564 Commits

Author SHA1 Message Date
Kefeng Wang
1d9cb7852b mm: mempolicy: use folio_alloc_mpol() in alloc_migration_target_by_mpol()
Convert to use folio_alloc_mpol() to make vma_alloc_folio_noprof() to use
folio throughout.

Link: https://lkml.kernel.org/r/20240515070709.78529-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:29:53 -07:00
Kefeng Wang
3174d70cf6 mm: mempolicy: use folio_alloc_mpol_noprof() in vma_alloc_folio_noprof()
Convert to use folio_alloc_mpol_noprof() to make vma_alloc_folio_noprof()
to use folio throughout.

Link: https://lkml.kernel.org/r/20240515070709.78529-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:29:52 -07:00
Kefeng Wang
a19621ed4e mm: add folio_alloc_mpol()
Patch series "mm: convert to folio_alloc_mpol()".


This patch (of 4):

This adds a new folio_alloc_mpol() like folio_alloc() but allocate folio
according to NUMA mempolicy.

Link: https://lkml.kernel.org/r/20240515070709.78529-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20240515070709.78529-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:29:52 -07:00
Matthew Wilcox (Oracle)
e06d03d559 mm: add pmd_folio()
Convert directly from a pmd to a folio without going through another
representation first.  For now this is just a slightly shorter way to
write it, but it might end up being more efficient later.

Link: https://lkml.kernel.org/r/20240326202833.523759-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:19 -07:00
Matthew Wilcox (Oracle)
5beaee54a3 mm: add is_huge_zero_folio()
This is the folio equivalent of is_huge_zero_page().  It doesn't add any
efficiency, but it does prevent the caller from passing a tail page and
getting confused when the predicate returns false.

Link: https://lkml.kernel.org/r/20240326202833.523759-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:18 -07:00
David Hildenbrand
ebb34f78d7 mm: convert folio_estimated_sharers() to folio_likely_mapped_shared()
Callers of folio_estimated_sharers() only care about "mapped shared vs. 
mapped exclusively", not the exact estimate of sharers.  Let's consolidate
and unify the condition users are checking.  While at it clarify the
semantics and extend the discussion on the fuzziness.

Use the "likely mapped shared" terminology to better express what the
(adjusted) function actually checks.

Whether a partially-mappable folio is more likely to not be partially
mapped than partially mapped is debatable.  In the future, we might be
able to improve our estimate for partially-mappable folios, though.

Note that we will now consistently detect "mapped shared" only if the
first subpage is actually mapped multiple times.  When the first subpage
is not mapped, we will consistently detect it as "mapped exclusively". 
This change should currently only affect the usage in
madvise_free_pte_range() and queue_folios_pte_range() for large folios: if
the first page was already unmapped, we would have skipped the folio.

[david@redhat.com: folio_likely_mapped_shared() kerneldoc fixup]
  Link: https://lkml.kernel.org/r/dd0ad9f2-2d7a-45f3-9ba3-979488c7dd27@redhat.com
Link: https://lkml.kernel.org/r/20240227201548.857831-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:08 -07:00
Baolin Wang
42d0c3fbb5 mm: hugetlb: make the hugetlb migration strategy consistent
As discussed in previous thread [1], there is an inconsistency when
handing hugetlb migration.  When handling the migration of freed hugetlb,
it prevents fallback to other NUMA nodes in
alloc_and_dissolve_hugetlb_folio().  However, when dealing with in-use
hugetlb, it allows fallback to other NUMA nodes in
alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool
and might result in unexpected failures when node bound workloads doesn't
get what is asssumed available.

To make hugetlb migration strategy more clear, we should list all the scenarios
of hugetlb migration and analyze whether allocation fallback is permitted:

1) Memory offline: will call dissolve_free_huge_pages() to free the
   freed hugetlb, and call do_migrate_range() to migrate the in-use
   hugetlb.  Both can break the per-node hugetlb pool, but as this is an
   explicit offlining operation, no better choice.  So should allow the
   hugetlb allocation fallback.

2) Memory failure: same as memory offline.  Should allow fallback to a
   different node might be the only option to handle it, otherwise the
   impact of poisoned memory can be amplified.

3) Longterm pinning: will call migrate_longterm_unpinnable_pages() to
   migrate in-use and not-longterm-pinnable hugetlb, which can break the
   per-node pool.  But we should fail to longterm pinning if can not
   allocate on current node to avoid breaking the per-node pool.

4) Syscalls (mbind, migrate_pages, move_pages): these are explicit
   users operation to move pages to other nodes, so fallback to other
   nodes should not be prohibited.

5) alloc_contig_range: used by CMA allocation and virtio-mem
   fake-offline to allocate given range of pages.  Now the freed hugetlb
   migration is not allowed to fallback, to keep consistency, the in-use
   hugetlb migration should be also not allowed to fallback.

6) alloc_contig_pages: used by kfence, pgtable_debug etc.  The strategy
   should be consistent with that of alloc_contig_range().

Based on the analysis of the various scenarios above, introducing a new
helper to determine whether fallback is permitted according to the
migration reason..

[1] https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/
Link: https://lkml.kernel.org/r/3519fcd41522817307a05b40fb551e2e17e68101.1709719720.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:06 -07:00
Baolin Wang
e42dfe4e0a mm: record the migration reason for struct migration_target_control
Patch series "make the hugetlb migration strategy consistent", v2.

As discussed in previous thread [1], there is an inconsistency when
handling hugetlb migration.  When handling the migration of freed hugetlb,
it prevents fallback to other NUMA nodes in
alloc_and_dissolve_hugetlb_folio().  However, when dealing with in-use
hugetlb, it allows fallback to other NUMA nodes in
alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool
and might result in unexpected failures when node bound workloads doesn't
get what is asssumed available.

This patchset tries to make the hugetlb migration strategy more clear
and consistent. Please find details in each patch.

[1]
https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/


This patch (of 2):

To support different hugetlb allocation strategies during hugetlb
migration based on various migration reasons, record the migration reason
in the migration_target_control structure as a preparation.

Link: https://lkml.kernel.org/r/cover.1709719720.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/7b95d4981e07211f57139fc5b1f7ce91b920cee4.1709719720.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:06 -07:00
Suren Baghdasaryan
b951aaff50 mm: enable page allocation tagging
Redefine page allocators to record allocation tags upon their invocation. 
Instrument post_alloc_hook and free_pages_prepare to modify current
allocation tag.

[surenb@google.com: undo _noprof additions in the documentation]
  Link: https://lkml.kernel.org/r/20240326231453.1206227-3-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-19-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:54 -07:00
Donet Tom
133d04b1ee mm/numa_balancing: allow migrate on protnone reference with MPOL_PREFERRED_MANY policy
commit bda420b98505 ("numa balancing: migrate on fault among multiple
bound nodes") added support for migrate on protnone reference with
MPOL_BIND memory policy.  This allowed numa fault migration when the
executing node is part of the policy mask for MPOL_BIND.  This patch
extends migration support to MPOL_PREFERRED_MANY policy.

