Commit Graph

493 Commits

Author SHA1 Message Date
Darrick J. Wong
509955823c xfs: log recovery should replay deferred ops in order
As part of testing log recovery with dm_log_writes, Amir Goldstein
discovered an error in the deferred ops recovery that lead to corruption
of the filesystem metadata if a reflink+rmap filesystem happened to shut
down midway through a CoW remap:

"This is what happens [after failed log recovery]:

"Phase 1 - find and verify superblock...
"Phase 2 - using internal log
"        - zero log...
"        - scan filesystem freespace and inode maps...
"        - found root inode chunk
"Phase 3 - for each AG...
"        - scan (but don't clear) agi unlinked lists...
"        - process known inodes and perform inode discovery...
"        - agno = 0
"data fork in regular inode 134 claims CoW block 376
"correcting nextents for inode 134
"bad data fork in inode 134
"would have cleared inode 134"

Hou Tao dissected the log contents of exactly such a crash:

"According to the implementation of xfs_defer_finish(), these ops should
be completed in the following sequence:

"Have been done:
"(1) CUI: Oper (160)
"(2) BUI: Oper (161)
"(3) CUD: Oper (194), for CUI Oper (160)
"(4) RUI A: Oper (197), free rmap [0x155, 2, -9]

"Should be done:
"(5) BUD: for BUI Oper (161)
"(6) RUI B: add rmap [0x155, 2, 137]
"(7) RUD: for RUI A
"(8) RUD: for RUI B

"Actually be done by xlog_recover_process_intents()
"(5) BUD: for BUI Oper (161)
"(6) RUI B: add rmap [0x155, 2, 137]
"(7) RUD: for RUI B
"(8) RUD: for RUI A

"So the rmap entry [0x155, 2, -9] for COW should be freed firstly,
then a new rmap entry [0x155, 2, 137] will be added. However, as we can see
from the log record in post_mount.log (generated after umount) and the trace
print, the new rmap entry [0x155, 2, 137] are added firstly, then the rmap
entry [0x155, 2, -9] are freed."

When reconstructing the internal log state from the log items found on
disk, it's required that deferred ops replay in exactly the same order
that they would have had the filesystem not gone down.  However,
replaying unfinished deferred ops can create /more/ deferred ops.  These
new deferred ops are finished in the wrong order.  This causes fs
corruption and replay crashes, so let's create a single defer_ops to
handle the subsequent ops created during replay, then use one single
transaction at the end of log recovery to ensure that everything is
replayed in the same order as they're supposed to be.

Reported-by: Amir Goldstein <amir73il@gmail.com>
Analyzed-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-11-27 09:34:08 -08:00
Christoph Hellwig
e89fbb5ee1 xfs: mark xlog_recover_check_summary STATIC
We already did it in the forward declaration, but not for the function
body itself.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-11-06 11:57:39 -08:00
Darrick J. Wong
06b1132120 xfs: remove inode log format typedef
Remove xfs_inode_log_format_t now that xfs_inode_log_format is
explicitly padded and therefore is a real on-disk structure.  This
enables xfs/122 to check the size of the structure.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2017-11-01 15:03:16 -07:00
Brian Foster
9f2a450580 xfs: fix log block underflow during recovery cycle verification
It is possible for mkfs to format very small filesystems with too
small of an internal log with respect to the various minimum size
and block count requirements. If this occurs when the log happens to
be smaller than the scan window used for cycle verification and the
scan wraps the end of the log, the start_blk calculation in
xlog_find_head() underflows and leads to an attempt to scan an
invalid range of log blocks. This results in log recovery failure
and a failed mount.

Since there may be filesystems out in the wild with this kind of
geometry, we cannot simply refuse to mount. Instead, cap the scan
window for cycle verification to the size of the physical log. This
ensures that the cycle verification proceeds as expected when the
scan wraps the end of the log.

Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-26 15:38:29 -07:00
Brian Foster
99c265950b xfs: more robust recovery xlog buffer validation
mkfs has a historical problem where it can format very small
filesystems with too small of a physical log. Under certain
conditions, log recovery of an associated filesystem can end up
passing garbage parameter values to some of the cycle and log record
verification functions due to bugs in log recovery not dealing with
such filesystems properly. This results in attempts to read from
bogus/underflowed log block addresses.

Since the buffer read may ultimately succeed, log recovery can
proceed with bogus data and otherwise go off the rails and crash.
One example of this is a negative last_blk being passed to
xlog_find_verify_log_record() causing us to skip the loop, pass a
NULL head pointer to xlog_header_check_mount() and crash.

Improve the xlog buffer verification to address this problem. We
already verify xlog buffer length, so update this mechanism to also
sanity check for a valid log relative block address and otherwise
return an error. Pass a fixed, valid log block address from
xlog_get_bp() since the target address will be validated when the
buffer is read. This ensures that any bogus log block address/length
calculations lead to graceful mount failure rather than risking a
crash or worse if recovery proceeds with bogus data.

Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-26 15:38:29 -07:00
Christoph Hellwig
42b67dc6ff xfs: remove the never fully implemented UUID fork format
Remove the dead code dealing with the UUID fork format that was never
implemented in Linux (and neither in IRIX as far as I know).

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-10-26 15:38:27 -07:00
Darrick J. Wong
7bf7a193a9 xfs: fix compiler warnings
Fix up all the compiler warnings that have crept in.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2017-09-02 08:22:19 -07:00
Brian Foster
e67d3d4246 xfs: add log recovery tracepoint for head/tail
Torn write detection and tail overwrite detection can shift the log
head and tail respectively in the event of CRC mismatch or
corruption errors. Add a high-level log recovery tracepoint to dump
the final log head/tail and make those values easily attainable in
debug/diagnostic situations.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-08-22 09:22:24 -07:00
Brian Foster
a4c9b34d6a xfs: handle -EFSCORRUPTED during head/tail verification
Torn write and tail overwrite detection both trigger only on
-EFSBADCRC errors. While this is the most likely failure scenario
for each condition, -EFSCORRUPTED is still possible in certain cases
depending on what ends up on disk when a torn write or partial tail
overwrite occurs. For example, an invalid log record h_len can lead
to an -EFSCORRUPTED error when running the log recovery CRC pass.

Therefore, update log head and tail verification to trigger the
associated head/tail fixups in the event of -EFSCORRUPTED errors
along with -EFSBADCRC. Also, -EFSCORRUPTED can currently be returned
from xlog_do_recovery_pass() before rhead_blk is initialized if the
first record encountered happens to be corrupted. This leads to an
incorrect 'first_bad' return value. Initialize rhead_blk earlier in
the function to address that problem as well.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-08-22 09:22:24 -07:00
Brian Foster
4a4f66eac4 xfs: fix log recovery corruption error due to tail overwrite
If we consider the case where the tail (T) of the log is pinned long
enough for the head (H) to push and block behind the tail, we can
end up blocked in the following state without enough free space (f)
in the log to satisfy a transaction reservation:

	0	phys. log	N
	[-------HffT---H'--T'---]

The last good record in the log (before H) refers to T. The tail
eventually pushes forward (T') leaving more free space in the log
for writes to H. At this point, suppose space frees up in the log
for the maximum of 8 in-core log buffers to start flushing out to
the log. If this pushes the head from H to H', these next writes
overwrite the previous tail T. This is safe because the items logged
from T to T' have been written back and removed from the AIL.

If the next log writes (H -> H') happen to fail and result in
partial records in the log, the filesystem shuts down having
overwritten T with invalid data. Log recovery correctly locates H on
the subsequent mount, but H still refers to the now corrupted tail
T. This results in log corruption errors and recovery failure.

Since the tail overwrite results from otherwise correct runtime
behavior, it is up to log recovery to try and deal with this
situation. Update log recovery tail verification to run a CRC pass
from the first record past the tail to the head. This facilitates
error detection at T and moves the recovery tail to the first good
record past H' (similar to truncating the head on torn write
detection). If corruption is detected beyond the range possibly
affected by the max number of iclogs, the log is legitimately
corrupted and log recovery failure is expected.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-08-22 09:22:23 -07:00
Brian Foster
5297ac1f6d xfs: always verify the log tail during recovery
Log tail verification currently only occurs when torn writes are
detected at the head of the log. This was introduced because a
change in the head block due to torn writes can lead to a change in
the tail block (each log record header references the current tail)
and the tail block should be verified before log recovery proceeds.

Tail corruption is possible outside of torn write scenarios,
however. For example, partial log writes can be detected and cleared
during the initial head/tail block discovery process. If the partial
write coincides with a tail overwrite, the log tail is corrupted and
recovery fails.

To facilitate correct handling of log tail overwites, update log
recovery to always perform tail verification. This is necessary to
detect potential tail overwrite conditions when torn writes may not
have occurred. This changes normal (i.e., no torn writes) recovery
behavior slightly to detect and return CRC related errors near the
tail before actual recovery starts.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-08-22 09:22:23 -07:00
Brian Foster
284f1c2c9b xfs: fix recovery failure when log record header wraps log end
The high-level log recovery algorithm consists of two loops that
walk the physical log and process log records from the tail to the
head. The first loop handles the case where the tail is beyond the
head and processes records up to the end of the physical log. The
subsequent loop processes records from the beginning of the physical
log to the head.

Because log records can wrap around the end of the physical log, the
first loop mentioned above must handle this case appropriately.
Records are processed from in-core buffers, which means that this
algorithm must split the reads of such records into two partial
I/Os: 1.) from the beginning of the record to the end of the log and
2.) from the beginning of the log to the end of the record. This is
further complicated by the fact that the log record header and log
record data are read into independent buffers.

The current handling of each buffer correctly splits the reads when
either the header or data starts before the end of the log and wraps
around the end. The data read does not correctly handle the case
where the prior header read wrapped or ends on the physical log end
boundary. blk_no is incremented to or beyond the log end after the
header read to point to the record data, but the split data read
logic triggers, attempts to read from an invalid log block and
ultimately causes log recovery to fail. This can be reproduced
fairly reliably via xfstests tests generic/047 and generic/388 with
large iclog sizes (256k) and small (10M) logs.

If the record header read has pushed beyond the end of the physical
log, the subsequent data read is actually contiguous. Update the
data read logic to detect the case where blk_no has wrapped, mod it
against the log size to read from the correct address and issue one
contiguous read for the log data buffer. The log record is processed
as normal from the buffer(s), the loop exits after the current
iteration and the subsequent loop picks up with the first new record
after the start of the log.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-08-22 09:22:23 -07:00
Linus Torvalds
642338ba33 Changes for 4.13:
- Avoid quotacheck deadlocks
 - Fix transaction overflows when bunmapping fragmented files
 - Refactor directory readahead
 - Allow admin to configure if ASSERT is fatal
 - Improve transaction usage detail logging during overflows
 - Minor cleanups
 - Don't leak log items when the log shuts down
 - Remove double-underscore typedefs
 - Various preparation for online scrubbing
 - Introduce new error injection configuration sysfs knobs
 - Refactor dq_get_next to use extent map directly
 - Fix problems with iterating the page cache for unwritten data
 - Implement SEEK_{HOLE,DATA} via iomap
 - Refactor XFS to use iomap SEEK_HOLE and SEEK_DATA
 - Don't use MAXPATHLEN to check on-disk symlink target lengths
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCgAGBQJZYDw4AAoJEPh/dxk0SrTr2IMP/3JLeygIDtKBBVRPvlCmEXQC
 j8w1C/ntn46zZKQ8l14fAFV4HV2d+KJWf8+yDuPuGdMXJfPeKZf95otYhnSx/9Th
 MvCH7Nzg63yjEGqXpBkfIVr/GT0KTx28lxiqNViChr7XiXWookgf3SSLINO+vU4J
 L2jgLqieJfijiHTBs4qGCQPDwSXVoSOi5XCCQWDYQrXz6DI5UEJc70U53WkH4tRu
 RctOgp1lralwEO0PhfomD3m/Gk94taE/4ZpX/j/5Y4tvH/yh5aY3/KTCLm6+mYT3
 rgMpmg5hmm+UiCTNoTnQ5RxzGZWCfI1I9FZ3HqDsbhmFtaWh32ti0dEEDYsF8Opj
 ARnTty3cRx41LH9dULrVWdwW105AHgwEz8/OZlG0JOca9qzj9GKERMg/hpHINAKN
 TrBlkweg86LWZDy23udZJ/v35svNqSFsqL1yV8j5dXyBi+Yi2CGfU27zbBwnj4Jk
 047l+OuRbBnEOUULqJTEVBY3euoclwl/yQrW2m409s7vPGkGQBLuFCsDKQdnvJ/A
 D7frZqH8XypwnhFOkKybUnBkn4P7vZ2sEuCIZMsrH5k/ys8XyEkaBaOurjvMBOKA
 vLIMD6RXDWrFbOoovfK/stEM6/UFoQkgMhBe7vB9EXk1AjM8NYyWZgp5BkHtytC7
 qa6GRjtGefhc67hbwXJd
 =/GZI
 -----END PGP SIGNATURE-----

Merge tag 'xfs-4.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull XFS updates from Darrick Wong:
 "Here are some changes for you for 4.13. For the most part it's fixes
  for bugs and deadlock problems, and preparation for online fsck in
  some future merge window.

   - Avoid quotacheck deadlocks

   - Fix transaction overflows when bunmapping fragmented files

   - Refactor directory readahead

   - Allow admin to configure if ASSERT is fatal

   - Improve transaction usage detail logging during overflows

   - Minor cleanups

   - Don't leak log items when the log shuts down

   - Remove double-underscore typedefs

   - Various preparation for online scrubbing

   - Introduce new error injection configuration sysfs knobs

   - Refactor dq_get_next to use extent map directly

   - Fix problems with iterating the page cache for unwritten data

   - Implement SEEK_{HOLE,DATA} via iomap

   - Refactor XFS to use iomap SEEK_HOLE and SEEK_DATA

   - Don't use MAXPATHLEN to check on-disk symlink target lengths"

* tag 'xfs-4.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (48 commits)
  xfs: don't crash on unexpected holes in dir/attr btrees
  xfs: rename MAXPATHLEN to XFS_SYMLINK_MAXLEN
  xfs: fix contiguous dquot chunk iteration livelock
  xfs: Switch to iomap for SEEK_HOLE / SEEK_DATA
  vfs: Add iomap_seek_hole and iomap_seek_data helpers
  vfs: Add page_cache_seek_hole_data helper
  xfs: remove a whitespace-only line from xfs_fs_get_nextdqblk
  xfs: rewrite xfs_dq_get_next_id using xfs_iext_lookup_extent
  xfs: Check for m_errortag initialization in xfs_errortag_test
  xfs: grab dquots without taking the ilock
  xfs: fix semicolon.cocci warnings
  xfs: Don't clear SGID when inheriting ACLs
  xfs: free cowblocks and retry on buffered write ENOSPC
  xfs: replace log_badcrc_factor knob with error injection tag
  xfs: convert drop_writes to use the errortag mechanism
  xfs: remove unneeded parameter from XFS_TEST_ERROR
  xfs: expose errortag knobs via sysfs
  xfs: make errortag a per-mountpoint structure
  xfs: free uncommitted transactions during log recovery
  xfs: don't allow bmap on rt files
  ...
2017-07-10 10:51:53 -07:00
Brian Foster
39775431f8 xfs: free uncommitted transactions during log recovery
Log recovery allocates in-core transaction and member item data
structures on-demand as it processes the on-disk log. Transactions
are allocated on first encounter on-disk and stored in a hash table
structure where they are easily accessible for subsequent lookups.
Transaction items are also allocated on demand and are attached to
the associated transactions.

