IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This reverts commit 23c2d497de21f25898fbea70aeb292ab8acc8c94.
Commit 23c2d497de21 ("mm: kmemleak: take a full lowmem check in
kmemleak_*_phys()") brought false leak alarms on some archs like arm64
that does not init pfn boundary in early booting. The final solution
lands on linux-6.0: commit 0c24e061196c ("mm: kmemleak: add rbtree and
store physical address for objects allocated with PA").
Revert this commit before linux-6.0. The original issue of invalid PA
can be mitigated by additional check in devicetree.
The false alarm report is as following: Kmemleak output: (Qemu/arm64)
unreferenced object 0xffff0000c0170a00 (size 128):
comm "swapper/0", pid 1, jiffies 4294892404 (age 126.208s)
hex dump (first 32 bytes):
62 61 73 65 00 00 00 00 00 00 00 00 00 00 00 00 base............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<(____ptrval____)>] __kmalloc_track_caller+0x1b0/0x2e4
[<(____ptrval____)>] kstrdup_const+0x8c/0xc4
[<(____ptrval____)>] kvasprintf_const+0xbc/0xec
[<(____ptrval____)>] kobject_set_name_vargs+0x58/0xe4
[<(____ptrval____)>] kobject_add+0x84/0x100
[<(____ptrval____)>] __of_attach_node_sysfs+0x78/0xec
[<(____ptrval____)>] of_core_init+0x68/0x104
[<(____ptrval____)>] driver_init+0x28/0x48
[<(____ptrval____)>] do_basic_setup+0x14/0x28
[<(____ptrval____)>] kernel_init_freeable+0x110/0x178
[<(____ptrval____)>] kernel_init+0x20/0x1a0
[<(____ptrval____)>] ret_from_fork+0x10/0x20
This pacth is also applicable to linux-5.17.y/linux-5.18.y/linux-5.19.y
Cc: <stable@vger.kernel.org>
Signed-off-by: Yee Lee <yee.lee@mediatek.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2555283eb40df89945557273121e9393ef9b542b upstream.
anon_vma->degree tracks the combined number of child anon_vmas and VMAs
that use the anon_vma as their ->anon_vma.
anon_vma_clone() then assumes that for any anon_vma attached to
src->anon_vma_chain other than src->anon_vma, it is impossible for it to
be a leaf node of the VMA tree, meaning that for such VMAs ->degree is
elevated by 1 because of a child anon_vma, meaning that if ->degree
equals 1 there are no VMAs that use the anon_vma as their ->anon_vma.
This assumption is wrong because the ->degree optimization leads to leaf
nodes being abandoned on anon_vma_clone() - an existing anon_vma is
reused and no new parent-child relationship is created. So it is
possible to reuse an anon_vma for one VMA while it is still tied to
another VMA.
This is an issue because is_mergeable_anon_vma() and its callers assume
that if two VMAs have the same ->anon_vma, the list of anon_vmas
attached to the VMAs is guaranteed to be the same. When this assumption
is violated, vma_merge() can merge pages into a VMA that is not attached
to the corresponding anon_vma, leading to dangling page->mapping
pointers that will be dereferenced during rmap walks.
Fix it by separately tracking the number of child anon_vmas and the
number of VMAs using the anon_vma as their ->anon_vma.
Fixes: 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy")
Cc: stable@kernel.org
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b67fbebd4cf980aecbcc750e1462128bffe8ae15 upstream.
Some drivers rely on having all VMAs through which a PFN might be
accessible listed in the rmap for correctness.
However, on X86, it was possible for a VMA with stale TLB entries
to not be listed in the rmap.
This was fixed in mainline with
commit b67fbebd4cf9 ("mmu_gather: Force tlb-flush VM_PFNMAP vmas"),
but that commit relies on preceding refactoring in
commit 18ba064e42df3 ("mmu_gather: Let there be one tlb_{start,end}_vma()
implementation") and commit 1e9fdf21a4339 ("mmu_gather: Remove per arch
tlb_{start,end}_vma()").
This patch provides equivalent protection without needing that
refactoring, by forcing a TLB flush between removing PTEs in
unmap_vmas() and the call to unlink_file_vma() in free_pgtables().
[This is a stable-specific rewrite of the upstream commit!]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f96f7a40874d7c746680c0b9f57cef2262ae551f upstream.
Patch series "mm/hugetlb: fix write-fault handling for shared mappings", v2.
I observed that hugetlb does not support/expect write-faults in shared
mappings that would have to map the R/O-mapped page writable -- and I
found two case where we could currently get such faults and would
erroneously map an anon page into a shared mapping.
Reproducers part of the patches.
I propose to backport both fixes to stable trees. The first fix needs a
small adjustment.
This patch (of 2):
Staring at hugetlb_wp(), one might wonder where all the logic for shared
mappings is when stumbling over a write-protected page in a shared
mapping. In fact, there is none, and so far we thought we could get away
with that because e.g., mprotect() should always do the right thing and
map all pages directly writable.
Looks like we were wrong:
--------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#define HUGETLB_SIZE (2 * 1024 * 1024u)
static void clear_softdirty(void)
{
int fd = open("/proc/self/clear_refs", O_WRONLY);
const char *ctrl = "4";
int ret;
if (fd < 0) {
fprintf(stderr, "open(clear_refs) failed\n");
exit(1);
}
ret = write(fd, ctrl, strlen(ctrl));
if (ret != strlen(ctrl)) {
fprintf(stderr, "write(clear_refs) failed\n");
exit(1);
}
close(fd);
}
int main(int argc, char **argv)
{
char *map;
int fd;
fd = open("/dev/hugepages/tmp", O_RDWR | O_CREAT);
if (!fd) {
fprintf(stderr, "open() failed\n");
return -errno;
}
if (ftruncate(fd, HUGETLB_SIZE)) {
fprintf(stderr, "ftruncate() failed\n");
return -errno;
}
map = mmap(NULL, HUGETLB_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
if (map == MAP_FAILED) {
fprintf(stderr, "mmap() failed\n");
return -errno;
}
*map = 0;
if (mprotect(map, HUGETLB_SIZE, PROT_READ)) {
fprintf(stderr, "mmprotect() failed\n");
return -errno;
}
clear_softdirty();
if (mprotect(map, HUGETLB_SIZE, PROT_READ|PROT_WRITE)) {
fprintf(stderr, "mmprotect() failed\n");
return -errno;
}
*map = 0;
return 0;
}
--------------------------------------------------------------------------
Above test fails with SIGBUS when there is only a single free hugetlb page.
# echo 1 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
# ./test
Bus error (core dumped)
And worse, with sufficient free hugetlb pages it will map an anonymous page
into a shared mapping, for example, messing up accounting during unmap
and breaking MAP_SHARED semantics:
# echo 2 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
# ./test
# cat /proc/meminfo | grep HugePages_
HugePages_Total: 2
HugePages_Free: 1
HugePages_Rsvd: 18446744073709551615
HugePages_Surp: 0
Reason in this particular case is that vma_wants_writenotify() will
return "true", removing VM_SHARED in vma_set_page_prot() to map pages
write-protected. Let's teach vma_wants_writenotify() that hugetlb does not
support softdirty tracking.
Link: https://lkml.kernel.org/r/20220811103435.188481-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220811103435.188481-2-david@redhat.com
Fixes: 64e455079e1b ("mm: softdirty: enable write notifications on VMAs after VM_SOFTDIRTY cleared")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Jamie Liu <jamieliu@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7f82f922319ede486540e8746769865b9508d2c2 ]
Since the beginning, charged is set to 0 to avoid calling vm_unacct_memory
twice because vm_unacct_memory will be called by above unmap_region. But
since commit 4f74d2c8e827 ("vm: remove 'nr_accounted' calculations from
the unmap_vmas() interfaces"), unmap_region doesn't call vm_unacct_memory
anymore. So charged shouldn't be set to 0 now otherwise the calling to
paired vm_unacct_memory will be missed and leads to imbalanced account.
Link: https://lkml.kernel.org/r/20220618082027.43391-1-linmiaohe@huawei.com
Fixes: 4f74d2c8e827 ("vm: remove 'nr_accounted' calculations from the unmap_vmas() interfaces")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 97113eb39fa7972722ff490b947d8af023e1f6a2 upstream.