Currently, we cannot specify MPOL_PREFERRED_MANY with the mempolicy flag
MPOL_F_NUMA_BALANCING.  This causes issues when we want to use
NUMA_BALANCING_MEMORY_TIERING.  To effectively use the slow memory tier,
the kernel should not allocate pages from the slower memory tier via
allocation control zonelist fallback.  Instead, we should move cold pages
from the faster memory node via memory demotion.  For a page allocation,
kswapd is only woken up after we try to allocate pages from all nodes in
the allocation zone list.  This implies that, without using memory
policies, we will end up allocating hot pages in the slower memory tier.

MPOL_PREFERRED_MANY was added by commit b27abaccf8e8 ("mm/mempolicy: add
MPOL_PREFERRED_MANY for multiple preferred nodes") to allow better
allocation control when we have memory tiers in the system.  With
MPOL_PREFERRED_MANY, the user can use a policy node mask consisting only
of faster memory nodes.  When we fail to allocate pages from the faster
memory node, kswapd would be woken up, allowing demotion of cold pages to
slower memory nodes.

With the current kernel, such usage of memory policies implies we can't do
page promotion from a slower memory tier to a faster memory tier using
numa fault.  This patch fixes this issue.

For MPOL_PREFERRED_MANY, if the executing node is in the policy node mask,
we allow numa migration to the executing nodes.  If the executing node is
not in the policy node mask, we do not allow numa migration.

Example:
On a 2-sockets system, NUMA node N0, N1 and N2 are in socket 0,
N3 in socket 1. N0, N1 and N3 have fast memory and CPU, while
N2 has slow memory and no CPU.  For a workload, we may use
MPOL_PREFERRED_MANY with nodemask N0 and N1 set because the workload
runs on CPUs of socket 0 at most times. Then, even if the workload
runs on CPUs of N3 occasionally, we will not try to migrate the workload
pages from N2 to N3 because users may want to avoid cross-socket access
as much as possible in the long term.

In below table, Process is the Process executing node and
Curr Loc Pgs is the numa node where page present(folio node)
===========================================================
Process  Policy  Curr Loc Pgs     Observation
-----------------------------------------------------------
N0       N0 N1      N1         Pages Migrated from N1 to N0
N0       N0 N1      N2         Pages Migrated from N2 to N0
N0       N0 N1      N3	       Pages Migrated from N3 to N0

N3       N0 N1      N0         Pages NOT Migrated  to N3
N3       N0 N1      N1         Pages NOT Migrated  to N3
N3       N0 N1      N2	       Pages NOT Migrated  to N3
------------------------------------------------------------

Link: https://lkml.kernel.org/r/158acc57319129aa46d50fd64c9330f3e7c7b4bf.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/369d6a58758396335fd1176d97bbca4e7730d75a.1709909210.git.donettom@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Signed-off-by: Donet Tom <donettom@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:49 -07:00
Donet Tom
f8fd525ba3 mm/mempolicy: use numa_node_id() instead of cpu_to_node()
Patch series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY
policy:, v4.

This patchset is to optimize the cross-socket memory access with
MPOL_PREFERRED_MANY policy.

To test this patch we ran the following test on a 3 node system.
 Node 0 - 2GB   - Tier 1
 Node 1 - 11GB  - Tier 1
 Node 6 - 10GB  - Tier 2

Below changes are made to memcached to set the memory policy,
It select Node0 and Node1 as preferred nodes.

   #include <numaif.h>
   #include <numa.h>

    unsigned long nodemask;
    int ret;

    nodemask = 0x03;
    ret = set_mempolicy(MPOL_PREFERRED_MANY | MPOL_F_NUMA_BALANCING,
                                               &nodemask, 10);
    /* If MPOL_F_NUMA_BALANCING isn't supported,
     * fall back to MPOL_PREFERRED_MANY */
    if (ret < 0 && errno == EINVAL){
       printf("set mem policy normal\n");
        ret = set_mempolicy(MPOL_PREFERRED_MANY, &nodemask, 10);
    }
    if (ret < 0) {
       perror("Failed to call set_mempolicy");
       exit(-1);
    }

Test Procedure:
===============
1. Make sure memory tiring and demotion are enabled.
2. Start memcached.

   # ./memcached -b 100000 -m 204800 -u root -c 1000000 -t 7
       -d -s "/tmp/memcached.sock"

3. Run memtier_benchmark to store 3200000 keys.

  #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary
    --threads=1 --pipeline=1 --ratio=1:0 --key-pattern=S:S --key-minimum=1
    --key-maximum=3200000 -n allkeys -c 1 -R -x 1 -d 1024

4. Start a memory eater on node 0 and 1. This will demote all memcached
   pages to node 6.
5. Make sure all the memcached pages got demoted to lower tier by reading
   /proc/<memcaced PID>/numa_maps.

    # cat /proc/2771/numa_maps
     ---
    default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64
    default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64
     ---

6. Kill memory eater.
7. Read the pgpromote_success counter.
8. Start reading the keys by running memtier_benchmark.

  #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary
   --pipeline=1 --distinct-client-seed --ratio=0:3 --key-pattern=R:R
   --key-minimum=1 --key-maximum=3200000 -n allkeys
   --threads=64 -c 1 -R -x 6

9. Read the pgpromote_success counter.

Test Results:
=============
Without Patch
------------------
1. pgpromote_success  before test
Node 0:  pgpromote_success 11
Node 1:  pgpromote_success 140974

pgpromote_success  after test
Node 0:  pgpromote_success 11
Node 1:  pgpromote_success 140974

2. Memtier-benchmark result.
AGGREGATED AVERAGE RESULTS (6 runs)
==================================================================
Type    Ops/sec   Hits/sec   Misses/sec  Avg. Latency  p50 Latency
------------------------------------------------------------------
Sets     0.00       ---         ---        ---          ---
Gets    305792.03  305791.93   0.10       0.18949       0.16700
Waits    0.00       ---         ---        ---          ---
Totals  305792.03  305791.93   0.10       0.18949       0.16700

======================================
p99 Latency  p99.9 Latency  KB/sec
-------------------------------------
---          ---            0.00
0.44700     1.71100        11542.69
---           ---            ---
0.44700     1.71100        11542.69

With Patch
---------------
1. pgpromote_success  before test
Node 0:  pgpromote_success 5
Node 1:  pgpromote_success 89386

pgpromote_success  after test
Node 0:  pgpromote_success 57895
Node 1:  pgpromote_success 141463

2. Memtier-benchmark result.
AGGREGATED AVERAGE RESULTS (6 runs)
====================================================================
Type    Ops/sec    Hits/sec  Misses/sec  Avg. Latency  p50 Latency
--------------------------------------------------------------------
Sets     0.00        ---       ---        ---           ---
Gets    521942.24  521942.07  0.17       0.11459        0.10300
Waits    0.00        ---       ---         ---          ---
Totals  521942.24  521942.07  0.17       0.11459        0.10300

=======================================
p99 Latency  p99.9 Latency  KB/sec
---------------------------------------
 ---          ---            0.00
0.23100      0.31900        19701.68
---          ---             ---
0.23100      0.31900        19701.68


Test Result Analysis:
=====================
1. With patch we could observe pages are getting promoted.
2. Memtier-benchmark results shows that, with the patch,
   performance has increased more than 50%.