When a commit record is encountered in the log, the transaction is
committed to the fs and the in-core structures are freed. If a
filesystem crashes or shuts down before all in-core log buffers are
flushed to the log, however, not all transactions may have commit
records in the log. As expected, the modifications in such an
incomplete transaction are not replayed to the fs. The in-core data
structures for the partial transaction are never freed, however,
resulting in a memory leak.

Update xlog_do_recovery_pass() to first correctly initialize the
hash table array so empty lists can be distinguished from populated
lists on function exit. Update xlog_recover_free_trans() to always
remove the transaction from the list prior to freeing the associated
memory. Finally, walk the hash table of transaction lists as the
last step before it goes out of scope and free any transactions that
may remain on the lists. This prevents a memory leak of partial
transactions in the log.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-06-24 10:11:41 -07:00
Darrick J. Wong
c8ce540db5 xfs: remove double-underscore integer types
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs.  This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:

s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2017-06-19 14:11:33 -07:00
Amir Goldstein
d905fdaaa7 xfs: use the common helper uuid_is_null()
Use the common helper uuid_is_null() and remove the xfs specific
helper uuid_is_nil().

The common helper does not check for the NULL pointer value as
xfs helper did, but xfs code never calls the helper with a pointer
that can be NULL.

Conform comments and warning strings to use the term 'null uuid'
instead of 'nil uuid', because this is the terminology used by
lib/uuid.c and its users. It is also the terminology used in
userspace by libuuid and xfsprogs.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
[hch: remove now unused uuid.[ch]]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
2017-06-05 16:59:08 +02:00
Masahiro Yamada
6e7c2b4dd3 scripts/spelling.txt: add "intialise(d)" pattern and fix typo instances
Fix typos and add the following to the scripts/spelling.txt:

  intialisation||initialisation
  intialised||initialised
  intialise||initialise

This commit does not intend to change the British spelling itself.

Link: http://lkml.kernel.org/r/1481573103-11329-18-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Dave Chinner
a444d72e60 Merge branch 'xfs-4.10-misc-fixes-3' into for-next 2016-12-07 17:42:30 +11:00
Dave Chinner
cae028df53 xfs: optimise CRC updates
Nick Piggin reported that the CRC overhead in an fsync heavy
workload was higher than expected on a Power8 machine. Part of this
was to do with the fact that the power8 CRC implementation is not
efficient for CRC lengths of less than 512 bytes, and so the way we
split the CRCs over the CRC field means a lot of the CRCs are
reduced to being less than than optimal size.

To optimise this, change the CRC update mechanism to zero the CRC
field first, and then compute the CRC in one pass over the buffer
and write the result back into the buffer. We can do this safely
because anything writing a CRC has exclusive access to the buffer
the CRC is being calculated over.

We leave the CRC verify code the same - it still splits the CRC
calculation - because we do not want read-only operations modifying
the underlying buffer. This is because read-only operations may not
have an exclusive access to the buffer guaranteed, and so temporary
modifications could leak out to to other processes accessing the
buffer concurrently.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-12-05 14:40:32 +11:00
Eric Sandeen
200237d674 xfs: Move AGI buffer type setting to xfs_read_agi
We've missed properly setting the buffer type for
an AGI transaction in 3 spots now, so just move it
into xfs_read_agi() and set it if we are in a transaction
to avoid the problem in the future.

This is similar to how it is done in i.e. the dir3
and attr3 read functions.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-12-05 12:31:31 +11:00
Eric Sandeen
6b10b23ca9 xfs: set AGI buffer type in xlog_recover_clear_agi_bucket
xlog_recover_clear_agi_bucket didn't set the
type to XFS_BLFT_AGI_BUF, so we got a warning during log
replay (or an ASSERT on a debug build).

    XFS (md0): Unknown buffer type 0!
    XFS (md0): _xfs_buf_ioapply: no ops on block 0xaea8802/0x1

Fix this, as was done in f19b872b for 2 other locations
with the same problem.

cc: <stable@vger.kernel.org> # 3.10 to current
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-12-05 12:31:06 +11:00
Darrick J. Wong
755c7bf5dd libxfs: convert ushort to unsigned short
Since xfsprogs dropped ushort in favor of unsigned short, do that
here too.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-11-08 11:55:48 +11:00
Darrick J. Wong
17c12bcd30 xfs: when replaying bmap operations, don't let unlinked inodes get reaped
Log recovery will iget an inode to replay BUI items and iput the inode
when it's done.  Unfortunately, if the inode was unlinked, the iput
will see that i_nlink == 0 and decide to truncate & free the inode,
which prevents us from replaying subsequent BUIs.  We can't skip the
BUIs because we have to replay all the redo items to ensure that
atomic operations complete.

Since unlinked inode recovery will reap the inode anyway, we can
safely introduce a new inode flag to indicate that an inode is in this
'unlinked recovery' state and should not be auto-reaped in the
drop_inode path.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Darrick J. Wong
77d61fe45e xfs: log bmap intent items
Provide a mechanism for higher levels to create BUI/BUD items, submit
them to the log, and a stub function to deal with recovered BUI items.
These parts will be connected to the rmapbt in a later patch.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04 11:05:44 -07:00
Darrick J. Wong
a90c00f055 xfs: add refcount btree block detection to log recovery
Identify refcountbt blocks in the log correctly so that we can
validate them during log recovery.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03 09:11:23 -07:00
Darrick J. Wong
f997ee2137 xfs: log refcount intent items
Provide a mechanism for higher levels to create CUI/CUD items, submit
them to the log, and a stub function to deal with recovered CUI items.
These parts will be connected to the refcountbt in a later patch.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03 09:11:21 -07:00
Brian Foster
5cd9cee98b xfs: log recovery tracepoints to track current lsn and buffer submission
Log recovery has particular rules around buffer submission along with
tricky corner cases where independent transactions can share an LSN. As
such, it can be difficult to follow when/why buffers are submitted
during recovery.

Add a couple tracepoints to post the current LSN of a record when a new
record is being processed and when a buffer is being skipped due to LSN
ordering. Also, update the recover item class to include the LSN of the
current transaction for the item being processed.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:34:52 +10:00
Brian Foster
60a4a22251 xfs: update metadata LSN in buffers during log recovery
Log recovery is currently broken for v5 superblocks in that it never
updates the metadata LSN of buffers written out during recovery. The
metadata LSN is recorded in various bits of metadata to provide recovery
ordering criteria that prevents transient corruption states reported by
buffer write verifiers. Without such ordering logic, buffer updates can
be replayed out of order and lead to false positive transient corruption
states. This is generally not a corruption vector on its own, but
corruption detection shuts down the filesystem and ultimately prevents a
mount if it occurs during log recovery. This requires an xfs_repair run
that clears the log and potentially loses filesystem updates.

This problem is avoided in most cases as metadata writes during normal
filesystem operation update the metadata LSN appropriately. The problem
with log recovery not updating metadata LSNs manifests if the system
happens to crash shortly after log recovery itself. In this scenario, it
is possible for log recovery to complete all metadata I/O such that the
filesystem is consistent. If a crash occurs after that point but before
the log tail is pushed forward by subsequent operations, however, the
next mount performs the same log recovery over again. If a buffer is
updated multiple times in the dirty range of the log, an earlier update
in the log might not be valid based on the current state of the
associated buffer after all of the updates in the log had been replayed
(before the previous crash). If a verifier happens to detect such a
problem, the filesystem claims corruption and immediately shuts down.

This commonly manifests in practice as directory block verifier failures
such as the following, likely due to directory verifiers being
particularly detailed in their checks as compared to most others:

  ...
  Mounting V5 Filesystem
  XFS (dm-0): Starting recovery (logdev: internal)
  XFS (dm-0): Internal error XFS_WANT_CORRUPTED_RETURN at line ... of \
    file fs/xfs/libxfs/xfs_dir2_data.c.  Caller xfs_dir3_data_verify ...
  ...

Update log recovery to update the metadata LSN of recovered buffers.
Since metadata LSNs are already updated by write verifer functions via
attached log items, attach a dummy log item to the buffer during
validation and explicitly set the LSN of the current transaction. This
ensures that the metadata LSN of a buffer is updated based on whether
the recovery I/O actually completes, and if so, that subsequent recovery
attempts identify that the buffer is already up to date with respect to
the current transaction.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:34:27 +10:00
Brian Foster
040c52c0aa xfs: don't warn on buffers not being recovered due to LSN
The log recovery buffer validation function is invoked in cases where a
buffer update may be skipped due to LSN ordering. If the validation
function happens to come across directory conversion situations (e.g., a
dir3 block to data conversion), it may warn about seeing a buffer log
format of one type and a buffer with a magic number of another.

This warning is not valid as the buffer update is ultimately skipped.
This is indicated by a current_lsn of NULLCOMMITLSN provided by the
caller. As such, update xlog_recover_validate_buf_type() to only warn in
such cases when a buffer update is expected.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:32:50 +10:00
Brian Foster
22db9af248 xfs: pass current lsn to log recovery buffer validation
The current LSN must be available to the buffer validation function to
provide the ability to update the metadata LSN of the buffer. Pass the
current_lsn value down to xlog_recover_validate_buf_type() in
preparation.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:32:07 +10:00
Brian Foster
12818d24db xfs: rework log recovery to submit buffers on LSN boundaries
The fix to log recovery to update the metadata LSN in recovered buffers
introduces the requirement that a buffer is submitted only once per
current LSN. Log recovery currently submits buffers on transaction
boundaries. This is not sufficient as the abstraction between log
records and transactions allows for various scenarios where multiple
transactions can share the same current LSN. If independent transactions
share an LSN and both modify the same buffer, log recovery can
incorrectly skip updates and leave the filesystem in an inconsisent
state.

In preparation for proper metadata LSN updates during log recovery,
update log recovery to submit buffers for write on LSN change boundaries
rather than transaction boundaries. Explicitly track the current LSN in
a new struct xlog field to handle the various corner cases of when the
current LSN may or may not change.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26 08:22:16 +10:00
Darrick J. Wong
722e251770 xfs: remove the extents array from the rmap update done log item
Nothing ever uses the extent array in the rmap update done redo
item, so remove it before it is fixed in the on-disk log format.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 12:28:43 +10:00
Darrick J. Wong
a650e8f98e xfs: add rmap btree block detection to log recovery
Originally-From: Dave Chinner <dchinner@redhat.com>

So such blocks can be correctly identified and have their operations
structures attached to validate recovery has not resulted in a
correct block.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 12:17:11 +10:00
Darrick J. Wong
9e88b5d867 xfs: log rmap intent items
Provide a mechanism for higher levels to create RUI/RUD items, submit
them to the log, and a stub function to deal with recovered RUI items.
These parts will be connected to the rmapbt in a later patch.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 12:09:48 +10:00
Darrick J. Wong
525488520a xfs: rmap btree requires more reserved free space
Originally-From: Dave Chinner <dchinner@redhat.com>

The rmap btree is allocated from the AGFL, which means we have to
ensure ENOSPC is reported to userspace before we run out of free
space in each AG. The last allocation in an AG can cause a full
height rmap btree split, and that means we have to reserve at least
this many blocks *in each AG* to be placed on the AGFL at ENOSPC.
Update the various space calculation functions to handle this.

Also, because the macros are now executing conditional code and are
called quite frequently, convert them to functions that initialise
variables in the struct xfs_mount, use the new variables everywhere
and document the calculations better.

[darrick.wong@oracle.com: don't reserve blocks if !rmap]
[dchinner@redhat.com: update m_ag_max_usable after growfs]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:38:24 +10:00
Darrick J. Wong
dc42375d5f xfs: refactor redo intent item processing
Refactor the EFI intent item recovery (and cancellation) functions
into a general function that scans the AIL and an intent item type
specific handler.  Move the function that recovers a single EFI item
into the extent free item code.  We'll want the generalized function
when we start wiring up more redo item types.

Furthermore, ensure that log recovery only replays the redo items
that were in the AIL prior to recovery by checking the item LSN
against the largest LSN seen during log scanning.  As written this
should never happen, but we can be defensive anyway.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:23:49 +10:00
Darrick J. Wong
3ab78df2a5 xfs: rework xfs_bmap_free callers to use xfs_defer_ops
Restructure everything that used xfs_bmap_free to use xfs_defer_ops
instead.  For now we'll just remove the old symbols and play some
cpp magic to make it work; in the next patch we'll actually rename
everything.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03 11:15:38 +10:00
Dave Chinner
2a4ad5894c Merge branch 'xfs-4.7-misc-fixes' into for-next 2016-05-20 10:33:17 +10:00
Christoph Hellwig
664b60f6ba xfs: improve kmem_realloc
Use krealloc to implement our realloc function.  This helps to avoid
new allocations if we are still in the slab bucket.  At least for the
bmap btree root that's actually the common case.

This also allows removing the now unused oldsize argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06 09:47:01 +10:00
Christoph Hellwig
253f4911f2 xfs: better xfs_trans_alloc interface
Merge xfs_trans_reserve and xfs_trans_alloc into a single function call
that returns a transaction with all the required log and block reservations,
and which allows passing transaction flags directly to avoid the cumbersome
_xfs_trans_alloc interface.

While we're at it we also get rid of the transaction type argument that has
been superflous since we stopped supporting the non-CIL logging mode.  The
guts of it will be removed in another patch.

[dchinner: fixed transaction leak in error path in xfs_setattr_nonsize]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06 09:19:55 +10:00
Dave Chinner
ab9d1e4f7b Merge branch 'xfs-misc-fixes-4.6-3' into for-next 2016-03-09 08:18:30 +11:00
Dave Chinner
7f0ed5461a Merge branch 'xfs-buf-macro-cleanup-4.6' into for-next 2016-03-07 09:31:00 +11:00
Dave Chinner
a2bbcb60ff Merge branch 'xfs-gut-icdinode-4.6' into for-next 2016-03-07 09:30:32 +11:00
Dave Chinner
c53473be45 Merge branch 'xfs-rt-fixes-4.6' into for-next 2016-03-07 09:29:04 +11:00
Dave Chinner
9deed09554 Merge branch 'xfs-torn-log-fixes-4.5' into for-next 2016-03-07 09:28:36 +11:00
Dave Chinner
a798011c8f xfs: reinitialise per-AG structures if geometry changes during recovery
If a crash occurs immediately after a filesystem grow operation, the
updated superblock geometry is found only in the log. After we
recover the log, the superblock is reread and re-initialised and so
has the new geometry in memory. If the new geometry has more AGs
than prior to the grow operation, then the new AGs will not have
in-memory xfs_perag structurea associated with them.

