugliness as it would require setting
.hardware_enable before success is guaranteed, e.g. attempting to load
the "wrong" could result in spurious failure to load the "right" module.
Introduce a new mutex as using kvm_lock is extremely deadlock prone due
to kvm_lock being taken under cpus_write_lock(), and in the future, under
under cpus_read_lock(). Any operation that takes cpus_read_lock() while
holding kvm_lock would potentially deadlock, e.g. kvm_timer_init() takes
cpus_read_lock() to register a callback. In theory, KVM could avoid
such problematic paths, i.e. do less setup under kvm_lock, but avoiding
all calls to cpus_read_lock() is subtly difficult and thus fragile. E.g.
updating static calls also acquires cpus_read_lock().
Inverting the lock ordering, i.e. always taking kvm_lock outside
cpus_read_lock(), is not a viable option as kvm_lock is taken in various
callbacks that may be invoked under cpus_read_lock(), e.g. x86's
kvmclock_cpufreq_notifier().
The lockdep splat below is dependent on future patches to take
cpus_read_lock() in hardware_enable_all(), but as above, deadlock is
already is already possible.
======================================================
WARNING: possible circular locking dependency detected
6.0.0-smp--7ec93244f194-init2 #27 Tainted: G O
------------------------------------------------------
stable/251833 is trying to acquire lock:
ffffffffc097ea28 (kvm_lock){+.+.}-{3:3}, at: hardware_enable_all+0x1f/0xc0 [kvm]
but task is already holding lock:
ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (cpu_hotplug_lock){++++}-{0:0}:
cpus_read_lock+0x2a/0xa0
__cpuhp_setup_state+0x2b/0x60
__kvm_x86_vendor_init+0x16a/0x1870 [kvm]
kvm_x86_vendor_init+0x23/0x40 [kvm]
0xffffffffc0a4d02b
do_one_initcall+0x110/0x200
do_init_module+0x4f/0x250
load_module+0x1730/0x18f0
__se_sys_finit_module+0xca/0x100
__x64_sys_finit_module+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (kvm_lock){+.+.}-{3:3}:
__lock_acquire+0x16f4/0x30d0
lock_acquire+0xb2/0x190
__mutex_lock+0x98/0x6f0
mutex_lock_nested+0x1b/0x20
hardware_enable_all+0x1f/0xc0 [kvm]
kvm_dev_ioctl+0x45e/0x930 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(cpu_hotplug_lock);
lock(kvm_lock);
lock(cpu_hotplug_lock);
lock(kvm_lock);
*** DEADLOCK ***
1 lock held by stable/251833:
#0: ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* several fixes to nested VMX execution controls
* fixes and clarification to the documentation for Xen emulation
* do not unnecessarily release a pmu event with zero period
* MMU fixes
* fix Coverity warning in kvm_hv_flush_tlb()
selftests:
* fixes for the ucall mechanism in selftests
* other fixes mostly related to compilation with clang
Currently only the locking order of SRCU vs kvm->slots_arch_lock
and kvm->slots_lock is documented. Extend this to kvm->lock
since Xen emulation got it terribly wrong.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most notably, the KVM_XEN_EVTCHN_RESET feature had escaped documentation
entirely. Along with how to turn most stuff off on SHUTDOWN_soft_reset.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Delete an extra block of code/documentation that snuck in when KVM's
documentation was converted to ReST format.
Fixes: 106ee47dc633 ("docs: kvm: Convert api.txt to ReST format")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221207003637.2041211-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a97d:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
Add ReST formatting to the set of userspace MSR exits/flags so that the
resulting HTML docs generate a table instead of malformed gunk. This
also fixes a warning that was introduced by a recent cleanup of the
relevant documentation (yay copy+paste).
>> Documentation/virt/kvm/api.rst:7287: WARNING: Block quote ends
without a blank line; unexpected unindent.