 Ops/sec without fix -  305792.03
 Ops/sec with fix    -  521942.24


This patch (of 2):

Instead of using 'cpu_to_node()', we use 'numa_node_id()', which is
quicker.  smp_processor_id is guaranteed to be stable in the
'mpol_misplaced()' function because it is called with ptl held. 
lockdep_assert_held was added to ensure that.

No functional change in this patch.

[donettom@linux.ibm.com: add "* @vmf: structure describing the fault" comment]
  Link: https://lkml.kernel.org/r/d8b993ea9dccfac0bc3ed61d3a81f4ac5f376e46.1711002865.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/cover.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/6059f034f436734b472d066db69676fb3a459864.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/cover.1709909210.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/744646531af02cc687cde8ae788fb1779e99d02c.1709909210.git.donettom@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Signed-off-by: Donet Tom <donettom@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:48 -07:00
Matthew Wilcox (Oracle)
f1cce6f7fa mm/mempolicy: use a folio in do_mbind()
We actually add folios to the pagelist already, but then work with them as
pages.  Removes a call to compound_head() in PageKsm() and removes a
reference to page->index.

Link: https://lkml.kernel.org/r/20240229153015.1996829-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:18 -08:00
Gregory Price
274519ed41 mm/mempolicy: protect task interleave functions with tsk->mems_allowed_seq
In the event of rebind, pol->nodemask can change at the same time as an
allocation occurs.  We can detect this with tsk->mems_allowed_seq and
prevent a miscount or an allocation failure from occurring.

The same thing happens in the allocators to detect failure, but this can
prevent spurious failures in a much smaller critical section.

[gourry.memverge@gmail.com: weighted interleave checks wrong parameter]
  Link: https://lkml.kernel.org/r/20240206192853.3589-1-gregory.price@memverge.com
Link: https://lkml.kernel.org/r/20240202170238.90004-5-gregory.price@memverge.com
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hasan Al Maruf <Hasan.Maruf@amd.com>
Cc: Honggyu Kim <honggyu.kim@sk.com>
Cc: Hyeongtak Ji <hyeongtak.ji@sk.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rakie Kim <rakie.kim@sk.com>
Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:47 -08:00
Gregory Price
fa3bea4e1f mm/mempolicy: introduce MPOL_WEIGHTED_INTERLEAVE for weighted interleaving
When a system has multiple NUMA nodes and it becomes bandwidth hungry,
using the current MPOL_INTERLEAVE could be an wise option.

However, if those NUMA nodes consist of different types of memory such as
socket-attached DRAM and CXL/PCIe attached DRAM, the round-robin based
interleave policy does not optimally distribute data to make use of their
different bandwidth characteristics.

Instead, interleave is more effective when the allocation policy follows
each NUMA nodes' bandwidth weight rather than a simple 1:1 distribution.

This patch introduces a new memory policy, MPOL_WEIGHTED_INTERLEAVE,
enabling weighted interleave between NUMA nodes.  Weighted interleave
allows for proportional distribution of memory across multiple numa nodes,
preferably apportioned to match the bandwidth of each node.

For example, if a system has 1 CPU node (0), and 2 memory nodes (0,1),
with bandwidth of (100GB/s, 50GB/s) respectively, the appropriate weight
distribution is (2:1).

Weights for each node can be assigned via the new sysfs extension:
/sys/kernel/mm/mempolicy/weighted_interleave/

For now, the default value of all nodes will be `1`, which matches the
behavior of standard 1:1 round-robin interleave.  An extension will be
added in the future to allow default values to be registered at kernel and
device bringup time.

The policy allocates a number of pages equal to the set weights.  For
example, if the weights are (2,1), then 2 pages will be allocated on node0
for every 1 page allocated on node1.

The new flag MPOL_WEIGHTED_INTERLEAVE can be used in set_mempolicy(2)
and mbind(2).

Some high level notes about the pieces of weighted interleave:

current->il_prev:
    Tracks the node previously allocated from.

current->il_weight:
    The active weight of the current node (current->il_prev)
    When this reaches 0, current->il_prev is set to the next node
    and current->il_weight is set to the next weight.

weighted_interleave_nodes:
    Counts the number of allocations as they occur, and applies the
    weight for the current node.  When the weight reaches 0, switch
    to the next node.  Operates only on task->mempolicy.

weighted_interleave_nid:
    Gets the total weight of the nodemask as well as each individual
    node weight, then calculates the node based on the given index.
    Operates on VMA policies.

bulk_array_weighted_interleave:
    Gets the total weight of the nodemask as well as each individual
    node weight, then calculates the number of "interleave rounds" as
    well as any delta ("partial round").  Calculates the number of
    pages for each node and allocates them.

    If a node was scheduled for interleave via interleave_nodes, the
    current weight will be allocated first.

    Operates only on the task->mempolicy.

One piece of complexity is the interaction between a recent refactor which
split the logic to acquire the "ilx" (interleave index) of an allocation
and the actually application of the interleave.  If a call to
alloc_pages_mpol() were made with a weighted-interleave policy and ilx set
to NO_INTERLEAVE_INDEX, weighted_interleave_nodes() would operate on a VMA
policy - violating the description above.

An inspection of all callers of alloc_pages_mpol() shows that all external
callers set ilx to `0`, an index value, or will call get_vma_policy() to
acquire the ilx.

For example, mm/shmem.c may call into alloc_pages_mpol.  The call stacks
all set (pgoff_t ilx) or end up in `get_vma_policy()`.  This enforces the
`weighted_interleave_nodes()` and `weighted_interleave_nid()` policy
requirements (task/vma respectively).

Link: https://lkml.kernel.org/r/20240202170238.90004-4-gregory.price@memverge.com
Suggested-by: Hasan Al Maruf <Hasan.Maruf@amd.com>
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Co-developed-by: Rakie Kim <rakie.kim@sk.com>
Signed-off-by: Rakie Kim <rakie.kim@sk.com>
Co-developed-by: Honggyu Kim <honggyu.kim@sk.com>
Signed-off-by: Honggyu Kim <honggyu.kim@sk.com>
Co-developed-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Co-developed-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Signed-off-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Co-developed-by: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Signed-off-by: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:46 -08:00
Gregory Price
9685e6e30d mm/mempolicy: refactor a read-once mechanism into a function for re-use
Move the use of barrier() to force policy->nodemask onto the stack into a
function `read_once_policy_nodemask` so that it may be re-used.