This will result in an oops when the first metadata buffer from a
new AG is looked up in the buffer cache, as the block lies within
the new geometry but then fails to find a perag structure on lookup.
This is easily fixed by simply re-initialising the perag structure
after re-reading the superblock at the conclusion of the first pahse
of log recovery.

This, however, does not fix the case of log recovery requiring
access to metadata in the newly grown space. Fortunately for us,
because the in-core superblock has not been updated, this will
result in detection of access beyond the end of the filesystem
and so recovery will fail at that point. If this proves to be
a problem, then we can address it separately to the current
reported issue.

Reported-by: Alex Lyakas <alex@zadarastorage.com>
Tested-by: Alex Lyakas <alex@zadarastorage.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
2016-03-07 08:39:36 +11:00
Brian Foster
7f6aff3a29 xfs: only run torn log write detection on dirty logs
XFS uses CRC verification over a sub-range of the head of the log to
detect and handle torn writes. This torn log write detection currently
runs unconditionally at mount time, regardless of whether the log is
dirty or clean. This is problematic in cases where a filesystem might
end up being moved across different, incompatible (i.e., opposite
byte-endianness) architectures.

The problem lies in the fact that log data is not necessarily written in
an architecture independent format. For example, certain bits of data
are written in native endian format. Further, the size of certain log
data structures differs (i.e., struct xlog_rec_header) depending on the
word size of the cpu. This leads to false positive crc verification
errors and ultimately failed mounts when a cleanly unmounted filesystem
is mounted on a system with an incompatible architecture from data that
was written near the head of the log.

Update the log head/tail discovery code to run torn write detection only
when the log is not clean. This means something other than an unmount
record resides at the head of the log and log recovery is imminent. It
is a requirement to run log recovery on the same type of host that had
written the content of the dirty log and therefore CRC failures are
legitimate corruptions in that scenario.

Reported-by: Jan Beulich <JBeulich@suse.com>
Tested-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-07 08:22:22 +11:00
Brian Foster
717bc0ebca xfs: refactor in-core log state update to helper
Once the record at the head of the log is identified and verified, the
in-core log state is updated based on the record. This includes
information such as the current head block and cycle, the start block of
the last record written to the log, the tail lsn, etc.

Once torn write detection is conditional, this logic will need to be
reused. Factor the code to update the in-core log data structures into a
new helper function. This patch does not change behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-07 08:22:22 +11:00
Brian Foster
65b99a08b3 xfs: refactor unmount record detection into helper
Once the mount sequence has identified the head and tail blocks of the
physical log, the record at the head of the log is located and examined
for an unmount record to determine if the log is clean. This currently
occurs after torn write verification of the head region of the log.

This must ultimately be separated from torn write verification and may
need to be called again if the log head is walked back due to a torn
write (to determine whether the new head record is an unmount record).
Separate this logic into a new helper function. This patch does not
change behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-07 08:22:22 +11:00
Brian Foster
82ff6cc26e xfs: separate log head record discovery from verification
The code that locates the log record at the head of the log is buried in
the log head verification function. This is fine when torn write
verification occurs unconditionally, but this behavior is problematic
for filesystems that might be moved across systems with different
architectures.

In preparation for separating examination of the log head for unmount
records from torn write detection, lift the record location logic out of
the log verification function and into the caller. This patch does not
change behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-07 08:22:22 +11:00
Dave Chinner
12877da584 xfs: remove XFS_BUF_ZEROFLAGS macro
The places where we use this macro already clear unnecessary IO
flags (e.g. through xfs_bwrite()) or never have unexpected IO flags
set on them in the first place (e.g. iclog buffers). Remove the
macro from these locations, and where necessary clear only the
specific flags that are conditional in the current buffer context.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10 15:01:30 +11:00
Dave Chinner
b68c08219a xfs: remove XBF_WRITE flag wrapper macros
They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10 15:01:11 +11:00
Dave Chinner
0cac682ff6 xfs: remove XBF_READ flag wrapper macros
They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10 15:01:11 +11:00
Dave Chinner
1157b32c73 xfs: remove XBF_ASYNC flag wrapper macros
They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10 15:01:11 +11:00
Dave Chinner
b0388bf108 xfs: remove XBF_DONE flag wrapper macros
They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10 15:01:11 +11:00
Dave Chinner
c19b3b05ae xfs: mode di_mode to vfs inode
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:54:58 +11:00
Dave Chinner
54d7b5c1d0 xfs: use vfs inode nlink field everywhere
The VFS tracks the inode nlink just like the xfs_icdinode. We can
remove the variable from the icdinode and use the VFS inode variable
everywhere, reducing the size of the xfs_icdinode by a further 4
bytes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:54:58 +11:00
Dave Chinner
3987848c7c xfs: remove timestamps from incore inode
The struct xfs_inode has two copies of the current timestamps in it,
one in the vfs inode and one in the struct xfs_icdinode. Now that we
no longer log the struct xfs_icdinode directly, we don't need to
keep the timestamps in this structure. instead we can copy them
straight out of the VFS inode when formatting the inode log item or
the on-disk inode.

This reduces the struct xfs_inode in size by 24 bytes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:54:58 +11:00
Dave Chinner
f8d55aa052 xfs: introduce inode log format object
We currently carry around and log an entire inode core in the
struct xfs_inode. A lot of the information in the inode core is
duplicated in the VFS inode, but we cannot remove this duplication
of infomration because the inode core is logged directly in
xfs_inode_item_format().

Add a new function xfs_inode_item_format_core() that copies the
inode core data into a struct xfs_icdinode that is pulled directly
from the log vector buffer. This means we no longer directly
copy the inode core, but copy the structures one member at a time.
This will be slightly less efficient than copying, but will allow us
to remove duplicate and unnecessary items from the struct xfs_inode.

To enable us to do this, call the new structure a xfs_log_dinode,
so that we know it's different to the physical xfs_dinode and the
in-core xfs_icdinode.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:54:58 +11:00
Dave Chinner
bf85e0998a xfs: RT bitmap and summary buffers need verifiers
Buffers without verifiers issue runtime warnings on XFS. We don't
have anything we can actually verify in the RT buffers (no CRCs, not
magic numbers, etc), but we still need verifiers to avoid the
warnings.

Add a set of dummy verifier operations for the realtime buffers and
apply them in the appropriate places.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:41:45 +11:00
Dave Chinner
f67ca6eca8 xfs: RT bitmap and summary buffers are not typed
When logging buffers, we attach a type to them that follows the
buffer all the way into the log and is used to identify the buffer
contents in log recovery. Both the realtime summary buffers and the
bitmap buffers do not have types defined or set, so when we try to
log them we see assert failure:

XFS: Assertion failed: (bip->bli_flags & XFS_BLI_STALE) || (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF), file: fs/xfs/xfs_buf_item.c, line: 294

Fix this by adding buffer log format types for these buffers, and
add identification support into log recovery for them. Only build the log
recovery support if CONFIG_XFS_RT=y - we can't get into log recovery for real
time filesystems if support is not built into the kernel, and this avoids
potential build problems.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09 16:41:31 +11:00
Darrick J. Wong
8e0bd4925b xfs: fix endianness error when checking log block crc on big endian platforms
Since the checksum function and the field are both __le32, don't
perform endian conversion when comparing the two.  This fixes mount
failures on ppc64.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08 11:03:58 +11:00
Dave Chinner
dde7f55bd0 Merge branch 'xfs-misc-fixes-for-4.5-2' into for-next 2016-01-12 07:04:30 +11:00
Dave Chinner
7d6a13f023 xfs: handle dquot buffer readahead in log recovery correctly
When we do dquot readahead in log recovery, we do not use a verifier
as the underlying buffer may not have dquots in it. e.g. the
allocation operation hasn't yet been replayed. Hence we do not want
to fail recovery because we detect an operation to be replayed has
not been run yet. This problem was addressed for inodes in commit
d891400 ("xfs: inode buffers may not be valid during recovery
readahead") but the problem was not recognised to exist for dquots
and their buffers as the dquot readahead did not have a verifier.

The result of not using a verifier is that when the buffer is then
next read to replay a dquot modification, the dquot buffer verifier
will only be attached to the buffer if *readahead is not complete*.
Hence we can read the buffer, replay the dquot changes and then add
it to the delwri submission list without it having a verifier
attached to it. This then generates warnings in xfs_buf_ioapply(),
which catches and warns about this case.

Fix this and make it handle the same readahead verifier error cases
as for inode buffers by adding a new readahead verifier that has a
write operation as well as a read operation that marks the buffer as
not done if any corruption is detected.  Also make sure we don't run
readahead if the dquot buffer has been marked as cancelled by
recovery.

This will result in readahead either succeeding and the buffer
having a valid write verifier, or readahead failing and the buffer
state requiring the subsequent read to resubmit the IO with the new
verifier.  In either case, this will result in the buffer always
ending up with a valid write verifier on it.

Note: we also need to fix the inode buffer readahead error handling
to mark the buffer with EIO. Brian noticed the code I copied from
there wrong during review, so fix it at the same time. Add comments
linking the two functions that handle readahead verifier errors
together so we don't forget this behavioural link in future.

cc: <stable@vger.kernel.org> # 3.12 - current
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-12 07:04:01 +11:00
Brian Foster
7088c4136f xfs: detect and trim torn writes during log recovery
Certain types of storage, such as persistent memory, do not provide
sector atomicity for writes. This means that if a crash occurs while XFS
is writing log records, only part of those records might make it to the
storage. This is problematic because log recovery uses the cycle value
packed at the top of each log block to locate the head/tail of the log.
This can lead to CRC verification failures during log recovery and an
unmountable fs for a filesystem that is otherwise consistent.

Update log recovery to incorporate log record CRC verification as part
of the head/tail discovery process. Once the head is located via the
traditional algorithm, run a CRC-only pass over the records up to the
head of the log. If CRC verification fails, assume that the records are
torn as a matter of policy and trim the head block back to the start of
the first bad record.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-05 07:40:16 +11:00
Brian Foster
eed6b462fb xfs: refactor log record start detection into a new helper
As part of the head/tail discovery process, log recovery locates the
head block and then reverse seeks to find the start of the last active
record in the log. This is non-trivial as the record itself could have
wrapped around the end of the physical log. Log recovery torn write
detection potentially needs to walk further behind the last record in
the log, as multiple log I/Os can be in-flight at one time during a
crash event.

Therefore, refactor the reverse log record header search mechanism into
a new helper that supports the ability to seek past an arbitrary number
of log records (or until the tail is hit). Update the head/tail search
mechanism to call the new helper, but otherwise there is no change in
log recovery behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Brian Foster
6528250b71 xfs: support a crc verification only log record pass
Log recovery torn write detection uses CRC verification over a range of
the active log to identify torn writes. Since the generic log recovery
pass code implements a superset of the functionality required for CRC
verification, it can be easily modified to support a CRC verification
only pass.

Create a new CRC pass type and update the log record processing helper
to skip everything beyond CRC verification when in this mode. This pass
will be invoked in subsequent patches to implement torn write detection.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Brian Foster
d7f37692e3 xfs: return start block of first bad log record during recovery
Each log recovery pass walks from the tail block to the head block and
processes records appropriately based on the associated log pass type.
There are various failure conditions that can occur through this
sequence, such as I/O errors, CRC errors, etc. Log torn write detection
will perform CRC verification near the head of the log to detect torn
writes and trim torn records from the log appropriately.

As it is, xlog_do_recovery_pass() only returns an error code in the
event of CRC failure, which isn't enough information to trim the head of
the log. Update xlog_do_recovery_pass() to optionally return the start
block of the associated record when an error occurs. This patch contains
no functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Brian Foster
b94fb2d178 xfs: refactor and open code log record crc check
Log record CRC verification currently occurs during active log recovery,
immediately before a log record is unpacked. Therefore, the CRC
calculation code is buried within the data unpack function. CRC
verification pass support only needs to go so far as check the CRC, but
this is not easily allowed as the code is currently organized.

Since we now have a new log record processing helper, pull the record
CRC verification code out from the unpack helper and open-code it at the
top of the new process helper. This facilitates the ability to modify
how records are processed based on the type of the current pass. This
patch contains no functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Brian Foster
9d94901f6e xfs: refactor log record unpack and data processing
xlog_do_recovery_pass() duplicates a couple function calls related to
processing log records because the function must handle wrapping around
the end of the log if the head is behind the tail. This is implemented
as separate loops. CRC verification pass support will modify how records
are processed in both of these loops.

Rather than continue to duplicate code, factor the calls that process a
log record into a new helper and call that helper from both loops. This
patch contains no functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Brian Foster
a70f9fe52d xfs: detect and handle invalid iclog size set by mkfs
XFS log records have separate fields for the record size and the iclog
size used to write the record. mkfs.xfs zeroes the log and writes an
unmount record to generate a clean log for the subsequent mount. The
userspace record logging code has a bug where the iclog size (h_size)
field of the log record is hardcoded to 32k, even if a log stripe unit
is specified. The log record length is correctly extended to the stripe
unit. Since the kernel log recovery code uses the h_size field to
determine the log buffer size, this means that the kernel can attempt to
read/process records larger than the buffer size and overrun the buffer.

This has historically not been a problem because the kernel doesn't
actually run through log recovery in the clean unmount case. Instead,
the kernel detects that a single unmount record exists between the head
and tail and pushes the tail forward such that the log is viewed as
clean (head == tail). Once CRC verification is enabled, however, all
records at the head of the log are verified for CRC errors and thus we
are susceptible to overrun problems if the iclog field is not correct.

While the core problem must be fixed in userspace, this is historical
behavior that must be detected in the kernel to avoid severe side
effects such as memory corruption and crashes. Update the log buffer
size calculation code to detect this condition, warn the user and resize
the log buffer based on the log stripe unit. Return a corruption error
in cases where this does not look like a clean filesystem (i.e., the log
record header indicates more than one operation).

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-01-04 15:55:10 +11:00
Dave Chinner
4e14e49a91 Merge branch 'xfs-misc-fixes-for-4.4-3' into for-next 2015-11-10 10:20:48 +11:00
Brian Foster
848ccfc8fe xfs: fix log recovery op header validation assert
Commit 89cebc84 ("xfs: validate transaction header length on log
recovery") added additional validation of the on-disk op header length
to protect from buffer overflow during log recovery. It accounts for the
fact that the transaction header can be split across multiple op
headers. It added an assert for when this occurs that verifies the
length of the second part of a split transaction header is less than a
full transaction header. In other words, it expects that the first op
header of a split transaction header includes at least some portion of
the transaction header.

This expectation is not always valid as a zero-length op header can
exist for the first op header of a split transaction header (see
xlog_recover_add_to_trans() for details). This means that the second op
header can have a valid, full length transaction header and thus the
full header is copied in xlog_recover_add_to_cont_trans(). Fix the
assert in xlog_recover_add_to_cont_trans() to handle this case correctly
and require that the op header length is less than or equal to a full
transaction header.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-10 10:10:33 +11:00
Brian Foster
a45086e27d xfs: validate metadata LSNs against log on v5 superblocks
Since the onset of v5 superblocks, the LSN of the last modification has
been included in a variety of on-disk data structures. This LSN is used
to provide log recovery ordering guarantees (e.g., to ensure an older
log recovery item is not replayed over a newer target data structure).