Fixes: 1ae099540e8c ("KVM: x86: Allow deflecting unknown MSR accesses to user space")
Fixes: 1f158147181b ("KVM: x86: Clean up KVM_CAP_X86_USER_SPACE_MSR documentation")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221207000959.2035098-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYmwACgkQaDWVMHDJ
krD8hg/+J0hUTfljmlCctwGZyqVR3Y2E722wL9oTvbgYiUAtFrARzfPF0WNwvHi5
Ywvod5hQ4unPoluthdVAD/uJqcPVhjIZ7CvNTGrS8J7ED5x5ydGLNWAL3Rn+9s6O
xkz/DsV4zl+cPQ60XLsO+3Mc6RhwVs9DUthpUovl22epmgmRPCovkHWkvQsZajJq
ceF/78ThfrkG4dDouaIXi1gsmKLLzU4KdHeBATMg0bgPQXFJZSGBCLaeJXWmLapq
7N3SznUqDMn4Plr/IuP4XuMA6VTVojrakCcBmw5SGVqhkVWGM1/FMg7jHSQS7Z5V
5uG7CkhTBqh17v9xKwDMPh34D51TLtNifA7jbecyL5155czFkj7BoSwEFINU/wCz
agUO9NvK9j1chUnA2UGqGQigM3nWGZHMwaQjfgBWyq5gqF8HURUUrjx6XuunOfmB
1byyrDu0g48u/zaQ/RpNfewz1ZY+WylDPcqOhYaVWF1PYThStML/VMBKpdsl1Ovw
nytUdQsaBIjFHQdB+snizaF93+/0FG+FTGAlDnHYmey/8plL2LYuzrcDnDYnGEXa
tN3HFd2lAi4JBLmvmgF39gH+BLXuKTLweIhwTXZTn91cfire3yxiXAnLd0tuptMP
aXFddxKMdMpxTqzy2X+8gJjqCr2lZ9gZkxaPsWwrBM+xrJf0p2w=
=JGnq
-----END PGP SIGNATURE-----
Merge tag 'x86_tdx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 tdx updates from Dave Hansen:
"This includes a single chunk of new functionality for TDX guests which
allows them to talk to the trusted TDX module software and obtain an
attestation report.
This report can then be used to prove the trustworthiness of the guest
to a third party and get access to things like storage encryption
keys"
* tag 'x86_tdx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftests/tdx: Test TDX attestation GetReport support
virt: Add TDX guest driver
x86/tdx: Add a wrapper to get TDREPORT0 from the TDX Module
x86 Xen-for-KVM:
* Allow the Xen runstate information to cross a page boundary
* Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
* add support for 32-bit guests in SCHEDOP_poll
x86 fixes:
* One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
* Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
* Clean up the MSR filter docs.
* Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
* Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
* Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
* Advertise (on AMD) that the SMM_CTL MSR is not supported
* Remove unnecessary exports
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
Documentation:
* Remove deleted ioctls from documentation
* Various fixes
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz
rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i
KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX
wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM
AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk
pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d
1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc
4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT
H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR
qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF
K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC
aWa6oGVC
=iIPT
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
* kvm-arm64/mte-map-shared:
: .
: Update the MTE support to allow the VMM to use shared mappings
: to back the memslots exposed to MTE-enabled guests.
:
: Patches courtesy of Catalin Marinas and Peter Collingbourne.
: .
: Fix a number of issues with MTE, such as races on the tags
: being initialised vs the PG_mte_tagged flag as well as the
: lack of support for VM_SHARED when KVM is involved.
:
: Patches from Catalin Marinas and Peter Collingbourne.
: .
Documentation: document the ABI changes for KVM_CAP_ARM_MTE
KVM: arm64: permit all VM_MTE_ALLOWED mappings with MTE enabled
KVM: arm64: unify the tests for VMAs in memslots when MTE is enabled
arm64: mte: Lock a page for MTE tag initialisation
mm: Add PG_arch_3 page flag
KVM: arm64: Simplify the sanitise_mte_tags() logic
arm64: mte: Fix/clarify the PG_mte_tagged semantics
mm: Do not enable PG_arch_2 for all 64-bit architectures
Signed-off-by: Marc Zyngier <maz@kernel.org>
Clarify the existing documentation about how KVM_CAP_HALT_POLL and
halt_poll_ns interact to make it clear that VMs using KVM_CAP_HALT_POLL
ignore halt_poll_ns.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221201195249.3369720-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move halt-polling.rst into the common KVM documentation directory and
out of the x86-specific directory. Halt-polling is a common feature and
the existing documentation is already written as such.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221201195249.3369720-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
- Clean up the MSR filter docs.
- Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmOJQesSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5IR4QAKGPbLRykY/2FohV2HDu5fDPxA2Fe9nu
5W7ZIptQu+tQtCTWKFEjcQdwYoNrLbr0hr1eGubVbIvBqJbwPQfH7G0765eOIcvy
s6Zn2N24IisIoUxdkJGOL3Tt1UR7wCFbwC+ms0i4FQvMcw+TbM0BTHgJDdwR5laX
mGN7ubz5iImwDFFE3Bd8Qy5I+FGL9CI60l+RzK6b7J8HYi1wOBMLU9QueF/dB7gR
g+navZJAAnvN6YIkjP5j8yPBuvhDzni379ue5ATDq1ALvyyI7xlYALsxpUjCnLuo
CkbvgmfmC94Vdm7pzFgsbazUN2oIjwoimjFQHP1bf8Jmd+770R282JpnwiD/ydCV
Tl2ArwXA2zxVxNZm9g/XqPBwWBWWgWfYIQbuuxc065MnXCnHkY5UGGf0JNx41CDl
hdtm9DHkft8+6kyBBmgkdKxd328Znljq02v3nLePUipfpDVaNj4VAUj9IpV6Lpuj
GJjs4Wx7oqFwH1Im/LqZgnOGwgkSj3ObHtkYx2RSrQAQultbjuplFz2qZWP8PF6A
FrJbcddKOmLINrdNOlvTd5WKCAjtV8vycjFkk+/7H67rpZdM8AI1StrzMP6gmwg4
ARozZJ2UF8nTriRYFQbFQyNm9bBTZ7YQ/HajqfhvCuZLi7i1EaImhC0F1xn7IU5S
6XhvQPvjRTgS
=i6OA
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.2-1' of https://github.com/kvm-x86/linux into HEAD
Misc KVM x86 fixes and cleanups for 6.2:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
- Clean up the MSR filter docs.
- Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
The ioctls are missing an architecture property that is present in others.
Suggested-by: Sergio Lopez Pascual <slp@redhat.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-5-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are still references to the removed kvm_memory_region data structure
but the doc and comments should mention struct kvm_userspace_memory_region
instead, since that is what's used by the ioctl that replaced the old one
and this data structure support the same set of flags.
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-4-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The documentation says that the ioctl has been deprecated, but it has been
actually removed and the remaining references are just left overs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-3-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The documentation says that the ioctl has been deprecated, but it has been
actually removed and the remaining references are just left overs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-2-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up the KVM_CAP_X86_USER_SPACE_MSR documentation to eliminate
misleading and/or inconsistent verbiage, and to actually document what
accesses are intercepted by which flags.
- s/will/may since not all #GPs are guaranteed to be intercepted
- s/deflect/intercept to align with common KVM terminology
- s/user space/userspace to align with the majority of KVM docs
- Avoid using "trap" terminology, as KVM exits to userspace _before_
stepping, i.e. doesn't exhibit trap-like behavior
- Actually document the flags
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-4-seanjc@google.com
Reword the MSR filtering documentatiion to more precisely define the
behavior of filtering using common virtualization terminology.
- Explicitly document KVM's behavior when an MSR is denied
- s/handled/allowed as there is no guarantee KVM will "handle" the
MSR access
- Drop the "fall back" terminology, which incorrectly suggests that
there is existing KVM behavior to fall back to
- Fix an off-by-one error in the range (the end is exclusive)
- Call out the interaction between MSR filtering and
KVM_CAP_X86_USER_SPACE_MSR's KVM_MSR_EXIT_REASON_FILTER
- Delete the redundant paragraph on what '0' and '1' in the bitmap
means, it's covered by the sections on KVM_MSR_FILTER_{READ,WRITE}
- Delete the clause on x2APIC MSR behavior depending on APIC base, this
is covered by stating that KVM follows architectural behavior when
emulating/virtualizing MSR accesses
Reported-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-3-seanjc@google.com
Delete the paragraph that describes the behavior when both
KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE are set for a range. There is
nothing special about KVM's handling of this combination, whereas
explicitly documenting the combination suggests that there is some magic
behavior the user needs to be aware of.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-2-seanjc@google.com
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document both the restriction on VM_MTE_ALLOWED mappings and
the relaxation for shared mappings.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-9-pcc@google.com
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEwGNS88vfc9+v45Yq41TmuOI4ufgFAmN/eYwACgkQ41TmuOI4
