IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Make remaining netlink policies as const.
Fixup coding style where needed.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Not including net/atm/
Compiled tested x86 allyesconfig only
Added a > 80 column line or two, which I ignored.
Existing checkpatch plaints willfully, cheerfully ignored.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Until now, calls to wimax_rfkill() will be blocked until the device is
at least past the WIMAX_ST_UNINITIALIZED state, return -ENOMEDIUM when
the device is in the WIMAX_ST_DOWN state.
In parallel, wimax-tools would issue a wimax_rfkill(WIMAX_RF_QUERY)
call right after opening a handle with wimaxll_open() as means to
verify if the interface is really a WiMAX interface [newer kernel
version will have a call specifically for this].
The combination of these two facts is that in some cases, before the
driver has finalized initializing its device's firmware, a
wimaxll_open() call would fail, when it should not.
Thus, change the wimax_rfkill() code to allow queries when the device
is in WIMAX_ST_UNINITIALIZED state.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
It makes sense that the messaging pipe to the device can be used
before the device is fully ready, as long as it is registered with the
stack. Some debugging tools need it.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Add "debug" module options to all the wimax modules (including
drivers) so that the debug levels can be set upon kernel boot or
module load time.
This is needed as currently there was a limitation where the debug
levels could only be set when a device was succesfully
enumerated. This made it difficult to debug issues that made a device
not probe properly.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
The WiMAX stack assumes that all WiMAX devices are SW OFF when they
are initialized. The recent changes in the RFKILL stack thus cause an
initial call after rfkill_register(), because by default, rfkill
considers devices to be SW ON upon registration.
So call rfkill_init_sw_state() to set it to SW OFF so
rfkill_register() doesn't do that unnecessary step.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Caused by an API update. The return value can be safely ignored, as
there is notthing we can do with it.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
My mistake, I should have added that when cleaning up
rfkill and changing wimax.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This patch completely rewrites the rfkill core to address
the following deficiencies:
* all rfkill drivers need to implement polling where necessary
rather than having one central implementation
* updating the rfkill state cannot be done from arbitrary
contexts, forcing drivers to use schedule_work and requiring
lots of code
* rfkill drivers need to keep track of soft/hard blocked
internally -- the core should do this
* the rfkill API has many unexpected quirks, for example being
asymmetric wrt. alloc/free and register/unregister
* rfkill can call back into a driver from within a function the
driver called -- this is prone to deadlocks and generally
should be avoided
* rfkill-input pointlessly is a separate module
* drivers need to #ifdef rfkill functions (unless they want to
depend on or select RFKILL) -- rfkill should provide inlines
that do nothing if it isn't compiled in
* the rfkill structure is not opaque -- drivers need to initialise
it correctly (lots of sanity checking code required) -- instead
force drivers to pass the right variables to rfkill_alloc()
* the documentation is hard to read because it always assumes the
reader is completely clueless and contains way TOO MANY CAPS
* the rfkill code needlessly uses a lot of locks and atomic
operations in locked sections
* fix LED trigger to actually change the LED when the radio state
changes -- this wasn't done before
Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad]
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
wimax connection manager / daemon has to know what is current
state of the device. Previously it was only possible to get
notification whet state has changed.
Note:
By mistake, the new generic netlink's number for
WIMAX_GNL_OP_STATE_GET was declared inserting into the existing list
of API calls, not appending; thus, it'd break existing API.
Fixed by Inaky Perez-Gonzalez <inaky@linux.intel.com> by moving to
the tail, where we add to the interface, not modify the interface.
Thanks to Stephen Hemminger <shemminger@vyatta.com> for catching this.
Signed-off-by: Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
Funcion documentation for wimax_msg_alloc() and wimax_msg_send() needs
to clarify that they can be used in the very early stages of a
wimax_dev lifecycle.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When a new wimax_dev is created, it's state has to be __WIMAX_ST_NULL
until wimax_dev_add() is succesfully called. This allows calls into
the stack that happen before said time to be rejected.
Until now, the state was being set (by mistake) to UNINITIALIZED,
which was allowing calls such as wimax_report_rfkill_hw() to go
through even when a call to wimax_dev_add() had failed; that was
causing an oops when touching uninitialized data.
This situation is normal when the device starts reporting state before
the whole initialization has been completed. It just has to be dealt
with.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When sending a message to user space using wimax_msg(), if nla_put()
fails, correctly interpret the return code from wimax_msg_alloc() as
an err ptr and return the error code instead of crashing (as it is
assuming than non-NULL means the pointer is ok).
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Almost all drivers do not support user_claim, so remove it
completely and always report -EOPNOTSUPP to userspace. Since
userspace cannot really drive rfkill _anyway_ (due to the
odd restrictions imposed by the documentation) having this
code is just pointless.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
I only did superficial review, but these constants are stupid
to have and without proper warnings nobody will review the
code anyway, no amount of shouting will help.
Also fix wimax to use correct states.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
When a non-wimax interface is looked up by the stack, a bad pointer is
returned when the looked-up interface is not found in the list (of
registered WiMAX interfaces). This causes an oops in the caller when
trying to use the pointer.
Fix by properly setting the pointer to NULL if we don't exit from the
list_for_each() with a found entry.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, netlink_broadcast() reports errors to the caller if no
messages at all were delivered:
1) If, at least, one message has been delivered correctly, returns 0.