To avoid a race between rmap walk and mremap, mremap does
take_rmap_locks(). The lock was taken to ensure that rmap walk don't miss
a page table entry due to PTE moves via move_pagetables(). The kernel
does further optimization of this lock such that if we are going to find
the newly added vma after the old vma, the rmap lock is not taken. This
is because rmap walk would find the vmas in the same order and if we don't
find the page table attached to older vma we would find it with the new
vma which we would iterate later.
As explained in commit eb66ae030829 ("mremap: properly flush TLB before
releasing the page") mremap is special in that it doesn't take ownership
of the page. The optimized version for PUD/PMD aligned mremap also
doesn't hold the ptl lock. This can result in stale TLB entries as show
below.
This patch updates the rmap locking requirement in mremap to handle the race condition
explained below with optimized mremap::
Optmized PMD move
CPU 1 CPU 2 CPU 3
mremap(old_addr, new_addr) page_shrinker/try_to_unmap_one
mmap_write_lock_killable()
addr = old_addr
lock(pte_ptl)
lock(pmd_ptl)
pmd = *old_pmd
pmd_clear(old_pmd)
flush_tlb_range(old_addr)
*new_pmd = pmd
*new_addr = 10; and fills
TLB with new addr
and old pfn
unlock(pmd_ptl)
ptep_clear_flush()
old pfn is free.
Stale TLB entry
Optimized PUD move also suffers from a similar race. Both the above race
condition can be fixed if we force mremap path to take rmap lock.
Link: https://lkml.kernel.org/r/20210616045239.370802-7-aneesh.kumar@linux.ibm.com
Fixes: 2c91bd4a4e2e ("mm: speed up mremap by 20x on large regions")
Fixes: c49dd3401802 ("mm: speedup mremap on 1GB or larger regions")
Link: https://lore.kernel.org/linux-mm/CAHk-=wgXVR04eBNtxQfevontWnP6FDm+oj5vauQXP3S-huwbPw@mail.gmail.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[patch rewritten for backport since the code was refactored since]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eeaa345e128515135ccb864c04482180c08e3259 upstream.
The fastpath in slab_alloc_node() assumes that c->slab is stable as long as
the TID stays the same. However, two places in __slab_alloc() currently
don't update the TID when deactivating the CPU slab.
If multiple operations race the right way, this could lead to an object
getting lost; or, in an even more unlikely situation, it could even lead to
an object being freed onto the wrong slab's freelist, messing up the
`inuse` counter and eventually causing a page to be freed to the page
allocator while it still contains slab objects.
(I haven't actually tested these cases though, this is just based on
looking at the code. Writing testcases for this stuff seems like it'd be
a pain...)
The race leading to state inconsistency is (all operations on the same CPU
and kmem_cache):
- task A: begin do_slab_free():
- read TID
- read pcpu freelist (==NULL)
- check `slab == c->slab` (true)
- [PREEMPT A->B]
- task B: begin slab_alloc_node():
- fastpath fails (`c->freelist` is NULL)
- enter __slab_alloc()
- slub_get_cpu_ptr() (disables preemption)
- enter ___slab_alloc()
- take local_lock_irqsave()
- read c->freelist as NULL
- get_freelist() returns NULL
- write `c->slab = NULL`
- drop local_unlock_irqrestore()
- goto new_slab
- slub_percpu_partial() is NULL
- get_partial() returns NULL
- slub_put_cpu_ptr() (enables preemption)
- [PREEMPT B->A]
- task A: finish do_slab_free():
- this_cpu_cmpxchg_double() succeeds()
- [CORRUPT STATE: c->slab==NULL, c->freelist!=NULL]
From there, the object on c->freelist will get lost if task B is allowed to
continue from here: It will proceed to the retry_load_slab label,
set c->slab, then jump to load_freelist, which clobbers c->freelist.
But if we instead continue as follows, we get worse corruption:
- task A: run __slab_free() on object from other struct slab:
- CPU_PARTIAL_FREE case (slab was on no list, is now on pcpu partial)
- task A: run slab_alloc_node() with NUMA node constraint:
- fastpath fails (c->slab is NULL)
- call __slab_alloc()
- slub_get_cpu_ptr() (disables preemption)
- enter ___slab_alloc()
- c->slab is NULL: goto new_slab
- slub_percpu_partial() is non-NULL
- set c->slab to slub_percpu_partial(c)
- [CORRUPT STATE: c->slab points to slab-1, c->freelist has objects
from slab-2]
- goto redo
- node_match() fails
- goto deactivate_slab
- existing c->freelist is passed into deactivate_slab()
- inuse count of slab-1 is decremented to account for object from
slab-2
At this point, the inuse count of slab-1 is 1 lower than it should be.
This means that if we free all allocated objects in slab-1 except for one,
SLUB will think that slab-1 is completely unused, and may free its page,
leading to use-after-free.
Fixes: c17dda40a6a4e ("slub: Separate out kmem_cache_cpu processing from deactivate_slab")
Fixes: 03e404af26dc2 ("slub: fast release on full slab")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220608182205.2945720-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ad7dd882e45d7fe432c32e896e2aaa0b21746ea upstream.
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 48381273f8734d28ef56a5bdf1966dd8530111bc upstream.
The routine huge_pmd_unshare() is passed a pointer to an address
associated with an area which may be unshared. If unshare is successful
this address is updated to 'optimize' callers iterating over huge page
addresses. For the optimization to work correctly, address should be
updated to the last huge page in the unmapped/unshared area. However, in
the common case where the passed address is PUD_SIZE aligned, the address
is incorrectly updated to the address of the preceding huge page. That
wastes CPU cycles as the unmapped/unshared range is scanned twice.
Link: https://lkml.kernel.org/r/20220524205003.126184-1-mike.kravetz@oracle.com
Fixes: 39dde65c9940 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bbe832b9db2e1ad21522f8f0bf02775fff8a0e0e upstream.
At present, pages not in the target zone are added to cc->migratepages
list in isolate_migratepages_block(). As a result, pages may migrate
between nodes unintentionally.
This would be a serious problem for older kernels without commit
a984226f457f849e ("mm: memcontrol: remove the pgdata parameter of
mem_cgroup_page_lruvec"), because it can corrupt the lru list by
handling pages in list without holding proper lru_lock.
Avoid returning a pfn outside the target zone in the case that it is
not aligned with a pageblock boundary. Otherwise
isolate_migratepages_block() will handle pages not in the target zone.
Link: https://lkml.kernel.org/r/20220511044300.4069-1-yamamoto.rei@jp.fujitsu.com
Fixes: 70b44595eafe ("mm, compaction: use free lists to quickly locate a migration source")
Signed-off-by: Rei Yamamoto <yamamoto.rei@jp.fujitsu.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Rei Yamamoto <yamamoto.rei@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2505a981114dcb715f8977b8433f7540854851d8 upstream.
The asynchronous zspage free worker tries to lock a zspage's entire page
list without defending against page migration. Since pages which haven't
yet been locked can concurrently migrate off the zspage page list while
lock_zspage() churns away, lock_zspage() can suffer from a few different
lethal races.
It can lock a page which no longer belongs to the zspage and unsafely
dereference page_private(), it can unsafely dereference a torn pointer to
the next page (since there's a data race), and it can observe a spurious
NULL pointer to the next page and thus not lock all of the zspage's pages
(since a single page migration will reconstruct the entire page list, and
create_page_chain() unconditionally zeroes out each list pointer in the
process).
Fix the races by using migrate_read_lock() in lock_zspage() to synchronize
with page migration.
Link: https://lkml.kernel.org/r/20220509024703.243847-1-sultan@kerneltoast.com
Fixes: 77ff465799c602 ("zsmalloc: zs_page_migrate: skip unnecessary loops but not return -EBUSY if zspage is not inuse")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c25a0b89a487878b0691e6524fb5a8827322194 upstream.
userfaultfd calls mcopy_atomic_pte() and __mcopy_atomic() which do not
do any cache flushing for the target page. Then the target page will be
mapped to the user space with a different address (user address), which
might have an alias issue with the kernel address used to copy the data
from the user to. Fix this by insert flush_dcache_page() after
copy_from_user() succeeds.
Link: https://lkml.kernel.org/r/20220210123058.79206-7-songmuchun@bytedance.com
Fixes: b6ebaedb4cb1 ("userfaultfd: avoid mmap_sem read recursion in mcopy_atomic")
Fixes: c1a4de99fada ("userfaultfd: mcopy_atomic|mfill_zeropage: UFFDIO_COPY|UFFDIO_ZEROPAGE preparation")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e763243cc6cb1fcc720ec58cfd6e7c35ae90a479 upstream.
userfaultfd calls copy_huge_page_from_user() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to.
