IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Basic plumbing to initialize the pkey system.
Nothing is enabled yet. A later patch will enable it
once all the infrastructure is in place.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[mpe: Rework copyrights to use SPDX tags]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We currently have code to parse the dynamic reconfiguration LMB
information from the ibm,dynamic-meory device tree property in
multiple locations; numa.c, prom.c, and pseries/hotplug-memory.c.
In anticipation of adding support for a version 2 of the
ibm,dynamic-memory property this patch aims to separate the device
tree information from the device tree format.
Doing this requires a two step process to avoid a possibly very large
bootmem allocation early in boot. During initial boot, new routines
are provided to walk the device tree property and make a call-back
for each LMB.
The second step (introduced in later patches) will allocate an
array of LMB information that can be used directly without needing
to know the DT format.
This approach provides the benefit of consolidating the device tree
property parsing to a single location and (eventually) providing
a common data structure for retrieving LMB information.
This patch introduces a routine to walk the ibm,dynamic-memory
property in the flattened device tree and updates the prom.c code
to use this to initialize memory.
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs in our
implementation and to bring the semantics exactly into line with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a true NMI
(ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors can be
reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM to notify
the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on some Power9
processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on some
Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a CONFIG), we
believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting for long
running operations performed by OPAL firmware, and changes to the
powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are using
transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on Power9.
- Improvements to the VAS facility used to access coprocessors on Power9, and
related improvements to the way the NX crypto driver handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew Donnellan, Aneesh
Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin Herrenschmidt, Breno Leitao,
Christophe Leroy, Christophe Lombard, Cyril Bur, Frederic Barrat, Gautham R.
Shenoy, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo Romero, Haren
Myneni, Joel Stanley, Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami
Hiramatsu, Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia Franco de
Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee, Shriya, Stephen
Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, William A. Kennington III.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDXGuAAoJEFHr6jzI4aWAEqwP/0TA35KFAK6wqfkCf67z4q+O
I+5piI4eDV4jdCakfoIN1JfjhQRULNePSoCHTccan30mu/bm30p69xtOLL2/h5xH
Mhz/eDBAOo0lrT20nyZfYMW3FnM66wnNf++qJ0O+8L052r4WOB02J0k1uM1ST01D
5Lb5mUoxRLRzCgKRYAYWJifn+IFPUB9NMsvMTym94krAFlIjIzMEQXhDoln+jJMr
QmY5f1BTA/fLfXobn0zwoc/C1oa2PUtxd+rxbwGrLoZ6G843mMqUi90SMr5ybhXp
RzepnBTj4by3vOsnk/X1mANyaZfLsunp75FwnjHdPzKrAS/TuPp8D/iSxxE/PzEq
cLwJFBnFXSgQMefDErXxhHSDz2dAg5r14rsTpDcq2Ko8TPV4rPsuSfmbd9Txekb0
yWHsjoJUBBMl2QcWqIHl+AlV8j1RklF6solcTBcGnH1CZJMfa05VKXV7xGEvOHa0
RJ+/xPyR9KjoB/SUp++9Vmx/M6SwQYFOJlr3Zpg9LNtR8WpoPYu1E6eO+u1Hhzny
eJqaNstH+i+VdY9eqszkAsEBh8o9M/+b+7Wx7TetvU+v368CbXtgFYs9qy2oZjPF
t9sY/BHaHZ8eZ7I00an77a0fVV5B1PVASUtIz5CqkwGpMvX6Z6W2K/XUUFI61kuu
E06HS6Ht8UPJAzrAPUMl
=Rq81
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
CONFIG_PPC_STD_MMU_64 indicates support for the "standard" powerpc MMU
on 64-bit CPUs. The "standard" MMU refers to the hash page table MMU
found in "server" processors, from IBM mainly.
Currently CONFIG_PPC_STD_MMU_64 is == CONFIG_PPC_BOOK3S_64. While it's
annoying to have two symbols that always have the same value, it's not
quite annoying enough to bother removing one.
However with the arrival of Power9, we now have the situation where
CONFIG_PPC_STD_MMU_64 is enabled, but the kernel is running using the
Radix MMU - *not* the "standard" MMU. So it is now actively confusing
to use it, because it implies that code is disabled or inactive when
the Radix MMU is in use, however that is not necessarily true.
So s/CONFIG_PPC_STD_MMU_64/CONFIG_PPC_BOOK3S_64/, and do some minor
formatting updates of some of the affected lines.