ufjoxA/9Et38aXO/IhmUt8v0QhA4yec+sc5GSFfQSYehej/1Vqhw0DXx+ORUiRgg
+rtiXJSSqkuD2dL+BDffY2xoul6nzNdVf4AbkcnrWscfWr6xwVYlPvuL0ymGI6J2
U/IPedRoKw0bHw/wHs05yV5PubrRwDFERKhtyXWYGbPJhX0w2n3IFOoKH1oWBhLW
Dc8jEs6t3gDbJ71Er0xoeBUoiuu+PgZG06cpOvzBZ0KclRgjADXyISqqk8/4mu8w
R+/Wf8NcrbQYV1jfCeq5zIsKC8uvnFj25UuyTLumn5vh+dNNsvE72Khe4tz7LI0I
ZPZ+GZuemu7Yi12dKjw4Sw3ui0ejWH/5XL1SVB0X/xYIWrBqOot+Lq6538GCng+c
tJt+zsu64VFgXCCZ8O9qO4uE4DBL70H3ThT7VZxIghSTZtY0xh3uFc64f3/3d9dy
K4WTJHrmMxhXaA/rqtIa8I53JvFl8CztofZATiQQesyPuc7lZ01w1Co5el4xYaxe
YknyMTq11qf/iYqVOW7sjoWW/YRuuMZ4+FhpI3o/SllVdN98iTwkk1kP3wcoBO5P
bvzpm+WXHbv9OxifPrqkqv34+upbjfEmSogHudQzagBX4vl3rZRfBCdQGCAha0Uc
ZYyg68kiil5sWmHI/Ln/ZjANYfbS5sF0CreuWxnmqcwKl2NSN/E=
=/1yt
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-6.2-1' of https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
Add documentation for the new commands added to the KVM_S390_PV_COMMAND
ioctl.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-3-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-3-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
TDX guest driver exposes IOCTL interfaces to service TDX guest
user-specific requests. Currently, it is only used to allow the user to
get the TDREPORT to support TDX attestation.
Details about the TDX attestation process are documented in
Documentation/x86/tdx.rst, and the IOCTL details are documented in
Documentation/virt/coco/tdx-guest.rst.
Operations like getting TDREPORT involves sending a blob of data as
input and getting another blob of data as output. It was considered
to use a sysfs interface for this, but it doesn't fit well into the
standard sysfs model for configuring values. It would be possible to
do read/write on files, but it would need multiple file descriptors,
which would be somewhat messy. IOCTLs seem to be the best fitting
and simplest model for this use case. The AMD sev-guest driver also
uses the IOCTL interface to support attestation.
[Bagas Sanjaya: Ack is for documentation portion]
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Wander Lairson Costa <wander@redhat.com>
Link: https://lore.kernel.org/all/20221116223820.819090-3-sathyanarayanan.kuppuswamy%40linux.intel.com
This includes table format and using reST labels for
cross-referencing to vcpu.rst.
Suggested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221103131210.3603385-1-usama.arif@bytedance.com
Enable ring-based dirty memory tracking on ARM64:
- Enable CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL.
- Enable CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP.
- Set KVM_DIRTY_LOG_PAGE_OFFSET for the ring buffer's physical page
offset.
- Add ARM64 specific kvm_arch_allow_write_without_running_vcpu() to
keep the site of saving vgic/its tables out of the no-running-vcpu
radar.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-5-gshan@redhat.com
ARM64 needs to dirty memory outside of a VCPU context when VGIC/ITS is
enabled. It's conflicting with that ring-based dirty page tracking always
requires a running VCPU context.
Introduce a new flavor of dirty ring that requires the use of both VCPU
dirty rings and a dirty bitmap. The expectation is that for non-VCPU
sources of dirty memory (such as the VGIC/ITS on arm64), KVM writes to
the dirty bitmap. Userspace should scan the dirty bitmap before migrating
the VM to the target.
Use an additional capability to advertise this behavior. The newly added
capability (KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP) can't be enabled before
KVM_CAP_DIRTY_LOG_RING_ACQ_REL on ARM64. In this way, the newly added
capability is treated as an extension of KVM_CAP_DIRTY_LOG_RING_ACQ_REL.
Suggested-by: Marc Zyngier <maz@kernel.org>
Suggested-by: Peter Xu <peterx@redhat.com>
Co-developed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-4-gshan@redhat.com
When running under PV, the guest's TOD clock is under control of the
ultravisor and the hypervisor isn't allowed to change it. Hence, don't
allow userspace to change the guest's TOD clock by returning
-EOPNOTSUPP.
When userspace changes the guest's TOD clock, KVM updates its
kvm.arch.epoch field and, in addition, the epoch field in all state
descriptions of all VCPUs.
But, under PV, the ultravisor will ignore the epoch field in the state
description and simply overwrite it on next SIE exit with the actual
guest epoch. This leads to KVM having an incorrect view of the guest's
TOD clock: it has updated its internal kvm.arch.epoch field, but the
ultravisor ignores the field in the state description.