Fix this issue by flushing dcache in copy_huge_page_from_user().
Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com
Fixes: fa4d75c1de13 ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2771739a7162782c0aa6424b2e3dd874e884a15d upstream.
The D-cache maintenance inside move_to_new_page() only consider one
page, there is still D-cache maintenance issue for tail pages of
compound page (e.g. THP or HugeTLB).
THP migration is only enabled on x86_64, ARM64 and powerpc, while
powerpc and arm64 need to maintain the consistency between I-Cache and
D-Cache, which depends on flush_dcache_page() to maintain the
consistency between I-Cache and D-Cache.
But there is no issues on arm64 and powerpc since they already considers
the compound page cache flushing in their icache flush function.
HugeTLB migration is enabled on arm, arm64, mips, parisc, powerpc,
riscv, s390 and sh, while arm has handled the compound page cache flush
in flush_dcache_page(), but most others do not.
In theory, the issue exists on many architectures. Fix this by not
using flush_dcache_folio() since it is not backportable.
Link: https://lkml.kernel.org/r/20220210123058.79206-3-songmuchun@bytedance.com
Fixes: 290408d4a250 ("hugetlb: hugepage migration core")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5e545df3292fbd3d5963c68980f1527ead2a2b3f upstream.
ARM is the only architecture that defines CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
which in turn enables memmap_valid_within() function that is intended to
verify existence of struct page associated with a pfn when there are holes
in the memory map.
However, the ARCH_HAS_HOLES_MEMORYMODEL also enables HAVE_ARCH_PFN_VALID
and arch-specific pfn_valid() implementation that also deals with the holes
in the memory map.
The only two users of memmap_valid_within() call this function after
a call to pfn_valid() so the memmap_valid_within() check becomes redundant.
Remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL and memmap_valid_within() and rely
entirely on ARM's implementation of pfn_valid() that is now enabled
unconditionally.
Link: https://lkml.kernel.org/r/20201101170454.9567-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 8dd559d53b3b ("arm: ioremap: don't abuse pfn_valid() to check if pfn is in RAM")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e914d8f00391520ecc4495dd0ca0124538ab7119 upstream.
Two processes under CLONE_VM cloning, user process can be corrupted by
seeing zeroed page unexpectedly.
CPU A CPU B
do_swap_page do_swap_page
SWP_SYNCHRONOUS_IO path SWP_SYNCHRONOUS_IO path
swap_readpage valid data
swap_slot_free_notify
delete zram entry
swap_readpage zeroed(invalid) data
pte_lock
map the *zero data* to userspace
pte_unlock
pte_lock
if (!pte_same)
goto out_nomap;
pte_unlock
return and next refault will
read zeroed data
The swap_slot_free_notify is bogus for CLONE_VM case since it doesn't
increase the refcount of swap slot at copy_mm so it couldn't catch up
whether it's safe or not to discard data from backing device. In the
case, only the lock it could rely on to synchronize swap slot freeing is
page table lock. Thus, this patch gets rid of the swap_slot_free_notify
function. With this patch, CPU A will see correct data.
CPU A CPU B
do_swap_page do_swap_page
SWP_SYNCHRONOUS_IO path SWP_SYNCHRONOUS_IO path
swap_readpage original data
pte_lock
map the original data
swap_free
swap_range_free
bd_disk->fops->swap_slot_free_notify
swap_readpage read zeroed data
pte_unlock
pte_lock
if (!pte_same)
goto out_nomap;
pte_unlock
return
on next refault will see mapped data by CPU B
The concern of the patch would increase memory consumption since it
could keep wasted memory with compressed form in zram as well as
uncompressed form in address space. However, most of cases of zram uses
no readahead and do_swap_page is followed by swap_free so it will free
the compressed form from in zram quickly.
Link: https://lkml.kernel.org/r/YjTVVxIAsnKAXjTd@google.com
Fixes: 0bcac06f27d7 ("mm, swap: skip swapcache for swapin of synchronous device")
Reported-by: Ivan Babrou <ivan@cloudflare.com>
Tested-by: Ivan Babrou <ivan@cloudflare.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5f24d5a579d1eace79d505b148808a850b417d4c upstream.
This is a fix for commit f6795053dac8 ("mm: mmap: Allow for "high"
userspace addresses") for hugetlb.
This patch adds support for "high" userspace addresses that are
optionally supported on the system and have to be requested via a hint
mechanism ("high" addr parameter to mmap).
Architectures such as powerpc and x86 achieve this by making changes to
their architectural versions of hugetlb_get_unmapped_area() function.
However, arm64 uses the generic version of that function.
So take into account arch_get_mmap_base() and arch_get_mmap_end() in
hugetlb_get_unmapped_area(). To allow that, move those two macros out
of mm/mmap.c into include/linux/sched/mm.h
If these macros are not defined in architectural code then they default
to (TASK_SIZE) and (base) so should not introduce any behavioural
changes to architectures that do not define them.
For the time being, only ARM64 is affected by this change.
Catalin (ARM64) said
"We should have fixed hugetlb_get_unmapped_area() as well when we added
support for 52-bit VA. The reason for commit f6795053dac8 was to
prevent normal mmap() from returning addresses above 48-bit by default
as some user-space had hard assumptions about this.
It's a slight ABI change if you do this for hugetlb_get_unmapped_area()
but I doubt anyone would notice. It's more likely that the current
behaviour would cause issues, so I'd rather have them consistent.
Basically when arm64 gained support for 52-bit addresses we did not
want user-space calling mmap() to suddenly get such high addresses,
otherwise we could have inadvertently broken some programs (similar
behaviour to x86 here). Hence we added commit f6795053dac8. But we
missed hugetlbfs which could still get such high mmap() addresses. So
in theory that's a potential regression that should have bee addressed
at the same time as commit f6795053dac8 (and before arm64 enabled
52-bit addresses)"
Link: https://lkml.kernel.org/r/ab847b6edb197bffdfe189e70fb4ac76bfe79e0d.1650033747.git.christophe.leroy@csgroup.eu
Fixes: f6795053dac8 ("mm: mmap: Allow for "high" userspace addresses")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> [5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e4a38402c36e42df28eb1a5394be87e6571fb48a upstream.
The pthread struct is allocated on PRIVATE|ANONYMOUS memory [1] which
can be targeted by the oom reaper. This mapping is used to store the
futex robust list head; the kernel does not keep a copy of the robust
list and instead references a userspace address to maintain the
robustness during a process death.
A race can occur between exit_mm and the oom reaper that allows the oom
reaper to free the memory of the futex robust list before the exit path
has handled the futex death:
CPU1 CPU2
--------------------------------------------------------------------
page_fault
do_exit "signal"
wake_oom_reaper
oom_reaper
oom_reap_task_mm (invalidates mm)
exit_mm
exit_mm_release
futex_exit_release
futex_cleanup
exit_robust_list
get_user (EFAULT- can't access memory)
If the get_user EFAULT's, the kernel will be unable to recover the
waiters on the robust_list, leaving userspace mutexes hung indefinitely.
Delay the OOM reaper, allowing more time for the exit path to perform
the futex cleanup.
Reproducer: https://gitlab.com/jsavitz/oom_futex_reproducer
Based on a patch by Michal Hocko.
Link: https://elixir.bootlin.com/glibc/glibc-2.35/source/nptl/allocatestack.c#L370 [1]
Link: https://lkml.kernel.org/r/20220414144042.677008-1-npache@redhat.com
Fixes: 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently")
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Signed-off-by: Nico Pache <npache@redhat.com>
Co-developed-by: Joel Savitz <jsavitz@redhat.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Herton R. Krzesinski <herton@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joel Savitz <jsavitz@redhat.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ca831f29f8f25c97182e726429b38c0802200c8f upstream.
Arthur Marsh reported we would hit the error below when building kernel
with gcc-12:
CC mm/page_alloc.o
mm/page_alloc.c: In function `mem_init_print_info':
mm/page_alloc.c:8173:27: error: comparison between two arrays [-Werror=array-compare]
8173 | if (start <= pos && pos < end && size > adj) \
|
In C++20, the comparision between arrays should be warned.