Link: https://lkml.kernel.org/r/20240202170238.90004-3-gregory.price@memverge.com
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hasan Al Maruf <Hasan.Maruf@amd.com>
Cc: Honggyu Kim <honggyu.kim@sk.com>
Cc: Hyeongtak Ji <hyeongtak.ji@sk.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rakie Kim <rakie.kim@sk.com>
Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:46 -08:00
Rakie Kim
dce41f5ae2 mm/mempolicy: implement the sysfs-based weighted_interleave interface
Patch series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension", v5.

Weighted interleave is a new interleave policy intended to make use of
heterogeneous memory environments appearing with CXL.

The existing interleave mechanism does an even round-robin distribution of
memory across all nodes in a nodemask, while weighted interleave
distributes memory across nodes according to a provided weight.  (Weight =
# of page allocations per round)

Weighted interleave is intended to reduce average latency when bandwidth
is pressured - therefore increasing total throughput.

In other words: It allows greater use of the total available bandwidth in
a heterogeneous hardware environment (different hardware provides
different bandwidth capacity).

As bandwidth is pressured, latency increases - first linearly and then
exponentially.  By keeping bandwidth usage distributed according to
available bandwidth, we therefore can reduce the average latency of a
cacheline fetch.

A good explanation of the bandwidth vs latency response curve:
https://mahmoudhatem.wordpress.com/2017/11/07/memory-bandwidth-vs-latency-response-curve/

From the article:
```
Constant region:
    The latency response is fairly constant for the first 40%
    of the sustained bandwidth.
Linear region:
    In between 40% to 80% of the sustained bandwidth, the
    latency response increases almost linearly with the bandwidth
    demand of the system due to contention overhead by numerous
    memory requests.
Exponential region:
    Between 80% to 100% of the sustained bandwidth, the memory
    latency is dominated by the contention latency which can be
    as much as twice the idle latency or more.
Maximum sustained bandwidth :
    Is 65% to 75% of the theoretical maximum bandwidth.
```

As a general rule of thumb:
* If bandwidth usage is low, latency does not increase. It is
  optimal to place data in the nearest (lowest latency) device.
* If bandwidth usage is high, latency increases. It is optimal
  to place data such that bandwidth use is optimized per-device.

This is the top line goal: Provide a user a mechanism to target using the
"maximum sustained bandwidth" of each hardware component in a heterogenous
memory system.


For example, the stream benchmark demonstrates that 1:1 (default)
interleave is actively harmful, while weighted interleave can be
beneficial.  Default interleave distributes data such that too much
pressure is placed on devices with lower available bandwidth.

Stream Benchmark (vs DRAM, 1 Socket + 1 CXL Device)
Default interleave : -78% (slower than DRAM)
Global weighting   : -6% to +4% (workload dependant)
Targeted weights   : +2.5% to +4% (consistently better than DRAM)

Global means the task-policy was set (set_mempolicy), while targeted means
VMA policies were set (mbind2).  We see weighted interleave is not always
beneficial when applied globally, but is always beneficial when applied to
bandwidth-driving memory regions.


There are 4 patches in this set:
1) Implement system-global interleave weights as sysfs extension
   in mm/mempolicy.c.  These weights are RCU protected, and a
   default weight set is provided (all weights are 1 by default).

   In future work, we intend to expose an interface for HMAT/CDAT
   code to set reasonable default values based on the memory
   configuration of the system discovered at boot/hotplug.

2) A mild refactor of some interleave-logic for re-use in the
   new weighted interleave logic.

3) MPOL_WEIGHTED_INTERLEAVE extension for set_mempolicy/mbind

4) Protect interleave logic (weighted and normal) with the
   mems_allowed seq cookie.  If the nodemask changes while
   accessing it during a rebind, just retry the access.

Included below are some performance and LTP test information,
and a sample numactl branch which can be used for testing.

= Performance summary =
(tests may have different configurations, see extended info below)
1) MLC (W2) : +38% over DRAM. +264% over default interleave.
   MLC (W5) : +40% over DRAM. +226% over default interleave.
2) Stream   : -6% to +4% over DRAM, +430% over default interleave.
3) XSBench  : +19% over DRAM. +47% over default interleave.

= LTP Testing Summary =
existing mempolicy & mbind tests: pass
mempolicy & mbind + weighted interleave (global weights): pass

= version history
v5:
- style fixes
- mems_allowed cookie protection to detect rebind issues,
  prevents spurious allocation failures and/or mis-allocations
- sparse warning fixes related to __rcu on local variables

=====================================================================
Performance tests - MLC
From - Ravi Jonnalagadda <ravis.opensrc@micron.com>

Hardware: Single-socket, multiple CXL memory expanders.

Workload:                               W2
Data Signature:                         2:1 read:write
DRAM only bandwidth (GBps):             298.8
DRAM + CXL (default interleave) (GBps): 113.04
DRAM + CXL (weighted interleave)(GBps): 412.5
Gain over DRAM only:                    1.38x
Gain over default interleave:           2.64x

Workload:                               W5
Data Signature:                         1:1 read:write
DRAM only bandwidth (GBps):             273.2
DRAM + CXL (default interleave) (GBps): 117.23
DRAM + CXL (weighted interleave)(GBps): 382.7
Gain over DRAM only:                    1.4x
Gain over default interleave:           2.26x

=====================================================================
Performance test - Stream
From - Gregory Price <gregory.price@memverge.com>

Hardware: Single socket, single CXL expander
numactl extension: https://github.com/gmprice/numactl/tree/weighted_interleave_master

Summary: 64 threads, ~18GB workload, 3GB per array, executed 100 times
Default interleave : -78% (slower than DRAM)
Global weighting   : -6% to +4% (workload dependant)
mbind2 weights     : +2.5% to +4% (consistently better than DRAM)

dram only:
numactl --cpunodebind=1 --membind=1 ./stream_c.exe --ntimes 100 --array-size 400M --malloc
Function     Direction    BestRateMBs     AvgTime      MinTime      MaxTime
Copy:        0->0            200923.2     0.032662     0.031853     0.033301
Scale:       0->0            202123.0     0.032526     0.031664     0.032970
Add:         0->0            208873.2     0.047322     0.045961     0.047884
Triad:       0->0            208523.8     0.047262     0.046038     0.048414

CXL-only:
numactl --cpunodebind=1 -w --membind=2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc
Copy:        0->0             22209.7     0.288661     0.288162     0.289342
Scale:       0->0             22288.2     0.287549     0.287147     0.288291
Add:         0->0             24419.1     0.393372     0.393135     0.393735
Triad:       0->0             24484.6     0.392337     0.392083     0.394331