Whenever a guest is now waiting for a clock comparator, KVM will
incorrectly calculate the time when the guest should wake up, possibly
causing the guest to sleep for much longer than expected.
With this change, kvm_s390_set_tod() will now take the kvm->lock to be
able to call kvm_s390_pv_is_protected(). Since kvm_s390_set_tod_clock()
also takes kvm->lock, use __kvm_s390_set_tod_clock() instead.
The function kvm_s390_set_tod_clock is now unused, hence remove it.
Update the documentation to indicate the TOD clock attr calls can now
return -EOPNOTSUPP.
Fixes: 0f3035047140 ("KVM: s390: protvirt: Do only reset registers that are accessible")
Reported-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221011160712.928239-2-nrb@linux.ibm.com
Message-Id: <20221011160712.928239-2-nrb@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
* Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
* Better handling of AArch32 ID registers on AArch64-only
systems
* Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
* Advertise the new kvmarm mailing list
* Various minor cleanups and spelling fixes
RISC-V:
* Improved instruction encoding infrastructure for
instructions not yet supported by binutils
* Svinval support for both KVM Host and KVM Guest
* Zihintpause support for KVM Guest
* Zicbom support for KVM Guest
* Record number of signal exits as a VCPU stat
* Use generic guest entry infrastructure
x86:
* Misc PMU fixes and cleanups.
* selftests: fixes for Hyper-V hypercall
* selftests: fix nx_huge_pages_test on TDP-disabled hosts
* selftests: cleanups for fix_hypercall_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM7OcMUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPAFgf/Rqc9hrXZVdbh2OZ+gScSsFsPK1zO
DISUksLcXaYVYYsvQAEg/N2BPz3XbmO4jA+z8bIUrYTA7fC98we2C4jfR+EaX/fO
+/Kzf0lAgu/nQZyFzUya+1jRsZqvVbC/HmDCI2kzN4u78e/LZ7NVcMijdV/ly6ib
cq0b0LLqJHe/fcpJ806JZP3p5sndQhDmlUkZ2AWZf6CUKSEFcufbbYkt+84ZK4PL
N9mEqXYQ3DXClLQmIBv+NZhtGlmADkWDE4BNouw8dVxhaXH7Hw/jfBHdb6SSHMRe
tQ6Src1j8AYOhf5J35SMudgkbGcMelm0yeZ7Sizk+5Ft0EmdbZsnkvsGdQ==
=4RA+
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
"The main batch of ARM + RISC-V changes, and a few fixes and cleanups
for x86 (PMU virtualization and selftests).
ARM:
- Fixes for single-stepping in the presence of an async exception as
well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only systems
- Fixes for the dirty-ring API, allowing it to work on architectures
with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
RISC-V:
- Improved instruction encoding infrastructure for instructions not
yet supported by binutils
- Svinval support for both KVM Host and KVM Guest
- Zihintpause support for KVM Guest
- Zicbom support for KVM Guest
- Record number of signal exits as a VCPU stat
- Use generic guest entry infrastructure
x86:
- Misc PMU fixes and cleanups.
- selftests: fixes for Hyper-V hypercall
- selftests: fix nx_huge_pages_test on TDP-disabled hosts
- selftests: cleanups for fix_hypercall_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (57 commits)
riscv: select HAVE_POSIX_CPU_TIMERS_TASK_WORK
RISC-V: KVM: Use generic guest entry infrastructure
RISC-V: KVM: Record number of signal exits as a vCPU stat
RISC-V: KVM: add __init annotation to riscv_kvm_init()
RISC-V: KVM: Expose Zicbom to the guest
RISC-V: KVM: Provide UAPI for Zicbom block size
RISC-V: KVM: Make ISA ext mappings explicit
RISC-V: KVM: Allow Guest use Zihintpause extension
RISC-V: KVM: Allow Guest use Svinval extension
RISC-V: KVM: Use Svinval for local TLB maintenance when available
RISC-V: Probe Svinval extension form ISA string
RISC-V: KVM: Change the SBI specification version to v1.0
riscv: KVM: Apply insn-def to hlv encodings
riscv: KVM: Apply insn-def to hfence encodings
riscv: Introduce support for defining instructions
riscv: Add X register names to gpr-nums
KVM: arm64: Advertise new kvmarm mailing list
kvm: vmx: keep constant definition format consistent
kvm: mmu: fix typos in struct kvm_arch
KVM: selftests: Fix nx_huge_pages_test on TDP-disabled hosts
...
am sending out early due to me travelling next week. There is a
lone mm patch for which Andrew gave an informal ack at
https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org.