This will be a pain for backports, but c'est la vie.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It's too big to be inline, there is no reason to keep it
that way.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework to incorporate the comment changes via fixes branch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have a whole pile of unused code to maintain the ACOP register,
allocate coprocessor PIDs and handle ACOP faults. This mechanism
was used for the HFI adapter on POWER7 which is dead and gone and
whose driver never went upstream. It was used on some A2 core based
stuff that also never saw the light of day.
Take out all that code.
There is still some POWER8 coprocessor code that uses icswx but it's
kernel only and thus doesn't use any of that infrastructure.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Today powerpc64 uses a set of pgtable_caches while powerpc32 uses
standard pages when using 4k pages and a single pgtable_cache
if using other size pages.
In preparation of implementing huge pages on the 8xx, this patch
replaces the specific powerpc32 handling by the 64 bits approach.
This is done by:
* moving 64 bits pgtable_cache_add() and pgtable_cache_init()
in a new file called init-common.c
* modifying pgtable_cache_init() to also handle the case
without PMD
* removing the 32 bits version of pgtable_cache_add() and
pgtable_cache_init()
* copying related header contents from 64 bits into both the
book3s/32 and nohash/32 header files
On the 8xx, the following cache sizes will be used:
* 4k pages mode:
- PGT_CACHE(10) for PGD
- PGT_CACHE(3) for 512k hugepage tables
* 16k pages mode:
- PGT_CACHE(6) for PGD
- PGT_CACHE(7) for 512k hugepage tables
- PGT_CACHE(3) for 8M hugepage tables
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
In the recent commit 1515ab9321 ("powerpc/mm: Dump hash table") we
added code to dump the hage page table. Currently this can be selected
to build on any platform. However it breaks the build if we're building
for a non-Book3S platform, because none of the hash page table related
defines and so on exist. So restrict it to building only on Book3S.
Similarly in commit 8eb07b1870 ("powerpc/mm: Dump linux pagetables")
we added code to dump the Linux page tables, which uses some constants
which are only defined on Book3S - so guard those with an #ifdef.
Fixes: 1515ab9321 ("powerpc/mm: Dump hash table")
Fixes: 8eb07b1870 ("powerpc/mm: Dump linux pagetables")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Useful to be able to dump the kernel hash page table to check
which pages are hashed along with their sizes and other details.
Add a debugfs file to check the hash page table. If radix is enabled
(and so there is no hash page table) then this file doesn't exist. To
use this the PPC_PTDUMP config option must be selected.
Signed-off-by: Rashmica Gupta <rashmicy@gmail.com>
[mpe: Fix build with SPARSEMEM_VMEMMAP=n & PSERIES=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Useful to be able to dump the kernels page tables to check permissions
and memory types - derived from arm64's implementation.
Add a debugfs file to check the page tables. To use this the PPC_PTDUMP
config option must be selected.
Signed-off-by: Rashmica Gupta <rashmicy@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 2578bfae84 ("[POWERPC] Create and use CONFIG_WORD_SIZE") added
CONFIG_WORD_SIZE, and suggests that other arches were going to do
likewise.
But that never happened, powerpc is the only architecture which uses it.
So switch to using a simple make variable, BITS, like x86, sh, sparc and
tile. It is also easier to spell and simpler, avoiding any confusion
about whether it's defined due to ordering of make vs kconfig.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Core kernel doesn't track the page size of the VA range that we are
invalidating. Hence we end up flushing TLB for the entire mm here. Later
patches will improve this.
We also don't flush page walk cache separetly instead use RIC=2 when
flushing TLB, because we do a MMU gather flush after freeing page table.
MMU_NO_CONTEXT is updated for hash.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This file now contains both hash and radix specific code. Rename it to
indicate this better.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds routines for early setup for radix. We use device tree
property "ibm,processor-radix-AP-encodings" to find supported page
sizes. If we don't find the above we consider 64K and 4K as supported
page sizes.
We do map vmemap using 2M page size if we can. The linear mapping is
done such that we use required page size for that range. For example
memory of 3.5G is mapped such that we use 1G mapping till 3G range and
use 2M mapping for the rest.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch reduces the number of #ifdefs in C code and will also help in
adding radix changes later. Only code movement in this patch.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Propagate copyrights and update GPL text]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On a live running system (VoIP gateway for Air Trafic Control), over
a 10 minutes period (with 277s idle), we get 87 millions DTLB misses
and approximatly 35 secondes are spent in DTLB handler.