Link: https://lkml.kernel.org/r/20211125130928.32465-1-sxwjean@me.com
Signed-off-by: Xiongwei Song <sxwjean@gmail.com>
Reported-by: Arthur Marsh <arthur.marsh@internode.on.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Khem Raj <raj.khem@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e553f62f10d93551eb883eca227ac54d1a4fad84 upstream.
Since commit 6aa303defb74 ("mm, vmscan: only allocate and reclaim from
zones with pages managed by the buddy allocator") only zones with free
memory are included in a built zonelist. This is problematic when e.g.
all memory of a zone has been ballooned out when zonelists are being
rebuilt.
The decision whether to rebuild the zonelists when onlining new memory
is done based on populated_zone() returning 0 for the zone the memory
will be added to. The new zone is added to the zonelists only, if it
has free memory pages (managed_zone() returns a non-zero value) after
the memory has been onlined. This implies, that onlining memory will
always free the added pages to the allocator immediately, but this is
not true in all cases: when e.g. running as a Xen guest the onlined new
memory will be added only to the ballooned memory list, it will be freed
only when the guest is being ballooned up afterwards.
Another problem with using managed_zone() for the decision whether a
zone is being added to the zonelists is, that a zone with all memory
used will in fact be removed from all zonelists in case the zonelists
happen to be rebuilt.
Use populated_zone() when building a zonelist as it has been done before
that commit.
There was a report that QubesOS (based on Xen) is hitting this problem.
Xen has switched to use the zone device functionality in kernel 5.9 and
QubesOS wants to use memory hotplugging for guests in order to be able
to start a guest with minimal memory and expand it as needed. This was
the report leading to the patch.
Link: https://lkml.kernel.org/r/20220407120637.9035-1-jgross@suse.com
Fixes: 6aa303defb74 ("mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5abfd71d936a8aefd9f9ccd299dea7a164a5d455 upstream.
Patch series "mm: Rework zap ptes on swap entries", v5.
Patch 1 should fix a long standing bug for zap_pte_range() on
zap_details usage. The risk is we could have some swap entries skipped
while we should have zapped them.
Migration entries are not the major concern because file backed memory
always zap in the pattern that "first time without page lock, then
re-zap with page lock" hence the 2nd zap will always make sure all
migration entries are already recovered.
However there can be issues with real swap entries got skipped
errornoously. There's a reproducer provided in commit message of patch
1 for that.
Patch 2-4 are cleanups that are based on patch 1. After the whole
patchset applied, we should have a very clean view of zap_pte_range().
Only patch 1 needs to be backported to stable if necessary.
This patch (of 4):
The "details" pointer shouldn't be the token to decide whether we should
skip swap entries.
For example, when the callers specified details->zap_mapping==NULL, it
means the user wants to zap all the pages (including COWed pages), then
we need to look into swap entries because there can be private COWed
pages that was swapped out.
Skipping some swap entries when details is non-NULL may lead to wrongly
leaving some of the swap entries while we should have zapped them.
A reproducer of the problem:
===8<===
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
int page_size;
int shmem_fd;
char *buffer;
void main(void)
{
int ret;
char val;
page_size = getpagesize();
shmem_fd = memfd_create("test", 0);
assert(shmem_fd >= 0);
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE, shmem_fd, 0);
assert(buffer != MAP_FAILED);
/* Write private page, swap it out */
buffer[page_size] = 1;
madvise(buffer, page_size * 2, MADV_PAGEOUT);
/* This should drop private buffer[page_size] already */
ret = ftruncate(shmem_fd, page_size);
assert(ret == 0);
/* Recover the size */
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
/* Re-read the data, it should be all zero */
val = buffer[page_size];
if (val == 0)
printf("Good\n");
else
printf("BUG\n");
}
===8<===
We don't need to touch up the pmd path, because pmd never had a issue with
swap entries. For example, shmem pmd migration will always be split into
pte level, and same to swapping on anonymous.
Add another helper should_zap_cows() so that we can also check whether we
should zap private mappings when there's no page pointer specified.
This patch drops that trick, so we handle swap ptes coherently. Meanwhile
we should do the same check upon migration entry, hwpoison entry and
genuine swap entries too.
To be explicit, we should still remember to keep the private entries if
even_cows==false, and always zap them when even_cows==true.
The issue seems to exist starting from the initial commit of git.
[peterx@redhat.com: comment tweaks]
Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4ad099559b00ac01c3726e5c95dc3108ef47d03e upstream.
If mpol_new is allocated but not used in restart loop, mpol_new will be
freed via mpol_put before returning to the caller. But refcnt is not
initialized yet, so mpol_put could not do the right things and might
leak the unused mpol_new. This would happen if mempolicy was updated on
the shared shmem file while the sp->lock has been dropped during the
memory allocation.
This issue could be triggered easily with the below code snippet if
there are many processes doing the below work at the same time:
shmid = shmget((key_t)5566, 1024 * PAGE_SIZE, 0666|IPC_CREAT);
shm = shmat(shmid, 0, 0);
loop many times {
mbind(shm, 1024 * PAGE_SIZE, MPOL_LOCAL, mask, maxnode, 0);
mbind(shm + 128 * PAGE_SIZE, 128 * PAGE_SIZE, MPOL_DEFAULT, mask,
maxnode, 0);
}
Link: https://lkml.kernel.org/r/20220329111416.27954-1-linmiaohe@huawei.com
Fixes: 42288fe366c4 ("mm: mempolicy: Convert shared_policy mutex to spinlock")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.8]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01e67e04c28170c47700c2c226d732bbfedb1ad0 upstream.
If an mremap() syscall with old_size=0 ends up in move_page_tables(), it
will call invalidate_range_start()/invalidate_range_end() unnecessarily,
i.e. with an empty range.
This causes a WARN in KVM's mmu_notifier. In the past, empty ranges
have been diagnosed to be off-by-one bugs, hence the WARNing. Given the
low (so far) number of unique reports, the benefits of detecting more
buggy callers seem to outweigh the cost of having to fix cases such as
this one, where userspace is doing something silly. In this particular
case, an early return from move_page_tables() is enough to fix the
issue.
Link: https://lkml.kernel.org/r/20220329173155.172439-1-pbonzini@redhat.com
Reported-by: syzbot+6bde52d89cfdf9f61425@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c8e2a256915a223f6289f651d6b926cd7135c9e upstream.
Problem:
=======
Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.
- Race condition:
==============
During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs. remap back
if the page is dirty).
However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).
Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.
So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.
The direct IO read eventually completes. Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!
A synthetic reproducer is provided.
- Page faults:
===========
If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO. The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).
But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:
The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.
Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs. And even if it were
available, its data cannot be trusted anymore.)
Solution:
========
One solution is to check for the expected page reference count in
try_to_unmap_one().
There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label). Further references mean
that rmap/PTE cannot be unmapped/nuked.
(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)
So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).
- Races and Barriers:
==================
The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.
The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).
The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.
And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()). (This can be
a load memory barrier only; no writes are involved.)
Call stack/comments:
- try_to_unmap_one()
- page_vma_mapped_walk()
- map_pte() # see pte_offset_map_lock():
pte_offset_map()
spin_lock()
- ptep_get_and_clear() # write PTE
- smp_mb() # (new barrier) GUP fast path
- page_ref_count() # (new check) read refcount
- page_vma_mapped_walk_done() # see pte_unmap_unlock():
pte_unmap()
spin_unlock()
- bio_iov_iter_get_pages()
- __bio_iov_iter_get_pages()
- iov_iter_get_pages()
- get_user_pages_fast()
- internal_get_user_pages_fast()
# fast path
- lockless_pages_from_mm()
- gup_{pgd,p4d,pud,pmd,pte}_range()
ptep = pte_offset_map() # not _lock()
pte = ptep_get_lockless(ptep)
page = pte_page(pte)
try_grab_compound_head(page) # inc refcount
# (RMW/barrier
# on success)
if (pte_val(pte) != pte_val(*ptep)) # read PTE
put_compound_head(page) # dec refcount
# go slow path
# slow path
- __gup_longterm_unlocked()
- get_user_pages_unlocked()
- __get_user_pages_locked()
- __get_user_pages()
- follow_{page,p4d,pud,pmd}_mask()
- follow_page_pte()
ptep = pte_offset_map_lock()
pte = *ptep
page = vm_normal_page(pte)
try_grab_page(page) # inc refcount
pte_unmap_unlock()
- Huge Pages:
==========
Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.
(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages. That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)
MADV_FREE'd buffers:
===================
So, back to the "if MADV_FREE pages are used as buffers" note. The case
is arguable, and subject to multiple interpretations.