While this works correctly from the point a filesystem is formatted and
mounted, userspace tools have some problematic behaviors that defeat
this mechanism. For example, xfs_repair historically zeroes out the log
unconditionally (regardless of whether corruption is detected). If this
occurs, the LSN of the filesystem is reset and the log is now in a
problematic state with respect to on-disk metadata structures that might
have a larger LSN. Until either the log catches up to the highest
previously used metadata LSN or each affected data structure is modified
and written out without incident (which resets the metadata LSN), log
recovery is susceptible to filesystem corruption.

This problem is ultimately addressed and repaired in the associated
userspace tools. The kernel is still responsible to detect the problem
and notify the user that something is wrong. Check the superblock LSN at
mount time and fail the mount if it is invalid. From that point on,
trigger verifier failure on any metadata I/O where an invalid LSN is
detected. This results in a filesystem shutdown and guarantees that we
do not log metadata changes with invalid LSNs on disk. Since this is a
known issue with a known recovery path, present a warning to instruct
the user how to recover.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12 15:59:25 +11:00
Dave Chinner
aa493382cb Merge branch 'xfs-misc-fixes-for-4.3-2' into for-next 2015-08-20 09:28:45 +10:00
Dave Chinner
fcfbe2c4ef xfs: log recovery needs to validate against sb_meta_uuid
Now that sb_uuid can be changed by the user, we cannot use this to
validate the metadata blocks being recovered belong to this
filesystem. We must check against the sb_meta_uuid as that will
remain unchanged.

There is a complication in this code - the superblock itself. We can
not check the sb_meta_uuid unconditionally, as that may not be set
on disk. Hence we must verify the superblock sb_uuid matches between
the log record and the in-core superblock.

Found by inspection after the previous two problems were found.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 10:31:54 +10:00
Dave Chinner
5be203ad11 Merge branch 'xfs-efi-rework' into for-next 2015-08-19 10:10:47 +10:00
Brian Foster
fc0d165696 xfs: fix broken icreate log item cancellation
Inode cluster buffers are invalidated and cancelled when inode chunks
are freed to notify log recovery that previous logged updates to the
metadata buffer should be skipped. This ensures that log recovery does
not overwrite buffers that might have already been reused.

On v4 filesystems, inode chunk allocation and inode updates are logged
via the cluster buffers and thus cancellation is easily detected via
buffer cancellation items. v5 filesystems use the new icreate
transaction, which uses logical logging and ordered buffers to log a
full inode chunk allocation at once. The resulting icreate item often
spans multiple inode cluster buffers.

Log recovery checks for cancelled buffers when processing icreate log
items, but it has a couple problems. First, it uses the full length of
the inode chunk rather than the cluster size. Second, it uses the length
in FSB units rather than BB units. Either of these problems prevent
icreate recovery from identifying cancelled buffers and thus inode
initialization proceeds unconditionally.

Update xlog_recover_do_icreate_pass2() to iterate the icreate range in
cluster sized increments and check each increment for cancellation.
Since icreate is currently only used for the minimum atomic inode chunk
allocation, we expect that either all or none of the buffers will be
cancelled. Cancel the icreate if at least one buffer is cancelled to
avoid making a bad situation worse by initializing a partial inode
chunk, but detect such anomalies and warn the user.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:59:38 +10:00
Brian Foster
78d57e4593 xfs: icreate log item recovery and cancellation tracepoints
Various log items have recovery tracepoints to identify whether a
particular log item is recovered or cancelled. Add the equivalent
tracepoints for the icreate transaction.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:58:48 +10:00
Brian Foster
f0b2efad16 xfs: don't leave EFIs on AIL on mount failure
Log recovery occurs in two phases at mount time. In the first phase,
EFIs and EFDs are processed and potentially cancelled out. EFIs without
EFD objects are inserted into the AIL for processing and recovery in the
second phase. xfs_mountfs() runs various other operations between the
phases and is thus subject to failure. If failure occurs after the first
phase but before the second, pending EFIs sit on the AIL, pin it and
cause the mount to hang.

Update the mount sequence to ensure that pending EFIs are cancelled in
the event of failure. Add a recovery cancellation mechanism to iterate
the AIL and cancel all EFI items when requested. Plumb cancellation
support through the log mount finish helper and update xfs_mountfs() to
invoke cancellation in the event of failure after recovery has started.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:58:36 +10:00
Brian Foster
e32a1d1fbf xfs: use EFI refcount consistently in log recovery
The EFI is initialized with a reference count of 2. One for the EFI to
ensure the item makes it to the AIL and one for the subsequently created
EFD to release the EFI once the EFD is committed. Log recovery uses the
EFI in a similar manner, but implements a hack to remove both references
in one call once the EFD is handled.

Update log recovery to use EFI reference counting in a manner consistent
with the log. When an EFI is encountered during recovery, an EFI item is
allocated and inserted to the AIL directly. Since the EFI reference is
typically dropped when the EFI is unpinned and this is analogous with
AIL insertion, drop the EFI reference at this point.

When a corresponding EFD is encountered in the log, this indicates that
the extents were freed, no processing is required and the EFI can be
dropped. Update xlog_recover_efd_pass2() to simply drop the EFD
reference at this point rather than open code the AIL removal and EFI
free.

Remaining EFIs (i.e., with no corresponding EFD) are processed in
xlog_recover_finish(). An EFD transaction is allocated and the extents
are freed, which transfers ownership of the EFI reference to the EFD
item in the log.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:52:21 +10:00
Brian Foster
6bc43af3d5 xfs: ensure EFD trans aborts on log recovery extent free failure
Log recovery attempts to free extents with leftover EFIs in the AIL
after initial processing. If the extent free fails (e.g., due to
unrelated fs corruption), the transaction is cancelled, though it
might not be dirtied at the time. If this is the case, the EFD does
not abort and thus does not release the EFI. This can lead to hangs
as the EFI pins the AIL.

Update xlog_recover_process_efi() to log the EFD in the transaction
before xfs_free_extent() errors are handled to ensure the
transaction is dirty, aborts the EFD and releases the EFI on error.
Since this is a requirement for EFD processing (and consistent with
xfs_bmap_finish()), update the EFD logging helper to do the extent
free and unconditionally log the EFD. This encodes the required EFD
logging behavior into the helper and reduces the likelihood of
errors down the road.

[dchinner: re-add xfs_alloc.h to xfs_log_recover.c to fix build
 failure.]

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:51:43 +10:00
Brian Foster
5e4b5386a2 xfs: disentagle EFI release from the extent count
Release of the EFI either occurs based on the reference count or the
extent count. The extent count used is either the count tracked in
the EFI or EFD, depending on the particular situation. In either
case, the count is initialized to the final value and thus always
matches the current efi_next_extent value once the EFI is completely
constructed.  For example, the EFI extent count is increased as the
extents are logged in xfs_bmap_finish() and the full free list is
always completely processed. Therefore, the count is guaranteed to
be complete once the EFI transaction is committed. The EFD uses the
efd_nextents counter to release the EFI. This counter is initialized
to the count of the EFI when the EFD is created. Thus the EFD, as
currently used, has no concept of partial EFI release based on
extent count.

Given that the EFI extent count is always released in whole, use of
the extent count for reference counting is unnecessary. Remove this
level of the API and release the EFI based on the core reference
count. The efi_next_extent counter remains because it is still used
to track the slot to log the next extent to free.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19 09:50:12 +10:00
Dave Chinner
20b8394436 Merge branch 'xfs-misc-fixes-for-4.3' into for-next 2015-07-29 11:54:07 +10:00
Joe Perches
f41febd2eb xfs: Use consistent logging message prefixes
The second and subsequent lines of multi-line logging messages
are not prefixed with the same information as the first line.

Separate messages with newlines into multiple calls to ensure
consistent prefixing and allow easier grep use.

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-07-29 11:52:04 +10:00
Brian Foster
89cebc8477 xfs: validate transaction header length on log recovery
When log recovery hits a new transaction, it copies the transaction
header from the expected location in the log to the in-core structure
using the length from the op record header. This length is validated to
ensure it doesn't exceed the length of the record, but not against the
expected size of a transaction header (and thus the size of the in-core
structure). If the on-disk length is corrupted, the associated memcpy()
can overflow, write to unrelated memory and lead to crashes. This has
been reproduced via filesystem fuzzing.

The code currently handles the possibility that the transaction header
is split across two op records. Neither instance accounts for corruption
where the op record length might be larger than the in-core transaction
header. Update both sites to detect such corruption, warn and return an
error from log recovery. Also add some comments and assert that if the
record is split, the copy of the second portion is less than a full
header. Otherwise, this suggests the copy of the second portion could
have overwritten bits from the first and thus that something could be
wrong.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-07-29 11:51:10 +10:00
Dave Chinner
e3c32ee9e3 xfs: remote attribute headers contain an invalid LSN
In recent testing, a system that crashed failed log recovery on
restart with a bad symlink buffer magic number:

XFS (vda): Starting recovery (logdev: internal)
XFS (vda): Bad symlink block magic!
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 2060

On examination of the log via xfs_logprint, none of the symlink
buffers in the log had a bad magic number, nor were any other types
of buffer log format headers mis-identified as symlink buffers.
Tracing was used to find the buffer the kernel was tripping over,
and xfs_db identified it's contents as:

000: 5841524d 00000000 00000346 64d82b48 8983e692 d71e4680 a5f49e2c b317576e
020: 00000000 00602038 00000000 006034ce d0020000 00000000 4d4d4d4d 4d4d4d4d
040: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d
060: 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d 4d4d4d4d
.....

This is a remote attribute buffer, which are notable in that they
are not logged but are instead written synchronously by the remote
attribute code so that they exist on disk before the attribute
transactions are committed to the journal.

The above remote attribute block has an invalid LSN in it - cycle
0xd002000, block 0 - which means when log recovery comes along to
determine if the transaction that writes to the underlying block
should be replayed, it sees a block that has a future LSN and so
does not replay the buffer data in the transaction. Instead, it
validates the buffer magic number and attaches the buffer verifier
to it.  It is this buffer magic number check that is failing in the
above assert, indicating that we skipped replay due to the LSN of
the underlying buffer.

The problem here is that the remote attribute buffers cannot have a
valid LSN placed into them, because the transaction that contains 
the attribute tree pointer changes and the block allocation that the
attribute data is being written to hasn't yet been committed. Hence
the LSN field in the attribute block is completely unwritten,
thereby leaving the underlying contents of the block in the LSN
field. It could have any value, and hence a future overwrite of the
block by log recovery may or may not work correctly.

Fix this by always writing an invalid LSN to the remote attribute
block, as any buffer in log recovery that needs to write over the
remote attribute should occur. We are protected from having old data
written over the attribute by the fact that freeing the block before
the remote attribute is written will result in the buffer being
marked stale in the log and so all changes prior to the buffer stale
transaction will be cancelled by log recovery.

Hence it is safe to ignore the LSN in the case or synchronously
written, unlogged metadata such as remote attribute blocks, and to
ensure we do that correctly, we need to write an invalid LSN to all
remote attribute blocks to trigger immediate recovery of metadata
that is written over the top.

As a further protection for filesystems that may already have remote
attribute blocks with bad LSNs on disk, change the log recovery code
to always trigger immediate recovery of metadata over remote
attribute blocks.

cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-07-29 11:48:01 +10:00
Dave Chinner
de50e16ffa Merge branch 'xfs-misc-fixes-for-4.2-3' into for-next 2015-06-23 08:49:01 +10:00
Christoph Hellwig
b2a922cd6c xfs: remove xfs_caddr_t
Just use char pointers directly instead of the confusing typedef to a
pointer type.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-22 09:45:10 +10:00
Christoph Hellwig
88ee2df7f2 xfs: return a void pointer from xfs_buf_offset
This avoids all kinds of unessecary casts in an envrionment like Linux where
we can assume that pointer arithmetics are support on void pointers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-22 09:44:29 +10:00
Dave Chinner
4ea7976616 Merge branch 'xfs-commit-cleanup' into for-next
Conflicts:
	fs/xfs/xfs_attr_inactive.c
2015-06-04 13:55:48 +10:00
Christoph Hellwig
70393313dd xfs: saner xfs_trans_commit interface
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES.  So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04 13:48:08 +10:00
Christoph Hellwig
4906e21545 xfs: remove the flags argument to xfs_trans_cancel
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT.  Both of them are a direct product of the transaction
state, and can be deducted:

 - any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
   and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
 - any transaction with a permanent log reservation needs
   XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
   XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
   log reservation is invalid.

So just remove the flags argument and do the right thing.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04 13:47:56 +10:00
Brian Foster
7f43c907ad xfs: handle sparse inode chunks in icreate log recovery
Recovery of icreate transactions assumes hardcoded values for the inode
count and chunk length.

Sparse inode chunks are allocated in units of m_ialloc_min_blks. Update
the icreate validity checks to allow for appropriately sized inode
chunks and verify the inode count matches what is expected based on the
extent length rather than assuming a hardcoded count.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29 09:06:30 +10:00
Brian Foster
463958af5c xfs: pass inode count through ordered icreate log item
v5 superblocks use an ordered log item for logging the initialization of
inode chunks. The icreate log item is currently hardcoded to an inode
count of 64 inodes.

The agbno and extent length are used to initialize the inode chunk from
log recovery. While an incorrect inode count does not lead to bad inode
chunk initialization, we should pass the correct inode count such that log
recovery has enough data to perform meaningful validity checks on the
chunk.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29 09:05:49 +10:00
Dave Chinner
5681ca4006 xfs: Remove icsb infrastructure
Now that the in-core superblock infrastructure has been replaced with
generic per-cpu counters, we don't need it anymore. Nuke it from
orbit so we are sure that it won't haunt us again...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23 21:22:31 +11:00
Dave Chinner
6044e4386c Merge branch 'xfs-misc-fixes-for-3.19-2' into for-next
Conflicts:
	fs/xfs/xfs_iops.c
2014-12-04 09:46:17 +11:00
Dave Chinner
9a2cc41cda xfs: move type conversion functions to xfs_dir.h
These are currently considered private to libxfs, but they are
widely used by the userspace code to decode, walk and check
directory structures. Hence they really form part of the external
API and as such need to bemoved to xfs_dir2.h.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-12-04 09:43:17 +11:00
Christoph Hellwig
508b6b3b73 xfs: merge xfs_inum.h into xfs_format.h
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:27:10 +11:00
Christoph Hellwig
4fb6e8ade2 xfs: merge xfs_ag.h into xfs_format.h
More on-disk format consolidation.  A few declarations that weren't on-disk
format related move into better suitable spots.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:25:04 +11:00
Christoph Hellwig
6d3ebaae7c xfs: merge xfs_dinode.h into xfs_format.h
More consolidatation for the on-disk format defintions.  Note that the
XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related
to the on disk format, but depends on a CONFIG_ option.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28 14:24:06 +11:00
Dave Chinner
75e58ce4c8 Merge branch 'xfs-buf-iosubmit' into for-next 2014-10-02 09:11:14 +10:00
Dave Chinner
595bff75dc xfs: introduce xfs_buf_submit[_wait]
There is a lot of cookie-cutter code that looks like:

	if (shutdown)
		handle buffer error
	xfs_buf_iorequest(bp)
	error = xfs_buf_iowait(bp)
	if (error)
		handle buffer error

spread through XFS. There's significant complexity now in
xfs_buf_iorequest() to specifically handle this sort of synchronous
IO pattern, but there's all sorts of nasty surprises in different
error handling code dependent on who owns the buffer references and
the locks.