This represents 5.8% of the overall time and even 10.8% of the
non-idle time.
Among those 87 millions DTLB misses, 15% are on user addresses and
85% are on kernel addresses. And within the kernel addresses, 93%
are on addresses from the linear address space and only 7% are on
addresses from the virtual address space.
MPC8xx has no BATs but it has 8Mb page size. This patch implements
mapping of kernel RAM using 8Mb pages, on the same model as what is
done on the 40x.
In 4k pages mode, each PGD entry maps a 4Mb area: we map every two
entries to the same 8Mb physical page. In each second entry, we add
4Mb to the page physical address to ease life of the FixupDAR
routine. This is just ignored by HW.
In 16k pages mode, each PGD entry maps a 64Mb area: each PGD entry
will point to the first page of the area. The DTLB handler adds
the 3 bits from EPN to map the correct page.
With this patch applied, we now get only 13 millions TLB misses
during the 10 minutes period. The idle time has increased to 313s
and the overall time spent in DTLB miss handler is 6.3s, which
represents 1% of the overall time and 2.2% of non-idle time.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
This is similar to 64K insert. May be we want to consolidate
Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We are adding support for DMA memory pre-registration to be used in
conjunction with VFIO. The idea is that the userspace which is going to
run a guest may want to pre-register a user space memory region so
it all gets pinned once and never goes away. Having this done,
a hypervisor will not have to pin/unpin pages on every DMA map/unmap
request. This is going to help with multiple pinning of the same memory.
Another use of it is in-kernel real mode (mmu off) acceleration of
DMA requests where real time translation of guest physical to host
physical addresses is non-trivial and may fail as linux ptes may be
temporarily invalid. Also, having cached host physical addresses
(compared to just pinning at the start and then walking the page table
again on every H_PUT_TCE), we can be sure that the addresses which we put
into TCE table are the ones we already pinned.
This adds a list of memory regions to mm_context_t. Each region consists
of a header and a list of physical addresses. This adds API to:
1. register/unregister memory regions;
2. do final cleanup (which puts all pre-registered pages);
3. do userspace to physical address translation;
4. manage usage counters; multiple registration of the same memory
is allowed (once per container).
This implements 2 counters per registered memory region:
- @mapped: incremented on every DMA mapping; decremented on unmapping;
initialized to 1 when a region is just registered; once it becomes zero,
no more mappings allowe;
- @used: incremented on every "register" ioctl; decremented on
"unregister"; unregistration is allowed for DMA mapped regions unless
it is the very last reference. For the very last reference this checks
that the region is still mapped and returns -EBUSY so the userspace
gets to know that memory is still pinned and unregistration needs to
be retried; @used remains 1.
Host physical addresses are stored in vmalloc'ed array. In order to
access these in the real mode (mmu off), there is a real_vmalloc_addr()
helper. In-kernel acceleration patchset will move it from KVM to MMU code.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The goal behind this patch is to be able to write userland tests for the
VPHN parsing code.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch switch the ppc arch to use the generic RCU based
gup implementation.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently spu_handle_mm_fault() is in the cell platform.
This code is generically useful for other non-cell co-processors on powerpc.
This patch moves this function out of the cell platform into arch/powerpc/mm so
that others may use it.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Old cpus didn't have a Segment Lookaside Buffer (SLB), instead they had
a Segment Table (STAB). Now that we've dropped support for those cpus,
we can remove the STAB support entirely.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The deposted PTE page in the second half of the PMD table is used to
track the state on hash PTEs. After updating the HPTE, we mark the
coresponding slot in the deposted PTE page valid.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We will use this in the later patch for handling THP pages
Reviewed-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Finally remove the two level TOC and build with -mcmodel=medium.
Unfortunately we can't build modules with -mcmodel=medium due to
the tricks the kernel module loader plays with percpu data:
# -mcmodel=medium breaks modules because it uses 32bit offsets from
# the TOC pointer to create pointers where possible. Pointers into the
# percpu data area are created by this method.
#
# The kernel module loader relocates the percpu data section from the
# original location (starting with 0xd...) to somewhere in the base
# kernel percpu data space (starting with 0xc...). We need a full
# 64bit relocation for this to work, hence -mcmodel=large.
On older kernels we fall back to the two level TOC (-mminimal-toc)
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Some processors, like embedded, that already have a PID register that
is managed by the system. This patch separates the ACOP and PID
processing into separate files so that the ACOP code can be shared.