Based on the above, the optimal weights are ~9:1
echo 9 > /sys/kernel/mm/mempolicy/weighted_interleave/node1
echo 1 > /sys/kernel/mm/mempolicy/weighted_interleave/node2

default interleave:
numactl --cpunodebind=1 --interleave=1,2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc
Copy:        0->0             44666.2     0.143671     0.143285     0.144174
Scale:       0->0             44781.6     0.143256     0.142916     0.143713
Add:         0->0             48600.7     0.197719     0.197528     0.197858
Triad:       0->0             48727.5     0.197204     0.197014     0.197439

global weighted interleave:
numactl --cpunodebind=1 -w --interleave=1,2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc
Copy:        0->0            190085.9     0.034289     0.033669     0.034645
Scale:       0->0            207677.4     0.031909     0.030817     0.033061
Add:         0->0            202036.8     0.048737     0.047516     0.053409
Triad:       0->0            217671.5     0.045819     0.044103     0.046755

targted regions w/ global weights (modified stream to mbind2 malloc'd regions))
numactl --cpunodebind=1 --membind=1 ./stream_c.exe -b --ntimes 100 --array-size 400M --malloc
Copy:        0->0            205827.0     0.031445     0.031094     0.031984
Scale:       0->0            208171.8     0.031320     0.030744     0.032505
Add:         0->0            217352.0     0.045087     0.044168     0.046515
Triad:       0->0            216884.8     0.045062     0.044263     0.046982

=====================================================================
Performance tests - XSBench
From - Hyeongtak Ji <hyeongtak.ji@sk.com>

Hardware: Single socket, Single CXL memory Expander

NUMA node 0: 56 logical cores, 128 GB memory
NUMA node 2: 96 GB CXL memory
Threads:     56
Lookups:     170,000,000

Summary: +19% over DRAM. +47% over default interleave.

Performance tests - XSBench
1. dram only
$ numactl -m 0 ./XSBench -s XL –p 5000000
Runtime:     36.235 seconds
Lookups/s:   4,691,618

2. default interleave
$ numactl –i 0,2 ./XSBench –s XL –p 5000000
Runtime:     55.243 seconds
Lookups/s:   3,077,293

3. weighted interleave
numactl –w –i 0,2 ./XSBench –s XL –p 5000000
Runtime:     29.262 seconds
Lookups/s:   5,809,513

=====================================================================
LTP Tests: https://github.com/gmprice/ltp/tree/mempolicy2

= Existing tests
set_mempolicy, get_mempolicy, mbind

MPOL_WEIGHTED_INTERLEAVE added manually to test basic functionality but
did not adjust tests for weighting.  Basically the weights were set to 1,
which is the default, and it should behave the same as MPOL_INTERLEAVE if
logic is correct.

== set_mempolicy01 : passed   18, failed   0
== set_mempolicy02 : passed   10, failed   0
== set_mempolicy03 : passed   64, failed   0
== set_mempolicy04 : passed   32, failed   0
== set_mempolicy05 - n/a on non-x86
== set_mempolicy06 : passed   10, failed   0
   this is set_mempolicy02 + MPOL_WEIGHTED_INTERLEAVE
== set_mempolicy07 : passed   32, failed   0
   set_mempolicy04 + MPOL_WEIGHTED_INTERLEAVE
== get_mempolicy01 : passed   12, failed   0
   change: added MPOL_WEIGHTED_INTERLEAVE
== get_mempolicy02 : passed   2, failed   0
== mbind01 : passed   15, failed   0
   added MPOL_WEIGHTED_INTERLEAVE
== mbind02 : passed   4, failed   0
   added MPOL_WEIGHTED_INTERLEAVE
== mbind03 : passed   16, failed   0
   added MPOL_WEIGHTED_INTERLEAVE
== mbind04 : passed   48, failed   0
   added MPOL_WEIGHTED_INTERLEAVE

=====================================================================
numactl (set_mempolicy) w/ global weighting test
numactl fork: https://github.com/gmprice/numactl/tree/weighted_interleave_master

command: numactl -w --interleave=0,1 ./eatmem

result (weights 1:1):
0176a000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=32897 N1=32896 kernelpagesize_kB=4
7fceeb9ff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=32768 N1=32769 kernelpagesize_kB=4
50% distribution is correct

result (weights 5:1):
01b14000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=54828 N1=10965 kernelpagesize_kB=4
7f47a1dff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=54614 N1=10923 kernelpagesize_kB=4
16.666% distribution is correct

result (weights 1:5):
01f07000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=10966 N1=54827 kernelpagesize_kB=4
7f17b1dff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=10923 N1=54614 kernelpagesize_kB=4
16.666% distribution is correct

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main (void)
{
        char* mem = malloc(1024*1024*256);
        memset(mem, 1, 1024*1024*256);
        for (int i = 0; i  < ((1024*1024*256)/4096); i++)
        {
                mem = malloc(4096);
                mem[0] = 1;
        }
        printf("done\n");
        getchar();
        return 0;
}


This patch (of 4):

This patch provides a way to set interleave weight information under sysfs
at /sys/kernel/mm/mempolicy/weighted_interleave/nodeN

The sysfs structure is designed as follows.

  $ tree /sys/kernel/mm/mempolicy/
  /sys/kernel/mm/mempolicy/ [1]
  └── weighted_interleave [2]
      ├── node0 [3]
      └── node1

Each file above can be explained as follows.

[1] mm/mempolicy: configuration interface for mempolicy subsystem

[2] weighted_interleave/: config interface for weighted interleave policy

[3] weighted_interleave/nodeN: weight for nodeN

If a node value is set to `0`, the system-default value will be used.
As of this patch, the system-default for all nodes is always 1.

Link: https://lkml.kernel.org/r/20240202170238.90004-1-gregory.price@memverge.com
Link: https://lkml.kernel.org/r/20240202170238.90004-2-gregory.price@memverge.com
Suggested-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Rakie Kim <rakie.kim@sk.com>
Signed-off-by: Honggyu Kim <honggyu.kim@sk.com>
Co-developed-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Co-developed-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Gregory Price <gourry.memverge@gmail.com>
Cc: Hasan Al Maruf <Hasan.Maruf@amd.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:46 -08:00
Lukas Bulwahn
3efbe13e36 mempolicy: clean up minor dead code in queue_pages_test_walk()
Commit 2cafb582173f ("mempolicy: remove confusing MPOL_MF_LAZY dead code")
removes MPOL_MF_LAZY handling in queue_pages_test_walk(), and with that,
there is no effective use of the local variable endvma in that function
remaining.

Remove the local variable endvma and its dead code. No functional change.

This issue was identified with clang-analyzer's dead stores analysis.