Pull this pattern into a single helper, where we can hide all the
synchronous IO warts and hence make the error handling for all the
callers much saner. This removes the need for a special extra
reference to protect IO completion processing, as we can now hold a
single reference across dispatch and waiting, simplifying the sync
IO smeantics and error handling.

In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and
make it explicitly handle on asynchronous IO. This forces all users
to be switched specifically to one interface or the other and
removes any ambiguity between how the interfaces are to be used. It
also means that xfs_buf_iowait() goes away.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-10-02 09:05:14 +10:00
Dave Chinner
e8aaba9a78 xfs: xfs_buf_ioend and xfs_buf_iodone_work duplicate functionality
We do some work in xfs_buf_ioend, and some work in
xfs_buf_iodone_work, but much of that functionality is the same.
This work can all be done in a single function, leaving
xfs_buf_iodone just a wrapper to determine if we should execute it
by workqueue or directly. hence rename xfs_buf_iodone_work to
xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that
need async processing.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-10-02 09:04:22 +10:00
Dave Chinner
2f43bbd96e Merge branch 'xfs-trans-recover-cleanup' into for-next 2014-09-29 10:00:24 +10:00
Dave Chinner
b818cca197 xfs: refactor recovery transaction start handling
Rework the transaction lookup and allocation code in
xlog_recovery_process_ophdr() to fold two related call-once
helper functions into a single helper. Then fold in all the
XLOG_START_TRANS logic to that helper to clean up the remaining
logic in xlog_recovery_process_ophdr().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-29 09:45:54 +10:00
Dave Chinner
7656066986 xfs: reorganise transaction recovery item code
The code for managing transactions anf the items for recovery is
spread across 3 different locations in the file. Move them all
together so that it is easy to read the code without needing to jump
long distances in the file.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-29 09:45:42 +10:00
Dave Chinner
88b863db97 xfs: fix double free in xlog_recover_commit_trans
When an error occurs during buffer submission in
xlog_recover_commit_trans(), we free the trans structure twice. Fix
it by only freeing the structure in the caller regardless of the
success or failure of the function.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-29 09:45:32 +10:00
Dave Chinner
e9131e50f9 xfs: recovery of XLOG_UNMOUNT_TRANS leaks memory
The XLOG_UNMOUNT_TRANS case skips the transaction, despite the fact
an unmount record is always in a standalone transaction. Hence
whenever we come across one of these we need to free the transaction
structure associated with it as there is no commit record that
follows it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-29 09:45:18 +10:00
Dave Chinner
eeb1168810 xfs: refactor xlog_recover_process_data()
Clean up xlog_recover_process_data() structure in preparation for
fixing the allocation and freeing context of the transaction being
recovered.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-29 09:45:03 +10:00
Eric Sandeen
970fd3f04d xfs: deduplicate xlog_do_recovery_pass()
In xlog_do_recovery_pass(), there are 2 distinct cases:
non-wrapped and wrapped log recovery.

If we find a wrapped log, we recover around the end
of the log, and then handle the rest of recovery
exactly as in the non-wrapped case - using exactly the same
(duplicated) code.

Rather than having the same code in both cases, we can
get the wrapped portion out of the way first if needed,
and then recover the non-wrapped portion of the log.

There should be no functional change here, just code
reorganization & deduplication.

The patch looks a bit bigger than it really is; the last
hunk is whitespace changes (un-indenting).

Tested with xfstests "check -g log" on a stock configuration.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 11:57:29 +10:00
Brian Foster
2e22717874 xfs: export log_recovery_delay to delay mount time log recovery
XFS log recovery has been discovered to have race conditions with
buffers when I/O errors occur. External tools are available to simulate
I/O errors to XFS, but this alone is not sufficient for testing log
recovery. XFS unconditionally resets the inactive region of the log
prior to log recovery to avoid confusion over processing any partially
written log records that might have been written before an unclean
shutdown. Therefore, unconditional write I/O failures at mount time are
caught by the reset sequence rather than log recovery and hinder the
ability to test the latter.

The device-mapper dm-flakey module uses an up/down timer to define a
cycle for when to fail I/Os. Create a pre log recovery delay tunable
that can be used to coordinate XFS log recovery with I/O errors
simulated by dm-flakey. This facilitates coordination in userspace that
allows the reset of stale log blocks to succeed and writes due to log
recovery to fail. For example, define a dm-flakey instance with an
uptime long enough to allow log reset to succeed and a log recovery
delay long enough to allow the dm-flakey uptime to expire.

The 'log_recovery_delay' sysfs tunable is exported under
/sys/fs/xfs/debug and is only enabled for kernels compiled in XFS debug
mode. The value is exported in units of seconds and allows for a delay
of up to 60 seconds. Note that this is for XFS debug and test
instrumentation purposes only and should not be used by applications. No
delay is enabled by default.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-09-09 11:56:13 +10:00
Dave Chinner
ad3714b82c xfs: dquot recovery needs verifiers
dquot recovery should add verifiers to the dquot buffers that it
recovers changes into. Unfortunately, it doesn't attached the
verifiers to the buffers in a consistent manner. For example,
xlog_recover_dquot_pass2() reads dquot buffers without a verifier
and then writes it without ever having attached a verifier to the
buffer.

Further, dquot buffer recovery may write a dquot buffer that has not
been modified, or indeed, shoul dbe written because quotas are not
enabled and hence changes to the buffer were not replayed. In this
case, we again write buffers without verifiers attached because that
doesn't happen until after the buffer changes have been replayed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-08-04 12:59:31 +10:00
Dave Chinner
67dc288c21 xfs: ensure verifiers are attached to recovered buffers
Crash testing of CRC enabled filesystems has resulted in a number of
reports of bad CRCs being detected after the filesystem was mounted.
Errors such as the following were being seen:

XFS (sdb3): Mounting V5 Filesystem
XFS (sdb3): Starting recovery (logdev: internal)
XFS (sdb3): Metadata CRC error detected at xfs_agf_read_verify+0x5a/0x100 [xfs], block 0x1
XFS (sdb3): Unmount and run xfs_repair
XFS (sdb3): First 64 bytes of corrupted metadata buffer:
ffff880136ffd600: 58 41 47 46 00 00 00 01 00 00 00 00 00 0f aa 40  XAGF...........@
ffff880136ffd610: 00 02 6d 53 00 02 77 f8 00 00 00 00 00 00 00 01  ..mS..w.........
ffff880136ffd620: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 03  ................
ffff880136ffd630: 00 00 00 04 00 08 81 d0 00 08 81 a7 00 00 00 00  ................
XFS (sdb3): metadata I/O error: block 0x1 ("xfs_trans_read_buf_map") error 74 numblks 1

The errors were typically being seen in AGF, AGI and their related
btree block buffers some time after log recovery had run. Often it
wasn't until later subsequent mounts that the problem was
discovered. The common symptom was a buffer with the correct
contents, but a CRC and an LSN that matched an older version of the
contents.

Some debug added to _xfs_buf_ioapply() indicated that buffers were
being written without verifiers attached to them from log recovery,
and Jan Kara isolated the cause to log recovery readahead an dit's
interactions with buffers that had a more recent LSN on disk than
the transaction being recovered. In this case, the buffer did not
get a verifier attached, and os when the second phase of log
recovery ran and recovered EFIs and unlinked inodes, the buffers
were modified and written without the verifier running. Hence they
had up to date contents, but stale LSNs and CRCs.

Fix it by attaching verifiers to buffers we skip due to future LSN
values so they don't escape into the buffer cache without the
correct verifier attached.

This patch is based on analysis and a patch from Jan Kara.

cc: <stable@vger.kernel.org>
Reported-by: Jan Kara <jack@suse.cz>
Reported-by: Fanael Linithien <fanael4@gmail.com>
Reported-by: Grozdan <neutrino8@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-08-04 12:43:06 +10:00
Dave Chinner
2451337dd0 xfs: global error sign conversion
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.

Errors for conversion (and comparison) found via searches like:

$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs

Negation points found via searches like:

$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs

[ with some bits I missed from Brian Foster ]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25 14:58:08 +10:00
Eric Sandeen
b474c7ae43 xfs: Nuke XFS_ERROR macro
XFS_ERROR was designed long ago to trap return values, but it's not
runtime configurable, it's not consistently used, and we can do
similar error trapping with ftrace scripts and triggers from
userspace.

Just nuke XFS_ERROR and associated bits.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-22 15:04:54 +10:00
Eric Sandeen
d99831ff39 xfs: return is not a function
return is not a function.  "return(EIO);" is silly;
"return (EIO);" moreso.  return is not a function.
Nuke the pointless parens.

[dchinner: catch a couple of extra cases in xfs_attr_list.c,
xfs_acl.c and xfs_linux.h.]

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-22 15:03:54 +10:00
Dave Chinner
b76769294b Merge branch 'xfs-free-inode-btree' into for-next 2014-05-15 09:37:44 +10:00
Brian Foster
aafc3c2465 xfs: support the XFS_BTNUM_FINOBT free inode btree type
Define the AGI fields for the finobt root/level and add magic
numbers. Update the btree code to add support for the new
XFS_BTNUM_FINOBT inode btree.

The finobt root block is reserved immediately following the inobt
root block in the AG. Update XFS_PREALLOC_BLOCKS() to determine the
starting AG data block based on whether finobt support is enabled.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-04-24 16:00:52 +10:00
Eric Sandeen
bbe4c66869 xfs: remove unused trans pointer arg from xlog_recover_unmount_trans()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-04-14 19:06:25 +10:00
Eric Sandeen
e4a1e29cb0 xfs: remove unused ail pointer arg from xfs_trans_ail_cursor_done()
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-04-14 19:06:05 +10:00
Ben Myers
324bb26144 Merge branch 'xfs-for-linus-v3.13-rc5' into for-next 2013-12-18 10:36:58 -06:00
Christoph Hellwig
83a0adc3f9 xfs: remove xfsbdstrat error
The xfsbdstrat helper is a small but useless wrapper for xfs_buf_iorequest that
handles the case of a shut down filesystem.  Most of the users have private,
uncached buffers that can just be freed in this case, but the complex error
handling in xfs_bioerror_relse messes up the case when it's called without
a locked buffer.

Remove xfsbdstrat and opencode the error handling in the callers.  All but
one can simply return an error and don't need to deal with buffer state,
and the one caller that cares about the buffer state could do with a major
cleanup as well, but we'll defer that to later.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-12-17 09:28:43 -06:00
Jie Liu
126cd105d4 xfs: get rid of XFS_IALLOC_BLOCKS macros
Get rid of XFS_IALLOC_BLOCKS() marcos, use mp->m_ialloc_blks directly.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2013-12-13 15:51:48 +11:00
Jie Liu
0f49efd805 xfs: get rid of XFS_INODE_CLUSTER_SIZE macros
Get rid of XFS_INODE_CLUSTER_SIZE() macros, use mp->m_inode_cluster_size
directly.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2013-12-13 15:51:48 +11:00
Jie Liu
717834383c xfs: get rid of XFS_IALLOC_INODES macros
Get rid of XFS_IALLOC_INODES() marcos, use mp->m_ialloc_inos directly.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2013-12-13 15:51:46 +11:00
Mark Tinguely
2a84108fe2 xfs: free the list of recovery items on error
Recovery builds a list of items on the transaction's
r_itemq head. Normally these items are committed and freed.
But in the event of a recovery error, these allocations
are leaked.

If the error occurs during item reordering, then reconstruct
the r_itemq list before deleting the list to avoid leaking
the entries that were on one of the temporary lists.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-12-05 16:50:47 -06:00
Dave Chinner
a4fbe6ab1e xfs: decouple inode and bmap btree header files
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.

Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.

The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 16:28:49 -05:00
Dave Chinner
239880ef64 xfs: decouple log and transaction headers
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.

In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.

Note that these are kernel only header files, so this does not
translate to any userspace changes at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 16:17:44 -05:00
Dave Chinner
9aede1d81b xfs: split dquot buffer operations out
Parts of userspace want to be able to read and modify dquot buffers
(e.g. xfs_db) so we need to split out the reading and writing of
these buffers so it is easy to shared code with libxfs in userspace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:28:35 -05:00
Dave Chinner
5706278758 xfs: unify directory/attribute format definitions
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:21:40 -05:00
Dave Chinner
70a9883c5f xfs: create a shared header file for format-related information
All of the buffer operations structures are needed to be exported
for xfs_db, so move them all to a common location rather than
spreading them all over the place. They are verifying the on-disk
format, so while xfs_format.h might be a good place, it is not part
of the on disk format.

Hence we need to create a new header file that we centralise these
related definitions. Start by moving the bffer operations
structures, and then also move all the other definitions that have
crept into xfs_log_format.h and xfs_format.h as there was no other
shared header file to put them in.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23 14:11:30 -05:00
Eric Sandeen
08e96e1a3c xfs: remove newlines from strings passed to __xfs_printk
__xfs_printk adds its own "\n".  Having it in the original string
leads to unintentional blank lines from these messages.

Most format strings have no newline, but a few do, leading to
i.e.:

[ 7347.119911] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119911] 
[ 7347.119919] XFS (sdb2): Access to block zero in inode 132 start_block: 0 start_off: 0 blkcnt: 0 extent-state: 0 lastx: 1a05
[ 7347.119919] 

Fix them all.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-17 13:30:29 -05:00
Thierry Reding
aaaae98022 xfs: Use kmem_free() instead of free()
This fixes a build failure caused by calling the free() function which
does not exist in the Linux kernel.

Signed-off-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-01 10:26:24 -05:00
tinguely@sgi.com
519ccb81ac xfs: fix memory leak in xlog_recover_add_to_trans
Free the memory in error path of xlog_recover_add_to_trans().
Normally this memory is freed in recovery pass2, but is leaked
in the error path.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-30 17:52:43 -05:00
Dave Chinner
566055d33a xfs: log recovery lsn ordering needs uuid check
After a fair number of xfstests runs, xfs/182 started to fail
regularly with a corrupted directory - a directory read verifier was
failing after recovery because it found a block with a XARM magic
number (remote attribute block) rather than a directory data block.

The first time I saw this repeated failure I did /something/ and the
problem went away, so I was never able to find the underlying
problem. Test xfs/182 failed again today, and I found the root
cause before I did /something else/ that made it go away.

Tracing indicated that the block in question was being correctly
logged, the log was being flushed by sync, but the buffer was not
being written back before the shutdown occurred. Tracing also
indicated that log recovery was also reading the block, but then
never writing it before log recovery invalidated the cache,
indicating that it was not modified by log recovery.