2) Otherwise, if no messages at all were delivered due to skb_clone()
failure, return -ENOBUFS.
3) Otherwise, if there are no listeners, return -ESRCH.
With this patch, the caller knows if the delivery of any of the
messages to the listeners have failed:
1) If it fails to deliver any message (for whatever reason), return
-ENOBUFS.
2) Otherwise, if all messages were delivered OK, returns 0.
3) Otherwise, if no listeners, return -ESRCH.
In the current ctnetlink code and in Netfilter in general, we can add
reliable logging and connection tracking event delivery by dropping the
packets whose events were not successfully delivered over Netlink. Of
course, this option would be settable via /proc as this approach reduces
performance (in terms of filtered connections per seconds by a stateful
firewall) but providing reliable logging and event delivery (for
conntrackd) in return.
This patch also changes some clients of netlink_broadcast() that
may report ENOBUFS errors via printk. This error handling is not
of any help. Instead, the userspace daemons that are listening to
those netlink messages should resync themselves with the kernel-side
if they hit ENOBUFS.
BTW, netlink_broadcast() clients include those that call
cn_netlink_send(), nlmsg_multicast() and genlmsg_multicast() since they
internally call netlink_broadcast() and return its error value.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
As reported by Toralf Förster and Randy Dunlap.
- http://linuxwimax.org/pipermail/wimax/2009-January/000460.html
- http://lkml.org/lkml/2009/1/29/279
The definitions needed for the wimax stack and i2400m driver debug
infrastructure was, by mistake, compiled depending on CONFIG_DEBUG_FS
(by them being placed in the debugfs.c files); thus the build broke in
2.6.29-rc3 when debugging was enabled (CONFIG_WIMAX_DEBUG) and
DEBUG_FS was disabled.
These definitions are always needed if debug is enabled at compile
time (independently of DEBUG_FS being or not enabled), so moving them
to a file that is always compiled fixes the issue.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current WiMAX rfkill code is missing the case where rfkill is compiled
in as modules and works only when rfkill is compiled in. This is not
correct. Fixed to test for CONFIG_RFKILL or CONFIG_RKILL_MODULE.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
WiMAX can work without RFKILL, but it was missing a check to make sure
RFKILL is not being made a module with wimax compiled into the
kernel. This caused failed builds in s390, where CONFIG_INPUT is
always off.
When RFKILL is enabled, the code uses the input layer to report
hardware switch changes; thus, if RFKILL is enabled, INPUT has to be
too. It also needs to display some message when INPUT is disabled that
explains why WiMAX is not selectable.
(issues found by Randy Dunlap in the linux-next tree).
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Reported by Randy Dunlap:
> Also, this warning needs to be fixed:
>
> linux-next-20090106/net/wimax/id-table.c:133: warning: ISO C90
> forbids mixed declarations and code
Move the return on #defined(CONFIG_BUG) below the variable
declarations so it doesn't violate ISO C90.
On wimax_id_table_release() we want to do a debug check if CONFIG_BUG
is enabled. However, we also want the debug code to be always compiled
to ensure there is no bitrot. It will be optimized out by the compiler
when CONFIG_BUG is disabled.
Added a note to the function header stating this.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch provides Makefile and KConfig for the WiMAX stack,
integrating them into the networking stack's Makefile, Kconfig and
doc-book templates.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Implements the three basic operations provided by the stack's control
interface to WiMAX devices:
- Messaging channel between user space and driver/device
This implements a direct communication channel between user space
and the driver/device, by which free form messages can be sent back
and forth.
This is intended for device-specific features, vendor quirks, etc.
- RF-kill framework integration
Provide most of the RF-Kill integration for WiMAX drivers so that
all device drivers have to do is after wimax_dev_add() is call
wimax_report_rfkill_{hw,sw}() to update initial state and then every
time it changes.
Provides wimax_rfkill() for the kernel to call to set software
RF-Kill status and/or query current hardware and software switch
status.
Exports wimax_rfkill() over generic netlink to user space.
- Reset a WiMAX device
Provides wimax_reset() for the kernel to reset a wimax device as
needed and exports it over generic netlink to user space.
This API is clearly limited, as it still provides no way to do the
basic scan, connect and disconnect in a hardware independent way. The
WiMAX case is more complex than WiFi due to the way networks are
discovered and provisioned.
The next developments are to add the basic operations so they can be
offerent by different drivers. However, we'd like to get more vendors
to jump in and provide feedback of how the user/kernel API/abstraction
layer should be.
The user space code for the i2400m, as of now, uses the messaging
channel, but that will change as the API evolves.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Implements the basic life cycles of a 'struct wimax_dev', some common
generic netlink functionality for marshalling calls to user space,
and the device state machine.
For looking up net devices based on their generic netlink family IDs,
use a low overhead method that optimizes for the case where most
systems have a single WiMAX device, or at most, a very low number of
WiMAX adaptors.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This file contains a simple debug framework that is used in the stack;
it allows the debug level to be controlled at compile-time (so the
debug code is optimized out) and at run-time (for what wasn't compiled
out).
This is eventually going to be moved to use dynamic_printk(). Just
need to find time to do it.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This file contains declarations and definitions used by the different
submodules of the stack.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>