The madvise(2) manual page on the MADV_FREE advice value says:
1) 'After a successful MADV_FREE ... data will be lost when
the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
into the page' / 'subsequent writes ... will succeed and
then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
pages at any time.'
Thoughts, questions, considerations... respectively:
1) Since the kernel didn't actually free the page (page_ref_freeze()
failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
the free operation?
- Should the direct IO read be considered as 'the caller' too,
as it's been requested by 'the caller'?
- Should the bio technique to dirty pages on return to userspace
(bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
read be considered as a subsequent write, so the kernel should
not free the pages? (as it's known at the time of page reclaim.)
And lastly:
Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly).. plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.
Reproducer:
==========
@ test.c (simplified, but works)
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
int main() {
int fd, i;
char *buf;
fd = open(DEV, O_RDONLY | O_DIRECT);
buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
buf[i] = 1; // init to non-zero
madvise(buf, BUF_SIZE, MADV_FREE);
read(fd, buf, BUF_SIZE);
for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
printf("%p: 0x%x\n", &buf[i], buf[i]);
return 0;
}
@ block/fops.c (formerly fs/block_dev.c)
+#include <linux/swap.h>
...
... __blkdev_direct_IO[_simple](...)
{
...
+ if (!strcmp(current->comm, "good"))
+ shrink_all_memory(ULONG_MAX);
+
ret = bio_iov_iter_get_pages(...);
+
+ if (!strcmp(current->comm, "bad"))
+ shrink_all_memory(ULONG_MAX);
...
}
@ shell
# NUM_PAGES=4
# PAGE_SIZE=$(getconf PAGE_SIZE)
# yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
# DEV=$(losetup -f --show test.img)
# gcc -DDEV=\"$DEV\" \
-DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
-DPAGE_SIZE=${PAGE_SIZE} \
test.c -o test
# od -tx1 $DEV
0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
*
0040000
# mv test good
# ./good
0x7f7c10418000: 0x79
0x7f7c10419000: 0x79
0x7f7c1041a000: 0x79
0x7f7c1041b000: 0x79
# mv good bad
# ./bad
0x7fa1b8050000: 0x0
0x7fa1b8051000: 0x0
0x7fa1b8052000: 0x0
0x7fa1b8053000: 0x0
Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap). [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].
- v5.17-rc3:
# for i in {1..1000}; do ./good; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
# mv good bad
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
4000 0x0
# free | grep Swap
Swap: 0 0 0
- v4.5:
# for i in {1..1000}; do ./good; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
# mv good bad
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
2702 0x0
1298 0x79
# swapoff -av
swapoff /swap
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
Ceph/TCMalloc:
=============
For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.
Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.
The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).
The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb). Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.
(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad
[1] https://tracker.ceph.com/issues/22464
Thanks:
======
Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:
- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan
Reviews, suggestions, corrections, comments:
- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig
[mfo@canonical.com: v4]
Link: https://lkml.kernel.org/r/20220209202659.183418-1-mfo@canonical.comLink: https://lkml.kernel.org/r/20220131230255.789059-1-mfo@canonical.com
Fixes: 802a3a92ad7a ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Hill <daniel.hill@canonical.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Dongdong Tao <dongdong.tao@canonical.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Gerald Yang <gerald.yang@canonical.com>
Cc: Heitor Alves de Siqueira <halves@canonical.com>
Cc: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Matthew Ruffell <matthew.ruffell@canonical.com>
Cc: Ponnuvel Palaniyappan <ponnuvel.palaniyappan@canonical.com>
Cc: <stable@vger.kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
real Fixes: 854e9ed09ded ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 05fe3c103f7e6b8b4fca8a7001dfc9ed4628085b upstream.
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment). This prevents:
Unknown kernel command line parameters \
"BOOT_IMAGE=/boot/bzImage-517rc5 hardened_usercopy=off", will be \
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
hardened_usercopy=off
or
hardened_usercopy=on
but when "hardened_usercopy=foo" is used, there is no Unknown kernel
command line parameter.
Return 1 to indicate that the boot option has been handled.
Print a warning if strtobool() returns an error on the option string,
but do not mark this as in unknown command line option and do not cause
init's environment to be polluted with this string.
Link: https://lkml.kernel.org/r/20220222034249.14795-1-rdunlap@infradead.org
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Fixes: b5cb15d9372ab ("usercopy: Allow boot cmdline disabling of hardening")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Acked-by: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 460a79e18842caca6fa0c415de4a3ac1e671ac50 upstream.
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).
The only reason that this particular __setup handler does not pollute
init's environment is that the setup string contains a '.', as in
"cgroup.memory". This causes init/main.c::unknown_boottoption() to
consider it to be an "Unused module parameter" and ignore it. (This is
for parsing of loadable module parameters any time after kernel init.)
Otherwise the string "cgroup.memory=whatever" would be added to init's
environment strings.
Instead of relying on this '.' quirk, just return 1 to indicate that the
boot option has been handled.
Note that there is no warning message if someone enters:
cgroup.memory=anything_invalid
Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org
Fixes: f7e1cb6ec51b0 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e6d094936988910ce6e8197570f2753898830081 upstream.
__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment). This prevents:
Unknown kernel command line parameters \
"BOOT_IMAGE=/boot/bzImage-517rc5 stack_guard_gap=100", will be \
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
stack_guard_gap=100
Return 1 to indicate that the boot option has been handled.
Note that there is no warning message if someone enters:
stack_guard_gap=anything_invalid
and 'val' and stack_guard_gap are both set to 0 due to the use of
simple_strtoul(). This could be improved by using kstrtoxxx() and
checking for an error.
It appears that having stack_guard_gap == 0 is valid (if unexpected) since
using "stack_guard_gap=0" on the kernel command line does that.
Link: https://lkml.kernel.org/r/20220222005817.11087-1-rdunlap@infradead.org
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Fixes: 1be7107fbe18e ("mm: larger stack guard gap, between vmas")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bfc8089f00fa526dea983844c880fa8106c33ac4 upstream.
When we use HW-tag based kasan and enable vmalloc support, we hit the
following bug. It is due to comparison between tagged object and
non-tagged pointer.
We need to reset the kasan tag when we need to compare tagged object and
non-tagged pointer.
kmemleak: [name:kmemleak&]Scan area larger than object 0xffffffe77076f440
CPU: 4 PID: 1 Comm: init Tainted: G S W 5.15.25-android13-0-g5cacf919c2bc #1
Hardware name: MT6983(ENG) (DT)
Call trace:
add_scan_area+0xc4/0x244
kmemleak_scan_area+0x40/0x9c
layout_and_allocate+0x1e8/0x288
load_module+0x2c8/0xf00
__se_sys_finit_module+0x190/0x1d0
__arm64_sys_finit_module+0x20/0x30
invoke_syscall+0x60/0x170
el0_svc_common+0xc8/0x114
do_el0_svc+0x28/0xa0
el0_svc+0x60/0xf8
el0t_64_sync_handler+0x88/0xec
el0t_64_sync+0x1b4/0x1b8
kmemleak: [name:kmemleak&]Object 0xf5ffffe77076b000 (size 32768):
kmemleak: [name:kmemleak&] comm "init", pid 1, jiffies 4294894197
kmemleak: [name:kmemleak&] min_count = 0
kmemleak: [name:kmemleak&] count = 0
kmemleak: [name:kmemleak&] flags = 0x1
kmemleak: [name:kmemleak&] checksum = 0
kmemleak: [name:kmemleak&] backtrace:
module_alloc+0x9c/0x120
move_module+0x34/0x19c
layout_and_allocate+0x1c4/0x288
load_module+0x2c8/0xf00
__se_sys_finit_module+0x190/0x1d0
__arm64_sys_finit_module+0x20/0x30
invoke_syscall+0x60/0x170
el0_svc_common+0xc8/0x114
do_el0_svc+0x28/0xa0
el0_svc+0x60/0xf8
el0t_64_sync_handler+0x88/0xec
el0t_64_sync+0x1b4/0x1b8
Link: https://lkml.kernel.org/r/20220318034051.30687-1-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Cc: Yee Lee <yee.lee@mediatek.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3149c79f3cb0e2e3bafb7cfadacec090cbd250d3 upstream.
In some cases it appears the invalidation of a hwpoisoned page fails
because the page is still mapped in another process. This can cause a
program to be continuously restarted and die when it page faults on the
page that was not invalidated. Avoid that problem by unmapping the
hwpoisoned page when we find it.