More detailed analysis of the corpse indicated that the filesystem
had a uuid of "a4131074-1872-4cac-9323-2229adbcb886" but the XARM
block had a uuid of "8f32f043-c3c9-e7f8-f947-4e7f989c05d3", which
indicated it was a block from an older filesystem. The reason that
log recovery didn't replay it was that the LSN in the XARM block was
larger than the LSN of the transaction being replayed, and so the
block was not overwritten by log recovery.

Hence, log recovery cant blindly trust the magic number and LSN in
the block - it must verify that it belongs to the filesystem being
recovered before using the LSN. i.e. if the UUIDs don't match, we
need to unconditionally recovery the change held in the log.

This patch was first tested on a block device that was repeatedly
causing xfs/182 to fail with the same failure on the same block with
the same directory read corruption signature (i.e. XARM block). It
did not fail, and hasn't failed since.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-24 12:35:57 -05:00
Mark Tinguely
08474ed639 xfs: remove dead code from xlog_recover_inode_pass2
Additional code in the error handler of xlog_recover_inode_pass2()
results in the following error:

static checker warning: "fs/xfs/xfs_log_recover.c:2999
xlog_recover_inode_pass2()
	 info: ignoring unreachable code."

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-12 09:51:49 -05:00
Dave Chinner
638f44163d xfs: recovery of swap extents operations for CRC filesystems
This is the recovery side of the btree block owner change operation
performed by swapext on CRC enabled filesystems. We detect that an
owner change is needed by the flag that has been placed on the inode
log format flag field. Because the inode recovery is being replayed
after the buffers that make up the BMBT in the given checkpoint, we
can walk all the buffers and directly modify them when we see the
flag set on an inode.

Because the inode can be relogged and hence present in multiple
chekpoints with the "change owner" flag set, we could do multiple
passes across the inode to do this change. While this isn't optimal,
we can't directly ignore the flag as there may be multiple
independent swap extent operations being replayed on the same inode
in different checkpoints so we can't ignore them.

Further, because the owner change operation uses ordered buffers, we
might have buffers that are newer on disk than the current
checkpoint and so already have the owner changed in them. Hence we
cannot just peek at a buffer in the tree and check that it has the
correct owner and assume that the change was completed.

So, for the moment just brute force the owner change every time we
see an inode with the flag set. Note that we have to be careful here
because the owner of the buffers may point to either the old owner
or the new owner. Currently the verifier can't verify the owner
directly, so there is no failure case here right now. If we verify
the owner exactly in future, then we'll have to take this into
account.

This was tested in terms of normal operation via xfstests - all of
the fsr tests now pass without failure. however, we really need to
modify xfs/227 to stress v3 inodes correctly to ensure we fully
cover this case for v5 filesystems.

In terms of recovery testing, I used a hacked version of xfs_fsr
that held the temp inode open for a few seconds before exiting so
that the filesystem could be shut down with an open owner change
recovery flags set on at least the temp inode. fsr leaves the temp
inode unlinked and in btree format, so this was necessary for the
owner change to be reliably replayed.

logprint confirmed the tmp inode in the log had the correct flag set:

INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88
        INODE: #regs:3   ino:0x44  flags:0x209   dsize:88
	                                 ^^^^^

0x200 is set, indicating a data fork owner change needed to be
replayed on inode 0x44.  A printk in the revoery code confirmed that
the inode change was recovered:

XFS (vdc): Mounting Filesystem
XFS (vdc): Starting recovery (logdev: internal)
recovering owner change ino 0x44
XFS (vdc): Version 5 superblock detected. This kernel L support enabled!
Use of these features in this kernel is at your own risk!
XFS (vdc): Ending recovery (logdev: internal)

The script used to test this was:

$ cat ./recovery-fsr.sh
#!/bin/bash

dev=/dev/vdc
mntpt=/mnt/scratch
testfile=$mntpt/testfile

umount $mntpt
mkfs.xfs -f -m crc=1 $dev
mount $dev $mntpt
chmod 777 $mntpt

for i in `seq 10000 -1 0`; do
        xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1
done
xfs_bmap -vp $testfile |head -20

xfs_fsr -d -v $testfile &
sleep 10
/home/dave/src/xfstests-dev/src/godown -f $mntpt
wait
umount $mntpt

xfs_logprint -t $dev |tail -20
time mount $dev $mntpt
xfs_bmap -vp $testfile
umount $mntpt
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-10 12:49:57 -05:00
Dave Chinner
e9fbbad8d8 xfs: fix endian warning in xlog_recover_get_buf_lsn()
sparse reports:

fs/xfs/xfs_log_recover.c:2017:24: sparse: cast to restricted __be64

Because I used the wrong structure for the on-disk superblock cast
in 50d5c8d ("xfs: check LSN ordering for v5 superblocks during
recovery"). Fix it.

Reported-by: kbuild test robot
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-09 16:42:48 -05:00
Dave Chinner
d8914002a0 xfs: inode buffers may not be valid during recovery readahead
CRC enabled filesystems fail log recovery with 100% reliability on
xfstests xfs/085 with the following failure:

XFS (vdb): Mounting Filesystem
XFS (vdb): Starting recovery (logdev: internal)
XFS (vdb): Corruption detected. Unmount and run xfs_repair
XFS (vdb): bad inode magic/vsn daddr 144 #0 (magic=0)
XFS: Assertion failed: 0, file: fs/xfs/xfs_inode_buf.c, line: 95

The problem is that the inode buffer has not been recovered before
the readahead on the inode buffer is issued. The checkpoint being
recovered actually allocates the inode chunk we are doing readahead
from, so what comes from disk during readahead is essentially
random and the verifier barfs on it.

This inode buffer readahead problem affects non-crc filesystems,
too, but xfstests does not trigger it at all on such
configurations....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 13:45:49 -05:00
Dave Chinner
50d5c8d8e9 xfs: check LSN ordering for v5 superblocks during recovery
Log recovery has some strict ordering requirements which unordered
or reordered metadata writeback can defeat. This can occur when an
item is logged in a transaction, written back to disk, and then
logged in a new transaction before the tail of the log is moved past
the original modification.

The result of this is that when we read an object off disk for
recovery purposes, the buffer that we read may not contain the
object type that recovery is expecting and hence at the end of the
checkpoint being recovered we have an invalid object in memory.

This isn't usually a problem, as recovery will then replay all the
other checkpoints and that brings the object back to a valid and
correct state, but the issue is that while the object is in the
invalid state it can be flushed to disk. This results in the object
verifier failing and triggering a corruption shutdown of log
recover. This is correct behaviour for the verifiers - the problem
is that we are not detecting that the object we've read off disk is
newer than the transaction we are replaying.

All metadata in v5 filesystems has the LSN of it's last modification
stamped in it. This enabled log recover to read that field and
determine the age of the object on disk correctly. If the LSN of the
object on disk is older than the transaction being replayed, then we
replay the modification. If the LSN of the object matches or is more
recent than the transaction's LSN, then we should avoid overwriting
the object as that is what leads to the transient corrupt state.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-30 13:44:53 -05:00
Dave Chinner
0f0d334595 xfs: fix bad dquot buffer size in log recovery readahead
xfstests xfs/087 fails 100% reliably with this assert:

XFS (vdb): Mounting Filesystem
XFS (vdb): Starting recovery (logdev: internal)
XFS: Assertion failed: bp->b_flags & XBF_STALE, file: fs/xfs/xfs_buf.c, line: 548

while trying to read a dquot buffer in xlog_recover_dquot_ra_pass2().

The issue is that the buffer length to read that is passed to
xfs_buf_readahead is in units of filesystem blocks, not disk blocks.
(i.e. FSB, not daddr). Fix it but putting the correct conversion in
place.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-29 10:51:35 -05:00
Dave Chinner
84a5b7300c xfs: don't account buffer cancellation during log recovery readahead
When doing readhaead in log recovery, we check to see if buffers are
cancelled before doing readahead. If we find a cancelled buffer,
however, we always decrement the reference count we have on it, and
that means that readahead is causing a double decrement of the
cancelled buffer reference count.

This results in log recovery *replaying cancelled buffers* as the
actual recovery pass does not find the cancelled buffer entry in the
commit phase of the second pass across a transaction. On debug
kernels, this results in an ASSERT failure like so:

XFS: Assertion failed: !(flags & XFS_BLF_CANCEL), file: fs/xfs/xfs_log_recover.c, line: 1815

xfstests generic/311 reproduces this ASSERT failure with 100%
reproducability.

Fix it by making readahead only peek at the buffer cancelled state
rather than the full accounting that xlog_check_buffer_cancelled()
does.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-29 10:37:06 -05:00
Zhi Yong Wu
00574da199 xfs: introduce object readahead to log recovery
It can take a long time to run log recovery operation because it is
single threaded and is bound by read latency. We can find that it took
most of the time to wait for the read IO to occur, so if one object
readahead is introduced to log recovery, it will obviously reduce the
log recovery time.

Log recovery time stat:

          w/o this patch        w/ this patch

real:        0m15.023s             0m7.802s
user:        0m0.001s              0m0.001s
sys:         0m0.246s              0m0.107s

Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-23 14:32:50 -05:00
Zhi Yong Wu
8ba701ee9e xfs: fix the comment of xlog_recover_do_dquot_buffer()
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-20 15:49:06 -05:00
Zhi Yong Wu
0a94da24b9 xfs: fix the comment of xlog_find_head()
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-20 15:34:34 -05:00
Zhi Yong Wu
34be5ff378 xfs: fix the comment of xlog_recover_buffer_pass2()
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-20 15:30:53 -05:00
Eric Sandeen
050a1952c3 xfs:free bp in xlog_find_tail() error path
xlog_find_tail() currently leaks a bp on one error path.

There is no error target, so manually free the bp before
returning the error.

Found by Coverity.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-13 15:49:51 -05:00
Eric Sandeen
5d0a654974 xfs: free bp in xlog_find_zeroed() error path
xlog_find_zeroed() currently leaks a bp on one error path.

Using the bp_err: target resolves this.

Found by Coverity.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-13 15:48:51 -05:00
Jie Liu
3d3c8b5222 xfs: refactor xfs_trans_reserve() interface
With the new xfs_trans_res structure has been introduced, the log
reservation size, log count as well as log flags are pre-initialized
at mount time.  So it's time to refine xfs_trans_reserve() interface
to be more neat.

Also, introduce a new helper M_RES() to return a pointer to the
mp->m_resv structure to simplify the input.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12 17:47:34 -05:00
Dave Chinner
e546cb79ef xfs: consolidate xfs_utils.c
There are a few small helper functions in xfs_util, all related to
xfs_inode modifications. Move them all to xfs_inode.c so all
xfs_inode operations are consiolidated in the one place.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12 16:55:17 -05:00
Dave Chinner
2b9ab5ab9c xfs: reshuffle dir2 definitions around for userspace
Many of the definitions within xfs_dir2_priv.h are needed in
userspace outside libxfs. Definitions within xfs_dir2_priv.h are
wholly contained within libxfs, so we need to shuffle some of the
definitions around to keep consistency across files shared between
user and kernel space.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12 16:40:57 -05:00
Dave Chinner
6ca1c9063d xfs: separate dquot on disk format definitions out of xfs_quota.h
The on disk format definitions of the on-disk dquot, log formats and
quota off log formats are all intertwined with other definitions for
quotas. Separate them out into their own header file so they can
easily be shared with userspace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12 16:09:52 -05:00
Dave Chinner
fc06c6d064 xfs: separate out log format definitions
The on-disk format definitions for the log are spread randoms
through a couple of header files. Consolidate it all in a single
file that can be shared easily with userspace. This means that
xfs_log.h and xfs_log_priv.h no longer need to be shared with
userspace.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12 16:03:51 -05:00
Dave Chinner
e60896d8f2 xfs: di_flushiter considered harmful
When we made all inode updates transactional, we no longer needed
the log recovery detection for inodes being newer on disk than the
transaction being replayed - it was redundant as replay of the log
would always result in the latest version of the inode would be on
disk. It was redundant, but left in place because it wasn't
considered to be a problem.

However, with the new "don't read inodes on create" optimisation,
flushiter has come back to bite us. Essentially, the optimisation
made always initialises flushiter to zero in the create transaction,
and so if we then crash and run recovery and the inode already on
disk has a non-zero flushiter it will skip recovery of that inode.
As a result, log recovery does the wrong thing and we end up with a
corrupt filesystem.

Because we have to support old kernel to new kernel upgrades, we
can't just get rid of the flushiter support in log recovery as we
might be upgrading from a kernel that doesn't have fully transactional
inode updates.  Unfortunately, for v4 superblocks there is no way to
guarantee that log recovery knows about this fact.

We cannot add a new inode format flag to say it's a "special inode
create" because it won't be understood by older kernels and so
recovery could do the wrong thing on downgrade. We cannot specially
detect the combination of zero mode/non-zero flushiter on disk to
non-zero mode, zero flushiter in the log item during recovery
because wrapping of the flushiter can result in false detection.

Hence that makes this "don't use flushiter" optimisation limited to
a disk format that guarantees that we don't need it. And that means
the only fix here is to limit the "no read IO on create"
optimisation to version 5 superblocks....

Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-07-24 12:15:23 -05:00
Dave Chinner
28c8e41af6 xfs: Inode create item recovery
When we find a icreate transaction, we need to get and initialise
the buffers in the range that has been passed. Extract and verify
the information in the item record, then loop over the range
initialising and issuing the buffer writes delayed.

Support an arbitrary size range to initialise so that in
future when we allocate inodes in much larger chunks all kernels
that understand this transaction can still recover them.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-06-27 14:26:21 -05:00
Dave Chinner
9222a9cf86 xfs: don't shutdown log recovery on validation errors
Unfortunately, we cannot guarantee that items logged multiple times
and replayed by log recovery do not take objects back in time. When
they are taken back in time, the go into an intermediate state which
is corrupt, and hence verification that occurs on this intermediate
state causes log recovery to abort with a corruption shutdown.

Instead of causing a shutdown and unmountable filesystem, don't
verify post-recovery items before they are written to disk. This is
less than optimal, but there is no way to detect this issue for
non-CRC filesystems If log recovery successfully completes, this
will be undone and the object will be consistent by subsequent
transactions that are replayed, so in most cases we don't need to
take drastic action.

For CRC enabled filesystems, leave the verifiers in place - we need
to call them to recalculate the CRCs on the objects anyway. This
recovery problem can be solved for such filesystems - we have a LSN
stamped in all metadata at writeback time that we can to determine
whether the item should be replayed or not. This is a separate piece
of work, so is not addressed by this patch.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-06-14 15:29:31 -05:00
Dave Chinner
0a32c26e72 xfs: inode unlinked list needs to recalculate the inode CRC
The inode unlinked list manipulations operate directly on the inode
buffer, and so bypass the inode CRC calculation mechanisms. Hence an
inode on the unlinked list has an invalid CRC. Fix this by
recalculating the CRC whenever we modify an unlinked list pointer in
an inode, ncluding during log recovery. This is trivial to do and
results in  unlinked list operations always leaving a consistent
inode in the buffer.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-06-05 11:19:10 -05:00
Dave Chinner
a775ad7780 xfs: fix log recovery transaction item reordering
There are several constraints that inode allocation and unlink
logging impose on log recovery. These all stem from the fact that
inode alloc/unlink are logged in buffers, but all other inode
changes are logged in inode items. Hence there are ordering
constraints that recovery must follow to ensure the correct result
occurs.