I will send the bulk of ARM work, as well as other
architectures, at the end of next week.
ARM:
* Account stage2 page table allocations in memory stats.
x86:
* Account EPT/NPT arm64 page table allocations in memory stats.
* Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses.
* Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of
Hyper-V now support eVMCS fields associated with features that are
enumerated to the guest.
* Use KVM's sanitized VMCS config as the basis for the values of nested VMX
capabilities MSRs.
* A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed
a longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed
for good.
* A handful of fixes for memory leaks in error paths.
* Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow.
* Never write to memory from non-sleepable kvm_vcpu_check_block()
* Selftests refinements and cleanups.
* Misc typo cleanups.
Generic:
* remove KVM_REQ_UNHALT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz
QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/
FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4
3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J
mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE
+cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig==
=/hqX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
- Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only
systems
- Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmM5hQcPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoMUP/jra4HSmujLUB5G7Op8HxuurEecOc6xtw0Af
AbDLlVc2Vs4rrdVh8GMc8D80atUAVitp8IFjdp/PzI2GTBTzWz43Gav2AbhgIJbJ
xoFVHL8LkdHKyMbq10359DqGMqhIf41OFzGwhbzcx2V4pKNkSpjbCpu3bi/+Ybjg
006ZpZc7NAU0rZgw9Flb/dhn0jw7RMc3orhoDQ4tBp1P/VhvqvgFt5bWipkvvBP7
+lQK28ujG3ghST/hKRhg6ozgy5+6NEEHMuhErMYP8nIivRchX+pWF2Lb0qGH1e+U
v2MZIZnIIUjyTV1vbYlxtltzfYmPuQ2MFNUBawI9tmlIOU9vJSCzeJS64uWK4KLV
kbmk57OfC7rQoSNJH4jaKQp0YpIktrB9Vei97t4I7NwEmkjQj6cLTgg4tQrNqTiQ
cFGeC9mE+lhFC8z1lCbna2eG631FxpPrB1SJ1/CU9wboam9dUfXGIvBPh+i2pvMZ
vcxzUZJ11y+/uhp4k8i2PBwNno0iwRXd5MinwRUs2CR5vhs8qa5y7FVWKyqKpgI2
xqr4lYTixJZL3mWkYyOQuClrTbT1zkoaPldLq6M7wvO08+QV8ryMeyKT+9s/gNQU
dcYSwBCWZaOZm2nN8/zjxRb7VqZVu3cwyXi9XXUWNTCgIe/Q/SDPbXU/Hwbgzf8X
UsQF7e9A
=aNPK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for v6.1
- Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only
systems
- Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
Now that the kernel can expose to userspace that its dirty ring
management relies on explicit ordering, document these new requirements
for VMMs to do the right thing.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20220926145120.27974-5-maz@kernel.org
KVM_REQ_UNHALT is now unnecessary because it is replaced by the return
value of kvm_vcpu_block/kvm_vcpu_halt. Remove it.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20220921003201.1441511-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Two copies of KVM_X86_SET_MSR_FILTER somehow managed to make it's way
into the documentation. Remove one copy and merge the difference from
the removed copy into the copy that's being kept.
Fixes: fd49e8ee70b3 ("Merge branch 'kvm-sev-cgroup' into HEAD")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20220712001045.2364298-2-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the OS fails the PSP initialization when the file specified at
'init_ex_path' does not exist or has invalid content. However the SEV
spec just requires users to allocate 32KB of 0xFF in the file, which can
be taken care of by the OS easily.
To improve the robustness during the PSP init, leverage the retry
mechanism and continue the init process:
Before the first INIT_EX call, if the content is invalid or missing,
continue the process by feeding those contents into PSP instead of
aborting. PSP will then override it with 32KB 0xFF and return
SEV_RET_SECURE_DATA_INVALID status code. In the second INIT_EX call,
this 32KB 0xFF content will then be fed and PSP will write the valid
data to the file.
In order to do this, sev_read_init_ex_file should only be called once
for the first INIT_EX call. Calling it again for the second INIT_EX call
will cause the invalid file content overwriting the valid 32KB 0xFF data
provided by PSP in the first INIT_EX call.
Co-developed-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Jacky Li <jackyli@google.com>
Reported-by: Alper Gun <alpergun@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>