Link: https://lkml.kernel.org/r/20240122092504.18377-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:39 -08:00
Linus Torvalds
ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00
Linus Torvalds
63ce50fff9 Scheduler changes for v6.7 are:
- Fair scheduler (SCHED_OTHER) improvements:
 
     - Remove the old and now unused SIS_PROP code & option
     - Scan cluster before LLC in the wake-up path
     - Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
 
  - NUMA scheduling improvements:
 
     - Improve the VMA access-PID code to better skip/scan VMAs
     - Extend tracing to cover VMA-skipping decisions
     - Improve/fix the recently introduced sched_numa_find_nth_cpu() code
     - Generalize numa_map_to_online_node()
 
  - Energy scheduling improvements:
 
     - Remove the EM_MAX_COMPLEXITY limit
     - Add tracepoints to track energy computation
     - Make the behavior of the 'sched_energy_aware' sysctl more consistent
     - Consolidate and clean up access to a CPU's max compute capacity
     - Fix uclamp code corner cases
 
  - RT scheduling improvements:
 
     - Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
     - Drive the ->rto_mask with rt_rq->pushable_tasks updates
 
  - Scheduler scalability improvements:
 
     - Rate-limit updates to tg->load_avg
     - On x86 disable IBRS when CPU is offline to improve single-threaded performance
     - Micro-optimize in_task() and in_interrupt()
     - Micro-optimize the PSI code
     - Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
 
  - Core scheduler infrastructure improvements:
 
     - Use saved_state to reduce some spurious freezer wakeups
     - Bring in a handful of fast-headers improvements to scheduler headers
     - Make the scheduler UAPI headers more widely usable by user-space
     - Simplify the control flow of scheduler syscalls by using lock guards
     - Fix sched_setaffinity() vs. CPU hotplug race
 
  - Scheduler debuggability improvements:
     - Disallow writing invalid values to sched_rt_period_us
     - Fix a race in the rq-clock debugging code triggering warnings
     - Fix a warning in the bandwidth distribution code
     - Micro-optimize in_atomic_preempt_off() checks
     - Enforce that the tasklist_lock is held in for_each_thread()
     - Print the TGID in sched_show_task()
     - Remove the /proc/sys/kernel/sched_child_runs_first sysctl
 
  - Misc cleanups & fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU8/NoRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gN+xAAvKGYNZBCBG4jowxccgqAbCx81KOhhsy/
 KUaOmdLPg9WaXuqjZ5sggXQCMT0wUqBYAmqV7ts53VhWcma2I1ap4dCM6Jj+RLrc
 vNwkeNetsikiZtarMoCJs5NahL8ULh3liBaoAkkToPjQ5r43aZ/eKwDovEdIKc+g
 +Vgn7jUY8ssIrAOKT1midSwY1y8kAU2AzWOSFDTgedkJP4PgOu9/lBl9jSJ2sYaX
 N4XqONYPXTwOHUtvmzkYILxLz0k0GgJ7hmt78E8Xy2rC4taGCRwCfCMBYxREuwiP
 huo3O1P/iIe5svm4/EBUvcpvf44eAWTV+CD0dnJPwOc9IvFhpSzqSZZAsyy/JQKt
 Lnzmc/xmyc1PnXCYJfHuXrw2/m+MyUHaegPzh5iLJFrlqa79GavOElj0jNTAMzbZ
 39fybzPtuFP+64faRfu0BBlQZfORPBNc/oWMpPKqgP58YGuveKTWaUF5rl5lM7Ne
 nm07uOmq02JVR8YzPl/FcfhU2dPMawWuMwUjEr2eU+lAunY3PF88vu0FALj7iOBd
 66F8qrtpDHJanOxrdEUwSJ7hgw79qY1iw66Db7cQYjMazFKZONxArQPqFUZ0ngLI
 n9hVa7brg1bAQKrQflqjcIAIbpVu3SjPEl15cKpAJTB/gn5H66TQgw8uQ6HfG+h2
 GtOsn1nlvuk=
 =GDqb
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "Fair scheduler (SCHED_OTHER) improvements:
   - Remove the old and now unused SIS_PROP code & option
   - Scan cluster before LLC in the wake-up path
   - Use candidate prev/recent_used CPU if scanning failed for cluster
     wakeup

  NUMA scheduling improvements:
   - Improve the VMA access-PID code to better skip/scan VMAs
   - Extend tracing to cover VMA-skipping decisions
   - Improve/fix the recently introduced sched_numa_find_nth_cpu() code
   - Generalize numa_map_to_online_node()

  Energy scheduling improvements:
   - Remove the EM_MAX_COMPLEXITY limit
   - Add tracepoints to track energy computation
   - Make the behavior of the 'sched_energy_aware' sysctl more
     consistent
   - Consolidate and clean up access to a CPU's max compute capacity
   - Fix uclamp code corner cases

  RT scheduling improvements:
   - Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
   - Drive the ->rto_mask with rt_rq->pushable_tasks updates

  Scheduler scalability improvements:
   - Rate-limit updates to tg->load_avg
   - On x86 disable IBRS when CPU is offline to improve single-threaded
     performance
   - Micro-optimize in_task() and in_interrupt()
   - Micro-optimize the PSI code
   - Avoid updating PSI triggers and ->rtpoll_total when there are no
     state changes

  Core scheduler infrastructure improvements:
   - Use saved_state to reduce some spurious freezer wakeups
   - Bring in a handful of fast-headers improvements to scheduler
     headers
   - Make the scheduler UAPI headers more widely usable by user-space
   - Simplify the control flow of scheduler syscalls by using lock
     guards
   - Fix sched_setaffinity() vs. CPU hotplug race

  Scheduler debuggability improvements:
   - Disallow writing invalid values to sched_rt_period_us
   - Fix a race in the rq-clock debugging code triggering warnings
   - Fix a warning in the bandwidth distribution code
   - Micro-optimize in_atomic_preempt_off() checks
   - Enforce that the tasklist_lock is held in for_each_thread()
   - Print the TGID in sched_show_task()
   - Remove the /proc/sys/kernel/sched_child_runs_first sysctl

  ... and misc cleanups & fixes"

* tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
  sched/fair: Remove SIS_PROP
  sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
  sched/fair: Scan cluster before scanning LLC in wake-up path
  sched: Add cpus_share_resources API
  sched/core: Fix RQCF_ACT_SKIP leak
  sched/fair: Remove unused 'curr' argument from pick_next_entity()
  sched/nohz: Update comments about NEWILB_KICK
  sched/fair: Remove duplicate #include
  sched/psi: Update poll => rtpoll in relevant comments
  sched: Make PELT acronym definition searchable
  sched: Fix stop_one_cpu_nowait() vs hotplug
  sched/psi: Bail out early from irq time accounting
  sched/topology: Rename 'DIE' domain to 'PKG'
  sched/psi: Delete the 'update_total' function parameter from update_triggers()
  sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
  sched/headers: Remove comment referring to rq::cpu_load, since this has been removed
  sched/numa: Complete scanning of inactive VMAs when there is no alternative
  sched/numa: Complete scanning of partial VMAs regardless of PID activity
  sched/numa: Move up the access pid reset logic
  sched/numa: Trace decisions related to skipping VMAs
  ...
2023-10-30 13:12:15 -10:00
Hugh Dickins
88c91dc585 mempolicy: migration attempt to match interleave nodes
Improve alloc_migration_target_by_mpol()'s treatment of MPOL_INTERLEAVE.

Make an effort in do_mbind(), to identify the correct interleave index for
the first page to be migrated, so that it and all subsequent pages from
the same vma will be targeted to precisely their intended nodes.  Pages
from following vmas will still be interleaved from the requested nodemask,
but perhaps starting from a different base.