Signed-off-by: Jimi Xenidis <jimix@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Enable hugepages on Freescale BookE processors. This allows the kernel to
use huge TLB entries to map pages, which can greatly reduce the number of
TLB misses and the amount of TLB thrashing experienced by applications with
large memory footprints. Care should be taken when using this on FSL
processors, as the number of large TLB entries supported by the core is low
(16-64) on current processors.
The supported set of hugepage sizes include 4m, 16m, 64m, 256m, and 1g.
Page sizes larger than the max zone size are called "gigantic" pages and
must be allocated on the command line (and cannot be deallocated).
This is currently only fully implemented for Freescale 32-bit BookE
processors, but there is some infrastructure in the code for
64-bit BooKE.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On Freescale parts typically have TLB array for large mappings that we can
bolt the linear mapping into. We utilize the code that already exists
on PPC32 on the 64-bit side to setup the linear mapping to be cover by
bolted TLB entries. We utilize a quarter of the variable size TLB array
for this purpose.
Additionally, we limit the amount of memory to what we can cover via
bolted entries so we don't get secondary faults in the TLB miss
handlers. We should fix this limitation in the future.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Replace EXTRA_CFLAGS with ccflags-y and EXTRA_AFLAGS with asflags-y.
Signed-off-by: matt mooney <mfm@muteddisk.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch separates the parts of hugetlbpage.c which are inherently
specific to the hash MMU into a new hugelbpage-hash64.c file.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Those functions are way too big to be inline, besides, kmap_atomic()
wants to call debug_kmap_atomic() which isn't exported for modules
and causes module link failures.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add the option to build the code under arch/powerpc with -Werror.
The intention is to make it harder for people to inadvertantly introduce
warnings in the arch/powerpc code. It needs to be configurable so that
if a warning is introduced, people can easily work around it while it's
being fixed.
The option is a negative, ie. don't enable -Werror, so that it will be
turned on for allyes and allmodconfig builds.
The default is n, in the hope that developers will build with -Werror,
that will probably lead to some build breaks, I am prepared to be flamed.
It's not enabled for math-emu, which is a steaming pile of warnings.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This is a random collection of added ifdef's around portions of
code that only mak sense on server processors. Using either
CONFIG_PPC_STD_MMU_64 or CONFIG_PPC_BOOK3S as seems appropriate.
This is meant to make the future merging of Book3E 64-bit support
easier.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
While we did add support for _PAGE_SPECIAL on some 32-bit platforms,
we never actually built get_user_pages_fast() on them. This fixes
it which requires a little bit of ifdef'ing around.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, the various forms of low level TLB invalidations are all
implemented in misc_32.S for 32-bit processors, in a fairly scary
mess of #ifdef's and with interesting duplication such as a whole
bunch of code for FSL _tlbie and _tlbia which are no longer used.
This moves things around such that _tlbie is now defined in
hash_low_32.S and is only used by the 32-bit hash code, and all
nohash CPUs use the various _tlbil_* forms that are now moved to
a new file, tlb_nohash_low.S.
I moved all the definitions for that stuff out of
include/asm/tlbflush.h as they are really internal mm stuff, into
mm/mmu_decl.h
The code should have no functional changes. I kept some variants
inline for trivial forms on things like 40x and 8xx.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit moves the whole no-hash TLB handling out of line into a
new tlb_nohash.c file, and implements some basic SMP support using
IPIs and/or broadcast tlbivax instructions.
Note that I'm using local invalidations for D->I cache coherency.
At worst, if another processor is trying to execute the same and
has the old entry in its TLB, it will just take a fault and re-do
the TLB flush locally (it won't re-do the cache flush in any case).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This splits the mmu_context handling between 32-bit hash based
processors, 64-bit hash based processors and everybody else. This is
preliminary work for adding SMP support for BookE processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This renames the files to clarify the fact that they are used by
the hash based family of CPUs (the 603 being an exception in that
family but is still handled by that code).
This paves the way for the new tlb_nohash.c coming via a subsequent
commit.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Refactor the RCU based pte free code that was used on ppc64 to be used
on all powerpc.
Additionally refactor pte_free() & pte_free_kernel() into common code
between ppc32 & ppc64.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Implement lockless get_user_pages_fast for 64-bit powerpc.
Page table existence is guaranteed with RCU, and speculative page references
are used to take a reference to the pages without having a prior existence
guarantee on them.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>