Another issue is that sometimes we end up oopsing in finish_fault, if
the code tries to do something with the now-NULL vmf->page. I did not
hit this error when submitting the previous patch because there are
several opportunities for alloc_set_pte to bail out before accessing
vmf->page, and that apparently happened on those systems, and most of
the time on other systems, too.
However, across several million systems that error does occur a handful
of times a day. It can be avoided by returning VM_FAULT_NOPAGE which
will cause do_read_fault to return before calling finish_fault.
Link: https://lkml.kernel.org/r/20220325161428.5068d97e@imladris.surriel.com
Fixes: e53ac7374e64 ("mm: invalidate hwpoison page cache page in fault path")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4e0906008cdb56381638aa17d9c32734eae6d37a upstream.
v2.6.34 commit 9d8cebd4bcd7 ("mm: fix mbind vma merge problem") introduced
vma_merge() to mbind_range(); but unlike madvise, mlock and mprotect, it
put a "continue" to next vma where its precedents go to update flags on
current vma before advancing: that left vma with the wrong setting in the
infamous vma_merge() case 8.
v3.10 commit 1444f92c8498 ("mm: merging memory blocks resets mempolicy")
tried to fix that in vma_adjust(), without fully understanding the issue.
v3.11 commit 3964acd0dbec ("mm: mempolicy: fix mbind_range() &&
vma_adjust() interaction") reverted that, and went about the fix in the
right way, but chose to optimize out an unnecessary mpol_dup() with a
prior mpol_equal() test. But on tmpfs, that also pessimized out the vital
call to its ->set_policy(), leaving the new mbind unenforced.
The user visible effect was that the pages got allocated on the local
node (happened to be 0), after the mbind() caller had specifically
asked for them to be allocated on node 1. There was not any page
migration involved in the case reported: the pages simply got allocated
on the wrong node.
Just delete that optimization now (though it could be made conditional on
vma not having a set_policy). Also remove the "next" variable: it turned
out to be blameless, but also pointless.
Link: https://lkml.kernel.org/r/319e4db9-64ae-4bca-92f0-ade85d342ff@google.com
Fixes: 3964acd0dbec ("mm: mempolicy: fix mbind_range() && vma_adjust() interaction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e53ac7374e64dede04d745ff0e70ff5048378d1f upstream.
Sometimes the page offlining code can leave behind a hwpoisoned clean
page cache page. This can lead to programs being killed over and over
and over again as they fault in the hwpoisoned page, get killed, and
then get re-spawned by whatever wanted to run them.
This is particularly embarrassing when the page was offlined due to
having too many corrected memory errors. Now we are killing tasks due
to them trying to access memory that probably isn't even corrupted.
This problem can be avoided by invalidating the page from the page fault
handler, which already has a branch for dealing with these kinds of
pages. With this patch we simply pretend the page fault was successful
if the page was invalidated, return to userspace, incur another page
fault, read in the file from disk (to a new memory page), and then
everything works again.
Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ddbc84f3f595cf1fc8234a191193b5d20ad43938 upstream.
ZONE_MOVABLE uses the remaining memory in each node. Its starting pfn
is also aligned to MAX_ORDER_NR_PAGES. It is possible for the remaining
memory in a node to be less than MAX_ORDER_NR_PAGES, meaning there is
not enough room for ZONE_MOVABLE on that node.
Unfortunately this condition is not checked for. This leads to
zone_movable_pfn[] getting set to a pfn greater than the last pfn in a
node.
calculate_node_totalpages() then sets zone->present_pages to be greater
than zone->spanned_pages which is invalid, as spanned_pages represents
the maximum number of pages in a zone assuming no holes.
Subsequently it is possible free_area_init_core() will observe a zone of
size zero with present pages. In this case it will skip setting up the
zone, including the initialisation of free_lists[].
However populated_zone() checks zone->present_pages to see if a zone has
memory available. This is used by iterators such as
walk_zones_in_node(). pagetypeinfo_showfree() uses this to walk the
free_list of each zone in each node, which are assumed to be initialised
due to the zone not being empty.
As free_area_init_core() never initialised the free_lists[] this results
in the following kernel crash when trying to read /proc/pagetypeinfo:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
CPU: 0 PID: 456 Comm: cat Not tainted 5.16.0 #461
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
RIP: 0010:pagetypeinfo_show+0x163/0x460
Code: 9e 82 e8 80 57 0e 00 49 8b 06 b9 01 00 00 00 4c 39 f0 75 16 e9 65 02 00 00 48 83 c1 01 48 81 f9 a0 86 01 00 0f 84 48 02 00 00 <48> 8b 00 4c 39 f0 75 e7 48 c7 c2 80 a2 e2 82 48 c7 c6 79 ef e3 82
RSP: 0018:ffffc90001c4bd10 EFLAGS: 00010003
RAX: 0000000000000000 RBX: ffff88801105f638 RCX: 0000000000000001
RDX: 0000000000000001 RSI: 000000000000068b RDI: ffff8880163dc68b
RBP: ffffc90001c4bd90 R08: 0000000000000001 R09: ffff8880163dc67e
R10: 656c6261766f6d6e R11: 6c6261766f6d6e55 R12: ffff88807ffb4a00
R13: ffff88807ffb49f8 R14: ffff88807ffb4580 R15: ffff88807ffb3000
FS: 00007f9c83eff5c0(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000013c8e000 CR4: 0000000000350ef0
Call Trace:
seq_read_iter+0x128/0x460
proc_reg_read_iter+0x51/0x80
new_sync_read+0x113/0x1a0
vfs_read+0x136/0x1d0
ksys_read+0x70/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this by checking that the aligned zone_movable_pfn[] does not exceed
the end of the node, and if it does skip creating a movable zone on this
node.
Link: https://lkml.kernel.org/r/20220215025831.2113067-1-apopple@nvidia.com
Fixes: 2a1e274acf0b ("Create the ZONE_MOVABLE zone")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f2b277c4d1c63a85127e8aa2588e9cc3bd21cb99 upstream.
Wangyong reports: after enabling tmpfs filesystem to support transparent
hugepage with the following command:
echo always > /sys/kernel/mm/transparent_hugepage/shmem_enabled
the docker program tries to add F_SEAL_WRITE through the following
command, but it fails unexpectedly with errno EBUSY:
fcntl(5, F_ADD_SEALS, F_SEAL_WRITE) = -1.
That is because memfd_tag_pins() and memfd_wait_for_pins() were never
updated for shmem huge pages: checking page_mapcount() against
page_count() is hopeless on THP subpages - they need to check
total_mapcount() against page_count() on THP heads only.
Make memfd_tag_pins() (compared > 1) as strict as memfd_wait_for_pins()
(compared != 1): either can be justified, but given the non-atomic
total_mapcount() calculation, it is better now to be strict. Bear in
mind that total_mapcount() itself scans all of the THP subpages, when
choosing to take an XA_CHECK_SCHED latency break.
Also fix the unlikely xa_is_value() case in memfd_wait_for_pins(): if a
page has been swapped out since memfd_tag_pins(), then its refcount must
have fallen, and so it can safely be untagged.
Link: https://lkml.kernel.org/r/a4f79248-df75-2c8c-3df-ba3317ccb5da@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Zeal Robot <zealci@zte.com.cn>
Reported-by: wangyong <wang.yong12@zte.com.cn>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: CGEL ZTE <cgel.zte@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yang Yang <yang.yang29@zte.com.cn>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c94afc46cae7ad41b2ad6a99368147879f4b0e56 upstream.
memblock.{reserved,memory}.regions may be allocated using kmalloc() in
memblock_double_array(). Use kfree() to release these kmalloced regions
indicated by memblock_{reserved,memory}_in_slab.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Fixes: 3010f876500f ("mm: discard memblock data later")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c10a0f877fe007021d70f9cada240f42adc2b5db upstream.
When using devm_request_free_mem_region() and devm_memremap_pages() to
add ZONE_DEVICE memory, if requested free mem region's end pfn were
huge(e.g., 0x400000000), the node_end_pfn() will be also huge (see
move_pfn_range_to_zone()). Thus it creates a huge hole between
node_start_pfn() and node_end_pfn().
We found on some AMD APUs, amdkfd requested such a free mem region and
created a huge hole. In such a case, following code snippet was just
doing busy test_bit() looping on the huge hole.