Whether this is worth doing at all, or worth improving further, is
arguable: queue_folio_required() is right not to care about the precise
placement on interleaved nodes; but this little effort seems appropriate.

[hughd@google.com: do vma_iter search under mmap_write_unlock()]
  Link: https://lkml.kernel.org/r/3311d544-fb05-a7f1-1b74-16aa0f6cd4fe@google.com
Link: https://lkml.kernel.org/r/77954a5-9c9b-1c11-7d5c-3262c01b895f@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
72e315f7a7 mempolicy: mmap_lock is not needed while migrating folios
mbind(2) holds down_write of current task's mmap_lock throughout
(exclusive because it needs to set the new mempolicy on the vmas);
migrate_pages(2) holds down_read of pid's mmap_lock throughout.

They both hold mmap_lock across the internal migrate_pages(), under which
all new page allocations (huge or small) are made.  I'm nervous about it;
and migrate_pages() certainly does not need mmap_lock itself.  It's done
this way for mbind(2), because its page allocator is vma_alloc_folio() or
alloc_hugetlb_folio_vma(), both of which depend on vma and address.

Now that we have alloc_pages_mpol(), depending on (refcounted) memory
policy and interleave index, mbind(2) can be modified to use that or
alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the
internal migrate_pages() at all: add alloc_migration_target_by_mpol() to
replace mbind's new_page().

(After that change, alloc_hugetlb_folio_vma() is used by nothing but a
userfaultfd function: move it out of hugetlb.h and into the #ifdef.)

migrate_pages(2) has chosen its target node before migrating, so can
continue to use the standard alloc_migration_target(); but let it take and
drop mmap_lock just around migrate_to_node()'s queue_pages_range():
neither the node-to-node calculations nor the page migrations need it.

It seems unlikely, but it is conceivable that some userspace depends on
the kernel's mmap_lock exclusion here, instead of doing its own locking:
more likely in a testsuite than in real life.  It is also possible, of
course, that some pages on the list will be munmapped by another thread
before they are migrated, or a newer memory policy applied to the range by
that time: but such races could happen before, as soon as mmap_lock was
dropped, so it does not appear to be a concern.

Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
ddc1a5cbc0 mempolicy: alloc_pages_mpol() for NUMA policy without vma
Shrink shmem's stack usage by eliminating the pseudo-vma from its folio
allocation.  alloc_pages_mpol(gfp, order, pol, ilx, nid) becomes the
principal actor for passing mempolicy choice down to __alloc_pages(),
rather than vma_alloc_folio(gfp, order, vma, addr, hugepage).

vma_alloc_folio() and alloc_pages() remain, but as wrappers around
alloc_pages_mpol().  alloc_pages_bulk_*() untouched, except to provide the
additional args to policy_nodemask(), which subsumes policy_node(). 
Cleanup throughout, cutting out some unhelpful "helpers".

It would all be much simpler without MPOL_INTERLEAVE, but that adds a
dynamic to the constant mpol: complicated by v3.6 commit 09c231cb8bfd
("tmpfs: distribute interleave better across nodes"), which added ino bias
to the interleave, hidden from mm/mempolicy.c until this commit.

Hence "ilx" throughout, the "interleave index".  Originally I thought it
could be done just with nid, but that's wrong: the nodemask may come from
the shared policy layer below a shmem vma, or it may come from the task
layer above a shmem vma; and without the final nodemask then nodeid cannot
be decided.  And how ilx is applied depends also on page order.

The interleave index is almost always irrelevant unless MPOL_INTERLEAVE:
with one exception in alloc_pages_mpol(), where the NO_INTERLEAVE_INDEX
passed down from vma-less alloc_pages() is also used as hint not to use
THP-style hugepage allocation - to avoid the overhead of a hugepage arg
(though I don't understand why we never just added a GFP bit for THP - if
it actually needs a different allocation strategy from other pages of the
same order).  vma_alloc_folio() still carries its hugepage arg here, but
it is not used, and should be removed when agreed.

get_vma_policy() no longer allows a NULL vma: over time I believe we've
eradicated all the places which used to need it e.g.  swapoff and madvise
used to pass NULL vma to read_swap_cache_async(), but now know the vma.

[hughd@google.com: handle NULL mpol being passed to __read_swap_cache_async()]
  Link: https://lkml.kernel.org/r/ea419956-4751-0102-21f7-9c93cb957892@google.com
Link: https://lkml.kernel.org/r/74e34633-6060-f5e3-aee-7040d43f2e93@google.com
Link: https://lkml.kernel.org/r/1738368e-bac0-fd11-ed7f-b87142a939fe@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Domenico Cerasuolo <mimmocerasuolo@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
23e4883248 mm: add page_rmappable_folio() wrapper
folio_prep_large_rmappable() is being used repeatedly along with a
conversion from page to folio, a check non-NULL, a check order > 1: wrap
it all up into struct folio *page_rmappable_folio(struct page *).

Link: https://lkml.kernel.org/r/8d92c6cf-eebe-748-e29c-c8ab224c741@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
2cafb58217 mempolicy: remove confusing MPOL_MF_LAZY dead code
v3.8 commit b24f53a0bea3 ("mm: mempolicy: Add MPOL_MF_LAZY") introduced
MPOL_MF_LAZY, and included it in the MPOL_MF_VALID flags; but a720094ded8
("mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now")
immediately removed it from MPOL_MF_VALID flags, pending further review. 
"This will need to be revisited", but it has not been reinstated.

The present state is confusing: there is dead code in mm/mempolicy.c to
handle MPOL_MF_LAZY cases which can never occur.  Remove that: it can be
resurrected later if necessary.  But keep the definition of MPOL_MF_LAZY,
which must remain in the UAPI, even though it always fails with EINVAL.

https://lore.kernel.org/linux-mm/1553041659-46787-1-git-send-email-yang.shi@linux.alibaba.com/
links to a previous request to remove MPOL_MF_LAZY.

Link: https://lkml.kernel.org/r/80c9665c-1c3f-17ba-21a3-f6115cebf7d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
35ec8fa020 mempolicy: mpol_shared_policy_init() without pseudo-vma
mpol_shared_policy_init() does not need to use a pseudo-vma: it can use
sp_alloc() and sp_insert() directly, since the object's shared policy tree
is empty and inaccessible (needing no lock) at get_inode() time.

Link: https://lkml.kernel.org/r/3bef62d8-ae78-4c2-533-56a44ae425c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
93397c3b76 mempolicy trivia: use pgoff_t in shared mempolicy tree
Prefer the more explicit "pgoff_t" to "unsigned long" when dealing with a
shared mempolicy tree.  Delete confusing comment about pseudo mm vmas.