As it turns out, this ordering has been working mostly by chance
than good management. The existing code moves all buffers except
cancelled buffers to the head of the list, and everything else to
the tail of the list. The problem with this is that is interleaves
inode items with the buffer cancellation items, and hence whether
the inode item in an cancelled buffer gets replayed is essentially
left to chance.

Further, this ordering causes problems for log recovery when inode
CRCs are enabled. It typically replays the inode unlink buffer long before
it replays the inode core changes, and so the CRC recorded in an
unlink buffer is going to be invalid and hence any attempt to
validate the inode in the buffer is going to fail. Hence we really
need to enforce the ordering that the inode alloc/unlink code has
expected log recovery to have since inode chunk de-allocation was
introduced back in 2003...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-06-05 11:13:19 -05:00
Dave Chinner
6fcdc59de2 xfs: rework dquot CRCs
Calculating dquot CRCs when the backing buffer is written back just
doesn't work reliably. There are several places which manipulate
dquots directly in the buffers, and they don't calculate CRCs
appropriately, nor do they always set the buffer up to calculate
CRCs appropriately.

Firstly, if we log a dquot buffer (e.g. during allocation) it gets
logged without valid CRC, and so on recovery we end up with a dquot
that is not valid.

Secondly, if we recover/repair a dquot, we don't have a verifier
attached to the buffer and hence CRCs are not calculated on the way
down to disk.

Thirdly, calculating the CRC after we've changed the contents means
that if we re-read the dquot from the buffer, we cannot verify the
contents of the dquot are valid, as the CRC is invalid.

So, to avoid all the dquot CRC errors that are being detected by the
read verifier, change to using the same model as for inodes. That
is, dquot CRCs are calculated and written to the backing buffer at
the time the dquot is flushed to the backing buffer. If we modify
the dquot directly in the backing buffer, calculate the CRC
immediately after the modification is complete. Hence the dquot in
the on-disk buffer should always have a valid CRC.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-06-04 17:35:51 -05:00
Dave Chinner
709da6a61a xfs: fix split buffer vector log recovery support
A long time ago in a galaxy far away....

.. the was a commit made to fix some ilinux specific "fragmented
buffer" log recovery problem:

http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603

That problem occurred when a contiguous dirty region of a buffer was
split across across two pages of an unmapped buffer. It's been a
long time since that has been done in XFS, and the changes to log
the entire inode buffers for CRC enabled filesystems has
re-introduced that corner case.

And, of course, it turns out that the above commit didn't actually
fix anything - it just ensured that log recovery is guaranteed to
fail when this situation occurs. And now for the gory details.

xfstest xfs/085 is failing with this assert:

XFS (vdb): bad number of regions (0) in inode log format
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583

Largely undocumented factoid #1: Log recovery depends on all log
buffer format items starting with this format:

struct foo_log_format {
	__uint16_t	type;
	__uint16_t	size;
	....

As recoery uses the size field and assumptions about 32 bit
alignment in decoding format items.  So don't pay much attention to
the fact log recovery thinks that it decoding an inode log format
item - it just uses them to determine what the size of the item is.

But why would it see a log format item with a zero size? Well,
luckily enough xfs_logprint uses the same code and gives the same
error, so with a bit of gdb magic, it turns out that it isn't a log
format that is being decoded. What logprint tells us is this:

Oper (130): tid: a0375e1a  len: 28  clientid: TRANS  flags: none
BUF:  #regs: 2   start blkno: 144 (0x90)  len: 16  bmap size: 2  flags: 0x4000
Oper (131): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
BUF DATA
----------------------------------------------------------------------------
Oper (132): tid: a0375e1a  len: 4096  clientid: TRANS  flags: none
xfs_logprint: unknown log operation type (4e49)
**********************************************************************
* ERROR: data block=2                                                 *
**********************************************************************

That we've got a buffer format item (oper 130) that has two regions;
the format item itself and one dirty region. The subsequent region
after the buffer format item and it's data is them what we are
tripping over, and the first bytes of it at an inode magic number.
Not a log opheader like there is supposed to be.

That means there's a problem with the buffer format item. It's dirty
data region is 4096 bytes, and it contains - you guessed it -
initialised inodes. But inode buffers are 8k, not 4k, and we log
them in their entirety. So something is wrong here. The buffer
format item contains:

(gdb) p /x *(struct xfs_buf_log_format *)in_f
$22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
       blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
       blf_data_map = {0xffffffff, 0xffffffff, .... }}

Two regions, and a signle dirty contiguous region of 64 bits.  64 *
128 = 8k, so this should be followed by a single 8k region of data.
And the blf_flags tell us that the type of buffer is a
XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
buffer. So, it should be followed by 8k of inode data.

But we know that the next region has a header of:

(gdb) p /x *ohead
$25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
       oh_flags = 0x0, oh_res2 = 0x0}

and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
long enough to hold all the logged data. There must be another
region. There is - there's a following opheader for another 4k of
data that contains the other half of the inode cluster data - the
one we assert fail on because it's not a log format header.

So why is the second part of the data not being accounted to the
correct buffer log format structure? It took a little more work with
gdb to work out that the buffer log format structure was both
expecting it to be there but hadn't accounted for it. It was at that
point I went to the kernel code, as clearly this wasn't a bug in
xfs_logprint and the kernel was writing bad stuff to the log.

First port of call was the buffer item formatting code, and the
discontiguous memory/contiguous dirty region handling code
immediately stood out. I've wondered for a long time why the code
had this comment in it:

                        vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
                        vecp->i_len = nbits * XFS_BLF_CHUNK;
                        vecp->i_type = XLOG_REG_TYPE_BCHUNK;
/*
 * You would think we need to bump the nvecs here too, but we do not
 * this number is used by recovery, and it gets confused by the boundary
 * split here
 *                      nvecs++;
 */
                        vecp++;

And it didn't account for the extra vector pointer. The case being
handled here is that a contiguous dirty region lies across a
boundary that cannot be memcpy()d across, and so has to be split
into two separate operations for xlog_write() to perform.

What this code assumes is that what is written to the log is two
consecutive blocks of data that are accounted in the buf log format
item as the same contiguous dirty region and so will get decoded as
such by the log recovery code.

The thing is, xlog_write() knows nothing about this, and so just
does it's normal thing of adding an opheader for each vector. That
means the 8k region gets written to the log as two separate regions
of 4k each, but because nvecs has not been incremented, the buf log
format item accounts for only one of them.

Hence when we come to log recovery, we process the first 4k region
and then expect to come across a new item that starts with a log
format structure of some kind that tells us whenteh next data is
going to be. Instead, we hit raw buffer data and things go bad real
quick.

So, the commit from 2002 that commented out nvecs++ is just plain
wrong. It breaks log recovery completely, and it would seem the only
reason this hasn't been since then is that we don't log large
contigous regions of multi-page unmapped buffers very often. Never
would be a closer estimate, at least until the CRC code came along....

So, lets fix that by restoring the nvecs accounting for the extra
region when we hit this case.....

.... and there's the problemin log recovery it is apparently working
around:

XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135

Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
regions being broken up into multiple regions by the log formatting
code. That's an easy fix, though - if the number of contiguous dirty
bits exceeds the length of the region being copied out of the log,
only account for the number of dirty bits that region covers, and
then loop again and copy more from the next region. It's a 2 line
fix.

Now xfstests xfs/085 passes, we have one less piece of mystery
code, and one more important piece of knowledge about how to
structure new log format items..

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-05-30 12:48:33 -05:00
Dave Chinner
cab09a81fb xfs: fix da node magic number mismatches
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-05-01 14:48:30 -05:00
Dave Chinner
123887e843 xfs: Teach dquot recovery about CONFIG_XFS_QUOTA
Fix a build error when CONFIG_XFS_QUOTA=n:

fs/built-in.o: In function `xlog_recovery_validate_buf_type':
/home/dave/src/build/x86-64/xfsdev/fs/xfs/xfs_log_recover.c:1948: undefined
reference to `xfs_dquot_buf_ops'

Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-30 13:07:37 -05:00
Dave Chinner
e721f504cf xfs: implement extended feature masks
The version 5 superblock has extended feature masks for compatible,
incompatible and read-only compatible feature sets. Implement the
masking and mount-time checking for these feature masks.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-27 13:05:18 -05:00
Dave Chinner
04a1e6c5b2 xfs: add CRC checks to the superblock
With the addition of CRCs, there is such a wide and varied change to
the on disk format that it makes sense to bump the superblock
version number rather than try to use feature bits for all the new
functionality.

This commit introduces all the new superblock fields needed for all
the new functionality: feature masks similar to ext4, separate
project quota inodes, a LSN field for recovery and the CRC field.

This commit does not bump the superblock version number, however.
That will be done as a separate commit at the end of the series
after all the new functionality is present so we switch it all on in
one commit. This means that we can slowly introduce the changes
without them being active and hence maintain bisectability of the
tree.

This patch is based on a patch originally written by myself back
from SGI days, which was subsequently modified by Christoph Hellwig.
There is relatively little of that patch remaining, but the history
of the patch still should be acknowledged here.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-27 13:03:12 -05:00
Dave Chinner
61fe135c1d xfs: buffer type overruns blf_flags field
The buffer type passed to log recvoery in the buffer log item
overruns the blf_flags field. I had assumed that flags field was a
32 bit value, and it turns out it is a unisgned short. Therefore
having 19 flags doesn't really work.

Convert the buffer type field to numeric value, and use the top 5
bits of the flags field for it. We currently have 17 types of
buffers, so using 5 bits gives us plenty of room for expansion in
future....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-27 13:01:58 -05:00
Dave Chinner
d75afeb3d3 xfs: add buffer types to directory and attribute buffers
Add buffer types to the buffer log items so that log recovery can
validate the buffers and calculate CRCs correctly after the buffers
are recovered.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-27 13:01:06 -05:00
Dave Chinner
f948dd76dd xfs: add CRC checks to remote symlinks
Add a header to the remote symlink block, containing location and
owner information, as well as CRCs and LSN fields. This requires
verifiers to be added to the remote symlink buffers for CRC enabled
filesystems.

This also fixes a bug reading multiple block symlinks, where the second
block overwrites the first block when copying out the link name.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-27 11:49:28 -05:00
Christoph Hellwig
93848a999c xfs: add version 3 inode format with CRCs
Add a new inode version with a larger core.  The primary objective is
to allow for a crc of the inode, and location information (uuid and ino)
to verify it was written in the right place.  We also extend it by:

	a creation time (for Samba);
	a changecount (for NFSv4);
	a flush sequence (in LSN format for recovery);
	an additional inode flags field; and
	some additional padding.

These additional fields are not implemented yet, but already laid
out in the structure.

[dchinner@redhat.com] Added LSN and flags field, some factoring and rework to
capture all the necessary information in the crc calculation.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 15:03:33 -05:00
Christoph Hellwig
3fe58f30b4 xfs: add CRC checks for quota blocks
Use the reserved space in struct xfs_dqblk to store a UUID and a crc
for the quota blocks.

[dchinner@redhat.com] Add a LSN field and update for current verifier
infrastructure.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 14:58:22 -05:00
Dave Chinner
983d09ffe3 xfs: add CRC checks to the AGI
Same set of changes made to the AGF need to be made to the AGI.
This patch has a similar history to the AGF, hence a similar
sign-off chain.

Signed-off-by: Dave Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dgc@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 14:57:43 -05:00
Christoph Hellwig
77c95bba01 xfs: add CRC checks to the AGFL
Add CRC checks, location information and a magic number to the AGFL.
Previously the AGFL was just a block containing nothing but the
free block pointers.  The new AGFL has a real header with the usual
boilerplate instead, so that we can verify it's not corrupted and
written into the right place.

[dchinner@redhat.com] Added LSN field, reworked significantly to fit
into new verifier structure and growfs structure, enabled full
verifier functionality now there is a header to verify and we can
guarantee an initialised AGFL.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 14:55:34 -05:00
Dave Chinner
4e0e6040c4 xfs: add CRC checks to the AGF
The AGF already has some self identifying fields (e.g. the sequence
number) so we only need to add the uuid to it to identify the
filesystem it belongs to. The location is fixed based on the
sequence number, so there's no need to add a block number, either.

Hence the only additional fields are the CRC and LSN fields. These
are unlogged, so place some space between the end of the logged
fields and them so that future expansion of the AGF for logged
fields can be placed adjacent to the existing logged fields and
hence not complicate the field-derived range based logging we
currently have.

Based originally on a patch from myself, modified further by
Christoph Hellwig and then modified again to fit into the
verifier structure with additional fields by myself. The multiple
signed-off-by tags indicate the age and history of this patch.

Signed-off-by: Dave Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 14:54:46 -05:00
Christoph Hellwig
ee1a47ab0e xfs: add support for large btree blocks
Add support for larger btree blocks that contains a CRC32C checksum,
a filesystem uuid and block number for detecting filesystem
consistency and out of place writes.

[dchinner@redhat.com] Also include an owner field to allow reverse
mappings to be implemented for improved repairability and a LSN
field to so that log recovery can easily determine the last
modification that made it to disk for each buffer.

[dchinner@redhat.com] Add buffer log format flags to indicate the
type of buffer to recovery so that we don't have to do blind magic
number tests to determine what the buffer is.

[dchinner@redhat.com] Modified to fit into the verifier structure.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-21 14:53:46 -05:00
Dave Chinner
666d644cd7 xfs: don't free EFIs before the EFDs are committed
Filesystems are occasionally being shut down with this error:

xfs_trans_ail_delete_bulk: attempting to delete a log item that is
not in the AIL.

It was diagnosed to be related to the EFI/EFD commit order when the
EFI and EFD are in different checkpoints and the EFD is committed
before the EFI here:

http://oss.sgi.com/archives/xfs/2013-01/msg00082.html

The real problem is that a single bit cannot fully describe the
states that the EFI/EFD processing can be in. These completion
states are:

EFI			EFI in AIL	EFD		Result
committed/unpinned	Yes		committed	OK
committed/pinned	No		committed	Shutdown
uncommitted		No		committed	Shutdown


Note that the "result" field is what should happen, not what does
happen. The current logic is broken and handles the first two cases
correctly by luck.  That is, the code will free the EFI if the
XFS_EFI_COMMITTED bit is *not* set, rather than if it is set. The
inverted logic "works" because if both EFI and EFD are committed,
then the first __xfs_efi_release() call clears the XFS_EFI_COMMITTED
bit, and the second frees the EFI item. Hence as long as
xfs_efi_item_committed() has been called, everything appears to be
fine.