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
struct page *page = pfn_to_online_page(pfn);
if (!page)
continue;
...
}
So we got a soft lockup:
watchdog: BUG: soft lockup - CPU#6 stuck for 26s! [bash:1221]
CPU: 6 PID: 1221 Comm: bash Not tainted 5.15.0-custom #1
RIP: 0010:pfn_to_online_page+0x5/0xd0
Call Trace:
? kmemleak_scan+0x16a/0x440
kmemleak_write+0x306/0x3a0
? common_file_perm+0x72/0x170
full_proxy_write+0x5c/0x90
vfs_write+0xb9/0x260
ksys_write+0x67/0xe0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
I did some tests with the patch.
(1) amdgpu module unloaded
before the patch:
real 0m0.976s
user 0m0.000s
sys 0m0.968s
after the patch:
real 0m0.981s
user 0m0.000s
sys 0m0.973s
(2) amdgpu module loaded
before the patch:
real 0m35.365s
user 0m0.000s
sys 0m35.354s
after the patch:
real 0m1.049s
user 0m0.000s
sys 0m1.042s
Link: https://lkml.kernel.org/r/20211108140029.721144-1-lang.yu@amd.com
Signed-off-by: Lang Yu <lang.yu@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 62c9827cbb996c2c04f615ecd783ce28bcea894b upstream.
Fix a data race in commit 779750d20b93 ("shmem: split huge pages beyond
i_size under memory pressure").
Here are call traces causing race:
Call Trace 1:
shmem_unused_huge_shrink+0x3ae/0x410
? __list_lru_walk_one.isra.5+0x33/0x160
super_cache_scan+0x17c/0x190
shrink_slab.part.55+0x1ef/0x3f0
shrink_node+0x10e/0x330
kswapd+0x380/0x740
kthread+0xfc/0x130
? mem_cgroup_shrink_node+0x170/0x170
? kthread_create_on_node+0x70/0x70
ret_from_fork+0x1f/0x30
Call Trace 2:
shmem_evict_inode+0xd8/0x190
evict+0xbe/0x1c0
do_unlinkat+0x137/0x330
do_syscall_64+0x76/0x120
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
A simple explanation:
Image there are 3 items in the local list (@list). In the first
traversal, A is not deleted from @list.
1) A->B->C
^
|
pos (leave)
In the second traversal, B is deleted from @list. Concurrently, A is
deleted from @list through shmem_evict_inode() since last reference
counter of inode is dropped by other thread. Then the @list is corrupted.
2) A->B->C
^ ^
| |
evict pos (drop)
We should make sure the inode is either on the global list or deleted from
any local list before iput().
Fixed by moving inodes back to global list before we put them.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20211125064502.99983-1-ligang.bdlg@bytedance.com
Fixes: 779750d20b93 ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c4dc63f0032c77464fbd4e7a6afc22fa6913c4a7 upstream.
In kdump kernel of x86_64, page allocation failure is observed:
kworker/u2:2: page allocation failure: order:0, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 55 Comm: kworker/u2:2 Not tainted 5.16.0-rc4+ #5
Hardware name: AMD Dinar/Dinar, BIOS RDN1505B 06/05/2013
Workqueue: events_unbound async_run_entry_fn
Call Trace:
<TASK>
dump_stack_lvl+0x48/0x5e
warn_alloc.cold+0x72/0xd6
__alloc_pages_slowpath.constprop.0+0xc69/0xcd0
__alloc_pages+0x1df/0x210
new_slab+0x389/0x4d0
___slab_alloc+0x58f/0x770
__slab_alloc.constprop.0+0x4a/0x80
kmem_cache_alloc_trace+0x24b/0x2c0
sr_probe+0x1db/0x620
......
device_add+0x405/0x920
......
__scsi_add_device+0xe5/0x100
ata_scsi_scan_host+0x97/0x1d0
async_run_entry_fn+0x30/0x130
process_one_work+0x1e8/0x3c0
worker_thread+0x50/0x3b0
? rescuer_thread+0x350/0x350
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Mem-Info:
......
The above failure happened when calling kmalloc() to allocate buffer with
GFP_DMA. It requests to allocate slab page from DMA zone while no managed
pages at all in there.
sr_probe()
--> get_capabilities()
--> buffer = kmalloc(512, GFP_KERNEL | GFP_DMA);
Because in the current kernel, dma-kmalloc will be created as long as
CONFIG_ZONE_DMA is enabled. However, kdump kernel of x86_64 doesn't have
managed pages on DMA zone since commit 6f599d84231f ("x86/kdump: Always
reserve the low 1M when the crashkernel option is specified"). The
failure can be always reproduced.
For now, let's mute the warning of allocation failure if requesting pages
from DMA zone while no managed pages.
[akpm@linux-foundation.org: fix warning]
Link: https://lkml.kernel.org/r/20211223094435.248523-4-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 62b3107073646e0946bd97ff926832bafb846d17 upstream.
Patch series "Handle warning of allocation failure on DMA zone w/o
managed pages", v4.
**Problem observed:
On x86_64, when crash is triggered and entering into kdump kernel, page
allocation failure can always be seen.
---------------------------------
DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 1 Comm: swapper/0
Call Trace:
dump_stack+0x7f/0xa1
warn_alloc.cold+0x72/0xd6
......
__alloc_pages+0x24d/0x2c0
......
dma_atomic_pool_init+0xdb/0x176
do_one_initcall+0x67/0x320
? rcu_read_lock_sched_held+0x3f/0x80
kernel_init_freeable+0x290/0x2dc
? rest_init+0x24f/0x24f
kernel_init+0xa/0x111
ret_from_fork+0x22/0x30
Mem-Info:
------------------------------------
***Root cause:
In the current kernel, it assumes that DMA zone must have managed pages
and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not
always true. E.g in kdump kernel of x86_64, only low 1M is presented and
locked down at very early stage of boot, so that this low 1M won't be
added into buddy allocator to become managed pages of DMA zone. This
exception will always cause page allocation failure if page is requested
from DMA zone.
***Investigation:
This failure happens since below commit merged into linus's tree.
1a6a9044b967 x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
23721c8e92f7 x86/crash: Remove crash_reserve_low_1M()
f1d4d47c5851 x86/setup: Always reserve the first 1M of RAM
7c321eb2b843 x86/kdump: Remove the backup region handling
6f599d84231f x86/kdump: Always reserve the low 1M when the crashkernel option is specified
Before them, on x86_64, the low 640K area will be reused by kdump kernel.
So in kdump kernel, the content of low 640K area is copied into a backup
region for dumping before jumping into kdump. Then except of those firmware
reserved region in [0, 640K], the left area will be added into buddy
allocator to become available managed pages of DMA zone.
However, after above commits applied, in kdump kernel of x86_64, the low
1M is reserved by memblock, but not released to buddy allocator. So any
later page allocation requested from DMA zone will fail.
At the beginning, if crashkernel is reserved, the low 1M need be locked
down because AMD SME encrypts memory making the old backup region
mechanims impossible when switching into kdump kernel.
Later, it was also observed that there are BIOSes corrupting memory
under 1M. To solve this, in commit f1d4d47c5851, the entire region of
low 1M is always reserved after the real mode trampoline is allocated.
Besides, recently, Intel engineer mentioned their TDX (Trusted domain
extensions) which is under development in kernel also needs to lock down
the low 1M. So we can't simply revert above commits to fix the page allocation
failure from DMA zone as someone suggested.
***Solution:
Currently, only DMA atomic pool and dma-kmalloc will initialize and
request page allocation with GFP_DMA during bootup.
So only initializ DMA atomic pool when DMA zone has available managed
pages, otherwise just skip the initialization.
For dma-kmalloc(), for the time being, let's mute the warning of
allocation failure if requesting pages from DMA zone while no manged
pages. Meanwhile, change code to use dma_alloc_xx/dma_map_xx API to
replace kmalloc(GFP_DMA), or do not use GFP_DMA when calling kmalloc() if
not necessary. Christoph is posting patches to fix those under
drivers/scsi/. Finally, we can remove the need of dma-kmalloc() as people
suggested.
This patch (of 3):
In some places of the current kernel, it assumes that dma zone must have
managed pages if CONFIG_ZONE_DMA is enabled. While this is not always
true. E.g in kdump kernel of x86_64, only low 1M is presented and locked
down at very early stage of boot, so that there's no managed pages at all
in DMA zone. This exception will always cause page allocation failure if
page is requested from DMA zone.