It is the third case where the logic fails - where
xfs_efd_item_committed() is called before xfs_efi_item_committed(),
and that results in the EFI being freed before it has been
committed. That is the bug that triggered the shutdown, and hence
keeping track of whether the EFI has been committed or not is
insufficient to correctly order the EFI/EFD operations w.r.t. the
AIL.

What we really want is this: the EFI is always placed into the
AIL before the last reference goes away. The only way to guarantee
that is that the EFI is not freed until after it has been unpinned
*and* the EFD has been committed. That is, restructure the logic so
that the only case that can occur is the first case.

This can be done easily by replacing the XFS_EFI_COMMITTED with an
EFI reference count. The EFI is initialised with it's own count, and
that is not released until it is unpinned. However, there is a
complication to this method - the high level EFI/EFD code in
xfs_bmap_finish() does not hold direct references to the EFI
structure, and runs a transaction commit between the EFI and EFD
processing. Hence the EFI can be freed even before the EFD is
created using such a method.

Further, log recovery uses the AIL for tracking EFI/EFDs that need
to be recovered, but it uses the AIL *differently* to the EFI
transaction commit. Hence log recovery never pins or unpins EFIs, so
we can't drop the EFI reference count indirectly to free the EFI.

However, this doesn't prevent us from using a reference count here.
There is a 1:1 relationship between EFIs and EFDs, so when we
initialise the EFI we can take a reference count for the EFD as
well. This solves the xfs_bmap_finish() issue - the EFI will never
be freed until the EFD is processed. In terms of log recovery,
during the committing of the EFD we can look for the
XFS_EFI_RECOVERED bit being set and drop the EFI reference as well,
thereby ensuring everything works correctly there as well.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-04-05 13:25:35 -05:00
Sasha Levin
b67bfe0d42 hlist: drop the node parameter from iterators
I'm not sure why, but the hlist for each entry iterators were conceived

        list_for_each_entry(pos, head, member)

The hlist ones were greedy and wanted an extra parameter:

        hlist_for_each_entry(tpos, pos, head, member)

Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.

Besides the semantic patch, there was some manual work required:

 - Fix up the actual hlist iterators in linux/list.h
 - Fix up the declaration of other iterators based on the hlist ones.
 - A very small amount of places were using the 'node' parameter, this
 was modified to use 'obj->member' instead.
 - Coccinelle didn't handle the hlist_for_each_entry_safe iterator
 properly, so those had to be fixed up manually.

The semantic patch which is mostly the work of Peter Senna Tschudin is here:

@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;

type T;
expression a,c,d,e;
identifier b;
statement S;
@@

-T b;
    <+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
    ...+>

[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27 19:10:24 -08:00
Dave Chinner
f9668a09e3 xfs: fix sparse reported log CRC endian issue
Not a bug as such, just warning noise from the xlog_cksum()
returning a __be32 type when it should be returning a __le32 type.

On Wed, Nov 28, 2012 at 08:30:59AM -0500, Christoph Hellwig wrote:
> But why are we storing the crc field little endian while all other on
> disk formats are big endian? (And yes I realize it might as well have
> been me who did that back in the idea, but I still have no idea why)

Because the CRC always returns the calcuation LE format, even on BE
systems. So rather than always having to byte swap it everywhere and
have all the force casts and anootations for sparse, it seems simpler to
just make it a __le32 everywhere....

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-12-03 12:10:59 -06:00
Christoph Hellwig
0e446be448 xfs: add CRC checks to the log
Implement CRCs for the log buffers.  We re-use a field in
struct xlog_rec_header that was used for a weak checksum of the
log buffer payload in debug builds before.

The new checksumming uses the crc32c checksum we will use elsewhere
in XFS, and also protects the record header and addition cycle data.

Due to this there are some interesting changes in xlog_sync, as we
need to do the cycle wrapping for the split buffer case much earlier,
as we would touch the buffer after generating the checksum otherwise.

The CRC calculation is always enabled, even for non-CRC filesystems,
as adding this CRC does not change the log format. On non-CRC
filesystems, only issue an alert if a CRC mismatch is found and
allow recovery to continue - this will act as an indicator that
log recovery problems are a result of log corruption. On CRC enabled
filesystems, however, log recovery will fail.

Note that existing debug kernels will write a simple checksum value
to the log, so the first time this is run on a filesystem taht was
last used on a debug kernel it will through CRC mismatch warning
errors. These can be ignored.

Initially based on a patch from Dave Chinner, then modified
significantly by Christoph Hellwig.  Modified again by Dave Chinner
to get to this version.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-19 20:18:41 -06:00
Dave Chinner
1813dd6405 xfs: convert buffer verifiers to an ops structure.
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.

This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.

We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.

This patch also fixes a directory block readahead verifier issue
it exposed.

This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-15 21:35:12 -06:00
Dave Chinner
98021821a5 xfs: verify superblocks as they are read from disk
Add a superblock verify callback function and pass it into the
buffer read functions. Remove the now redundant verification code
that is currently in use.

Adding verification shows that secondary superblocks never have
their "sb_inprogress" flag cleared by mkfs.xfs, so when validating
the secondary superblocks during a grow operation we have to avoid
checking this field. Even if we fix mkfs, we will still have to
ignore this field for verification purposes unless a version of mkfs
that does not have this bug was used.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-15 21:34:07 -06:00
Dave Chinner
c3f8fc73ac xfs: make buffer read verication an IO completion function
Add a verifier function callback capability to the buffer read
interfaces.  This will be used by the callers to supply a function
that verifies the contents of the buffer when it is read from disk.
This patch does not provide callback functions, but simply modifies
the interfaces to allow them to be called.

The reason for adding this to the read interfaces is that it is very
difficult to tell fom the outside is a buffer was just read from
disk or whether we just pulled it out of cache. Supplying a callbck
allows the buffer cache to use it's internal knowledge of the buffer
to execute it only when the buffer is read from disk.

It is intended that the verifier functions will mark the buffer with
an EFSCORRUPTED error when verification fails. This allows the
reading context to distinguish a verification error from an IO
error, and potentially take further actions on the buffer (e.g.
attempt repair) based on the error reported.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-15 21:34:02 -06:00
Dave Chinner
009507b052 xfs: fix reading of wrapped log data
Commit 4439647 ("xfs: reset buffer pointers before freeing them") in
3.0-rc1 introduced a regression when recovering log buffers that
wrapped around the end of log. The second part of the log buffer at
the start of the physical log was being read into the header buffer
rather than the data buffer, and hence recovery was seeing garbage
in the data buffer when it got to the region of the log buffer that
was incorrectly read.

Cc: <stable@vger.kernel.org> # 3.0.x, 3.2.x, 3.4.x 3.6.x
Reported-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-11-07 15:27:17 -06:00
Dave Chinner
33479e0542 xfs: remove xfs_iget.c
The inode cache functions remaining in xfs_iget.c can be moved to xfs_icache.c
along with the other inode cache functions. This removes all functionality from
xfs_iget.c, so the file can simply be removed.

This move results in various functions now only having the scope of a single
file (e.g. xfs_inode_free()), so clean up all the definitions and exported
prototypes in xfs_icache.[ch] and xfs_inode.h appropriately.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-10-17 13:42:25 -05:00
Christoph Hellwig
475ee413f3 xfs: merge xfs_itobp into xfs_imap_to_bp
All callers of xfs_imap_to_bp want the dinode pointer, so let's calculate it
inside xfs_imap_to_bp.  Once that is done xfs_itobp becomes a fairly pointless
wrapper which can be replaced with direct calls to xfs_imap_to_bp.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-07-22 10:46:56 -05:00
Mark Tinguely
9a8d2fdbb4 xfs: remove xlog_t typedef
Remove the xlog_t type definitions.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-06-21 14:22:27 -05:00
Mark Tinguely
ad223e6030 xfs: rename log structure to xlog
Rename the XFS log structure to xlog to help crash distinquish it from the
other logs in Linux.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-06-21 13:49:39 -05:00
Dave Chinner
611c99468c xfs: make XBF_MAPPED the default behaviour
Rather than specifying XBF_MAPPED for almost all buffers, introduce
XBF_UNMAPPED for the couple of users that use unmapped buffers.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:21:03 -05:00
Dave Chinner
2a0ec1d9ed xfs: move xfs_get_extsz_hint() and kill xfs_rw.h
The only thing left in xfs_rw.h is a function prototype for an inode
function.  Move that to xfs_inode.h, and kill xfs_rw.h.

Also move the function implementing the prototype from xfs_rw.c to
xfs_inode.c so we only have one function left in xfs_rw.c

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:58 -05:00
Dave Chinner
7ca790a507 xfs: kill xfs_read_buf()
xfs_read_buf() is effectively the same as xfs_trans_read_buf() when called
outside a transaction context. The error handling is slightly different in that
xfs_read_buf stales the errored buffer it gets back, but there is probably good
reason for xfs_trans_read_buf() for doing this.

Hence update xfs_trans_read_buf() to the same error handling as xfs_read_buf(),
and convert all the callers of xfs_read_buf() to use the former function. We can
then remove xfs_read_buf().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:51 -05:00
Dave Chinner
a8acad7073 xfs: kill XBF_LOCK
Buffers are always returned locked from the lookup routines. Hence
we don't need to tell the lookup routines to return locked buffers,
on to try and lock them. Remove XBF_LOCK from all the callers and
from internal buffer cache usage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:50 -05:00
Dave Chinner
aa0e8833b0 xfs: use blocks for storing the desired IO size
Now that we pass block counts everywhere, and index buffers by block
number and length in units of blocks, convert the desired IO size
into block counts rather than bytes. Convert the code to use block
counts, and those that need byte counts get converted at the time of
use.

Rename the b_desired_count variable to something closer to it's
purpose - b_io_length - as it is only used to specify the length of
an IO for a subset of the buffer.  The only time this is used is for
log IO - both writing iclogs and during log recovery. In all other
cases, the b_io_length matches b_length, and hence a lot of code
confuses the two. e.g. the buf item code uses the io count
exclusively when it should be using the buffer length. Fix these
apprpriately as they are found.

Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers
around the desired IO length. They only serve to make the code
shouty loud, don't actually add any real value, and are often used
incorrectly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:48 -05:00
Dave Chinner
4e94b71b70 xfs: use blocks for counting length of buffers
Now that we pass block counts everywhere, and index buffers by block
number, track the length of the buffer in units of blocks rather
than bytes. Convert the code to use block counts, and those that
need byte counts get converted at the time of use.

Also, remove the XFS_BUF_{SET_}SIZE() macros that are just wrappers
around the buffer length. They only serve to make the code shouty
loud and don't actually add any real value.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:47 -05:00
Dave Chinner
e70b73f84f xfs: clean up buffer get/read call API
The xfs_buf_get/read API is not consistent in the units it uses, and
does not use appropriate or consistent units/types for the
variables.

Convert the API to use disk addresses and block counts for all
buffer get and read calls. Use consistent naming for all the
functions and their declarations, and convert the internal functions
to use disk addresses and block counts to avoid need to convert them
from one type to another and back again.

Fix all the callers to use disk addresses and block counts. In many
cases, this removes an additional conversion from the function call
as the callers already have a block count.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:45 -05:00
Dave Chinner
0e95f19ad9 xfs: check for buffer errors before waiting
If we call xfs_buf_iowait() on a buffer that failed dispatch due to
an IO error, it will wait forever for an Io that does not exist.
This is hndled in xfs_buf_read, but there is other code that calls
xfs_buf_iowait directly that doesn't.

Rather than make the call sites have to handle checking for dispatch
errors and then checking for completion errors, make
xfs_buf_iowait() check for dispatch errors on the buffer before
waiting. This means we handle both dispatch and completion errors
with one set of error handling at the caller sites.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:42 -05:00
Dave Chinner
81158e0cec xfs: prevent needless mount warning causing test failures
Often mounting small filesystem with small logs will emit a warning
such as:

XFS (vdb): Invalid block length (0x2000) for buffer

during log recovery. This causes tests to randomly fail because this
output causes the clean filesystem checks on test completion to
think the filesystem is inconsistent.

The cause of the error is simply that log recovery is asking for a
buffer size that is larger than the log when zeroing the tail. This
is because the buffer size is rounded up, and if the right head and
tail conditions exist then the buffer size can be larger than the log.
Limit the variable size xlog_get_bp() callers to requesting buffers
smaller than the log.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:37 -05:00
Dave Chinner
04913fdd91 xfs: pass shutdown method into xfs_trans_ail_delete_bulk
xfs_trans_ail_delete_bulk() can be called from different contexts so
if the item is not in the AIL we need different shutdown for each
context.  Pass in the shutdown method needed so the correct action
can be taken.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:33 -05:00
Christoph Hellwig
43ff2122e6 xfs: on-stack delayed write buffer lists
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.

This is now easily doable given that we have very few places left that write
delwri buffers:

 - log recovery:
	Only done at mount time, and already forcing out the buffers
	synchronously using xfs_flush_buftarg

 - quotacheck:
	Same story.

 - dquot reclaim:
	Writes out dirty dquots on the LRU under memory pressure.  We might
	want to look into doing more of this via xfsaild, but it's already
	more optimal than the synchronous inode reclaim that writes each
	buffer synchronously.

 - xfsaild:
	This is the main beneficiary of the change.  By keeping a local list
	of buffers to write we reduce latency of writing out buffers, and
	more importably we can remove all the delwri list promotions which
	were hitting the buffer cache hard under sustained metadata loads.

The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait.  Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list.  The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.

Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes.  The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes.  Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.

[ Dave Chinner:
	- rebase on previous patches.
	- improved comments for XBF_DELWRI_Q handling
	- fix XBF_ASYNC handling in queue submission (test 106 failure)
	- rename delwri submit function buffer list parameters for clarity
	- xfs_efd_item_push() should return XFS_ITEM_PINNED ]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-05-14 16:20:31 -05:00
Jan Kara
d97d32edcd xfs: Fix oops on IO error during xlog_recover_process_iunlinks()
When an IO error happens during inode deletion run from
xlog_recover_process_iunlinks() filesystem gets shutdown. Thus any subsequent
attempt to read buffers fails. Code in xlog_recover_process_iunlinks() does not
count with the fact that read of a buffer which was read a while ago can
really fail which results in the oops on
  agi = XFS_BUF_TO_AGI(agibp);

Fix the problem by cleaning up the buffer handling in
xlog_recover_process_iunlinks() as suggested by Dave Chinner. We release buffer
lock but keep buffer reference to AG buffer. That is enough for buffer to stay
pinned in memory and we don't have to call xfs_read_agi() all the time.

CC: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-03-27 16:34:10 -05:00
Christoph Hellwig
28496968a6 xfs: add the xlog_grant_head structure
Add a new data structure to allow sharing code between the log grant and
regrant code.

Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-02-22 22:19:53 -06:00
Mitsuo Hayasaka
d0a3fe67e3 xfs: change available ranges of softlimit and hardlimit in quota check
In general, quota allows us to use disk blocks and inodes up to each
limit, that is, they are available if they don't exceed their limitations.
Current xfs sets their available ranges to lower than them except disk
inode quota check. So, this patch changes the ranges to not beyond them.

Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>

(cherry picked from commit 20f12d8ac0)
2012-02-21 10:13:49 -06:00