Here add function has_managed_dma() and the relevant helper functions to
check if there's DMA zone with managed pages. It will be used in later
patches.
Link: https://lkml.kernel.org/r/20211223094435.248523-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20211223094435.248523-2-bhe@redhat.com
Fixes: 6f599d84231f ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 023accf5cdc1e504a9b04187ec23ff156fe53d90 upstream.
There maybe an overflow in memblock_overlaps_region() if it is called with
base and size such that
base + size > PHYS_ADDR_MAX
Make sure that memblock_overlaps_region() caps the size to prevent such
overflow and remove now duplicated call to memblock_cap_size() from
memblock_is_region_reserved().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Link: https://lore.kernel.org/lkml/20210630071211.21011-1-rppt@kernel.org/
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c376dfafbf7a8ea0dea212d095ddd83e93280bb upstream.
Initialize min_ratio if it is set during bdi unregistration. This can
prevent problems that may occur a when bdi is removed without resetting
min_ratio.
For example.
1) insert external sdcard
2) set external sdcard's min_ratio 70
3) remove external sdcard without setting min_ratio 0
4) insert external sdcard
5) set external sdcard's min_ratio 70 << error occur(can't set)
Because when an sdcard is removed, the present bdi_min_ratio value will
remain. Currently, the only way to reset bdi_min_ratio is to reboot.
[akpm@linux-foundation.org: tweak comment and coding style]
Link: https://lkml.kernel.org/r/20211021161942.5983-1-mj0123.lee@samsung.com
Signed-off-by: Manjong Lee <mj0123.lee@samsung.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Changheun Lee <nanich.lee@samsung.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <seunghwan.hyun@samsung.com>
Cc: <sookwan7.kim@samsung.com>
Cc: <yt0928.kim@samsung.com>
Cc: <junho89.kim@samsung.com>
Cc: <jisoo2146.oh@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a4a118f2eead1d6c49e00765de89878288d4b890 upstream.
When __unmap_hugepage_range() calls to huge_pmd_unshare() succeed, a TLB
flush is missing. This TLB flush must be performed before releasing the
i_mmap_rwsem, in order to prevent an unshared PMDs page from being
released and reused before the TLB flush took place.
Arguably, a comprehensive solution would use mmu_gather interface to
batch the TLB flushes and the PMDs page release, however it is not an
easy solution: (1) try_to_unmap_one() and try_to_migrate_one() also call
huge_pmd_unshare() and they cannot use the mmu_gather interface; and (2)
deferring the release of the page reference for the PMDs page until
after i_mmap_rwsem is dropeed can confuse huge_pmd_unshare() into
thinking PMDs are shared when they are not.
Fix __unmap_hugepage_range() by adding the missing TLB flush, and
forcing a flush when unshare is successful.
Fixes: 24669e58477e ("hugetlb: use mmu_gather instead of a temporary linked list for accumulating pages)" # 3.6
Signed-off-by: Nadav Amit <namit@vmware.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 34dbc3aaf5d9e89ba6cc5e24add9458c21ab1950 upstream.
When kmemleak is enabled for SLOB, system does not boot and does not
print anything to the console. At the very early stage in the boot
process we hit infinite recursion from kmemleak_init() and eventually
kernel crashes.
kmemleak_init() specifies SLAB_NOLEAKTRACE for KMEM_CACHE(), but
kmem_cache_create_usercopy() removes it because CACHE_CREATE_MASK is not
valid for SLOB.
Let's fix CACHE_CREATE_MASK and make kmemleak work with SLOB
Link: https://lkml.kernel.org/r/20211115020850.3154366-1-rkovhaev@gmail.com
Fixes: d8843922fba4 ("slab: Ignore internal flags in cache creation")
Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Glauber Costa <glommer@parallels.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 60e2793d440a3ec95abb5d6d4fc034a4b480472d upstream.
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory. This can happen for 2
different reasons. a) Memcg is out of memory and we rely on
mem_cgroup_oom_synchronize to perform the memcg OOM handling or b)
normal allocation fails.
The latter is quite problematic because allocation paths already trigger
out_of_memory and the page allocator tries really hard to not fail
allocations. Anyway, if the OOM killer has been already invoked there
is no reason to invoke it again from the #PF path. Especially when the
OOM condition might be gone by that time and we have no way to find out
other than allocate.
Moreover if the allocation failed and the OOM killer hasn't been invoked
then we are unlikely to do the right thing from the #PF context because
we have already lost the allocation context and restictions and
therefore might oom kill a task from a different NUMA domain.
This all suggests that there is no legitimate reason to trigger
out_of_memory from pagefault_out_of_memory so drop it. Just to be sure
that no #PF path returns with VM_FAULT_OOM without allocation print a
warning that this is happening before we restart the #PF.
[VvS: #PF allocation can hit into limit of cgroup v1 kmem controller.
This is a local problem related to memcg, however, it causes unnecessary
global OOM kills that are repeated over and over again and escalate into a
real disaster. This has been broken since kmem accounting has been
introduced for cgroup v1 (3.8). There was no kmem specific reclaim for
the separate limit so the only way to handle kmem hard limit was to return
with ENOMEM. In upstream the problem will be fixed by removing the
outdated kmem limit, however stable and LTS kernels cannot do it and are
still affected. This patch fixes the problem and should be backported
into stable/LTS.]
Link: https://lkml.kernel.org/r/f5fd8dd8-0ad4-c524-5f65-920b01972a42@virtuozzo.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0b28179a6138a5edd9d82ad2687c05b3773c387b upstream.
Patch series "memcg: prohibit unconditional exceeding the limit of dying tasks", v3.
Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit. It can be misused and allowed to trigger global OOM from inside
a memcg-limited container. On the other hand if memcg fails allocation,
called from inside #PF handler it triggers global OOM from inside
pagefault_out_of_memory().
To prevent these problems this patchset:
(a) removes execution of out_of_memory() from
pagefault_out_of_memory(), becasue nobody can explain why it is
necessary.
(b) allow memcg to fail allocation of dying/killed tasks.
This patch (of 3):
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory which in turn executes
out_out_memory() and can kill a random task.
An allocation might fail when the current task is the oom victim and
there are no memory reserves left. The OOM killer is already handled at
the page allocator level for the global OOM and at the charging level
for the memcg one. Both have much more information about the scope of
allocation/charge request. This means that either the OOM killer has
been invoked properly and didn't lead to the allocation success or it
has been skipped because it couldn't have been invoked. In both cases
triggering it from here is pointless and even harmful.
It makes much more sense to let the killed task die rather than to wake
up an eternally hungry oom-killer and send him to choose a fatter victim
for breakfast.
Link: https://lkml.kernel.org/r/0828a149-786e-7c06-b70a-52d086818ea3@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit afe8605ca45424629fdddfd85984b442c763dc47 ]
There is one possible race window between zs_pool_dec_isolated() and
zs_unregister_migration() because wait_for_isolated_drain() checks the
isolated count without holding class->lock and there is no order inside
zs_pool_dec_isolated(). Thus the below race window could be possible:
zs_pool_dec_isolated zs_unregister_migration
check pool->destroying != 0
pool->destroying = true;
smp_mb();
wait_for_isolated_drain()
wait for pool->isolated_pages == 0
atomic_long_dec(&pool->isolated_pages);
atomic_long_read(&pool->isolated_pages) == 0
Since we observe the pool->destroying (false) before atomic_long_dec()
for pool->isolated_pages, waking pool->migration_wait up is missed.
Fix this by ensure checking pool->destroying happens after the
atomic_long_dec(&pool->isolated_pages).
Link: https://lkml.kernel.org/r/20210708115027.7557-1-linmiaohe@huawei.com
Fixes: 701d678599d0 ("mm/zsmalloc.c: fix race condition in zs_destroy_pool")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Henry Burns <henryburns@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 899447f669da76cc3605665e1a95ee877bc464cc upstream.
If object's reuse is delayed, it will be excluded from the reconstructed
freelist. But we forgot to adjust the cnt accordingly. So there will
be a mismatch between reconstructed freelist depth and cnt. This will
lead to free_debug_processing() complaining about freelist count or a
incorrect slub inuse count.
Link: https://lkml.kernel.org/r/20210916123920.48704-3-linmiaohe@huawei.com
Fixes: c3895391df38 ("kasan, slub: fix handling of kasan_slab_free hook")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Faiyaz Mohammed <faiyazm@codeaurora.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>