Link: https://lkml.kernel.org/r/5451157-3818-4af5-fd2c-5d26a5d1dc53@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
c36f6e6dff mempolicy trivia: slightly more consistent naming
Before getting down to work, do a little cleanup, mainly of inconsistent
variable naming.  I gave up trying to rationalize mpol versus pol versus
policy, and node versus nid, but let's avoid p and nd.  Remove a few
superfluous blank lines, but add one; and here prefer vma->vm_policy to
vma_policy(vma) - the latter being appropriate in other sources, which
have to allow for !CONFIG_NUMA.  That intriguing line about KERNEL_DS? 
should have gone in v2.6.15, when numa_policy_init() stopped using
set_mempolicy(2)'s system call handler.

Link: https://lkml.kernel.org/r/68287974-b6ae-7df-4ba-d19ddd69cbf@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
7f1ee4e207 mempolicy trivia: delete those ancient pr_debug()s
Delete those ancient pr_debug()s - PDprintk()s in Andi Kleen's original
submission of core NUMA API, and useful when debugging shared mempolicy
lifetime back then, but not used recently.

Link: https://lkml.kernel.org/r/f25135-ffb2-40d8-9577-720772b333@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
1cb5d11a37 mempolicy: fix migrate_pages(2) syscall return nr_failed
"man 2 migrate_pages" says "On success migrate_pages() returns the number
of pages that could not be moved".  Although 5.3 and 5.4 commits fixed
mbind(MPOL_MF_STRICT|MPOL_MF_MOVE*) to fail with EIO when not all pages
could be moved (because some could not be isolated for migration),
migrate_pages(2) was left still reporting only those pages failing at the
migration stage, forgetting those failing at the earlier isolation stage.

Fix that by accumulating a long nr_failed count in struct queue_pages,
returned by queue_pages_range() when it's not returning an error, for
adding on to the nr_failed count from migrate_pages() in mm/migrate.c.  A
count of pages?  It's more a count of folios, but changing it to pages
would entail more work (also in mm/migrate.c): does not seem justified.

queue_pages_range() itself should only return -EIO in the "strictly
unmovable" case (STRICT without any MOVEs): in that case it's best to
break out as soon as nr_failed gets set; but otherwise it should continue
to isolate pages for MOVing even when nr_failed - as the mbind(2) manpage
promises.

There's a case when nr_failed should be incremented when it was missed:
queue_folios_pte_range() and queue_folios_hugetlb() count the transient
migration entries, like queue_folios_pmd() already did.  And there's a
case when nr_failed should not be incremented when it would have been: in
meeting later PTEs of the same large folio, which can only be isolated
once: fixed by recording the current large folio in struct queue_pages.

Clean up the affected functions, fixing or updating many comments.  Bool
migrate_folio_add(), without -EIO: true if adding, or if skipping shared
(but its arguable folio_estimated_sharers() heuristic left unchanged). 
Use MPOL_MF_WRLOCK flag to queue_pages_range(), instead of bool lock_vma. 
Use explicit STRICT|MOVE* flags where queue_pages_test_walk() checks for
skipping, instead of hiding them behind MPOL_MF_VALID.

Link: https://lkml.kernel.org/r/9a6b0b9-3bb-dbef-8adf-efab4397b8d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Lorenzo Stoakes
94d7d92339 mm: abstract the vma_merge()/split_vma() pattern for mprotect() et al.
mprotect() and other functions which change VMA parameters over a range
each employ a pattern of:-

1. Attempt to merge the range with adjacent VMAs.
2. If this fails, and the range spans a subset of the VMA, split it
   accordingly.

This is open-coded and duplicated in each case. Also in each case most of
the parameters passed to vma_merge() remain the same.

Create a new function, vma_modify(), which abstracts this operation,
accepting only those parameters which can be changed.

To avoid the mess of invoking each function call with unnecessary
parameters, create inline wrapper functions for each of the modify
operations, parameterised only by what is required to perform the action.

We can also significantly simplify the logic - by returning the VMA if we
split (or merged VMA if we do not) we no longer need specific handling for
merge/split cases in any of the call sites.

Note that the userfaultfd_release() case works even though it does not
split VMAs - since start is set to vma->vm_start and end is set to
vma->vm_end, the split logic does not trigger.

In addition, since we calculate pgoff to be equal to vma->vm_pgoff + (start
- vma->vm_start) >> PAGE_SHIFT, and start - vma->vm_start will be 0 in this
instance, this invocation will remain unchanged.

We eliminate a VM_WARN_ON() in mprotect_fixup() as this simply asserts that
vma_merge() correctly ensures that flags remain the same, something that is
already checked in is_mergeable_vma() and elsewhere, and in any case is not
specific to mprotect().

Link: https://lkml.kernel.org/r/0dfa9368f37199a423674bf0ee312e8ea0619044.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Andrew Morton
5ef8f1b2b4 Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes. 2023-10-18 14:32:58 -07:00
Kefeng Wang
8c9ae56dc7 sched/numa, mm: make numa migrate functions to take a folio
The cpupid (or access time) is stored in the head page for THP, so it is
safely to make should_numa_migrate_memory() and numa_hint_fault_latency()
to take a folio.  This is in preparation for large folio numa balancing.

Link: https://lkml.kernel.org/r/20230921074417.24004-7-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-16 15:44:38 -07:00
Kefeng Wang
75c70128a6 mm: mempolicy: make mpol_misplaced() to take a folio
In preparation for large folio numa balancing, make mpol_misplaced() to
take a folio, no functional change intended.

Link: https://lkml.kernel.org/r/20230921074417.24004-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-16 15:44:37 -07:00
Ingo Molnar
8db30574db Merge branch 'sched/urgent' into sched/core, to pick up fixes and refresh the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-07 11:32:24 +02:00
Liam R. Howlett
51f6253775 mm/mempolicy: fix set_mempolicy_home_node() previous VMA pointer
The two users of mbind_range() are expecting that mbind_range() will
update the pointer to the previous VMA, or return an error.  However,
set_mempolicy_home_node() does not call mbind_range() if there is no VMA
policy.  The fix is to update the pointer to the previous VMA prior to
continuing iterating the VMAs when there is no policy.

Users may experience a WARN_ON() during VMA policy updates when updating
a range of VMAs on the home node.

Link: https://lkml.kernel.org/r/20230928172432.2246534-1-Liam.Howlett@oracle.com
Link: https://lore.kernel.org/linux-mm/CALcu4rbT+fMVNaO_F2izaCT+e7jzcAciFkOvk21HGJsmLcUuwQ@mail.gmail.com/
Fixes: f4e9e0e69468 ("mm/mempolicy: fix use-after-free of VMA iterator")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Yikebaer Aizezi <yikebaer61@gmail.com>
Closes: https://lore.kernel.org/linux-mm/CALcu4rbT+fMVNaO_F2izaCT+e7jzcAciFkOvk21HGJsmLcUuwQ@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06 14:11:38 -07:00
Yang Shi
24526268f4 mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified
When calling mbind() with MPOL_MF_{MOVE|MOVEALL} | MPOL_MF_STRICT, kernel
should attempt to migrate all existing pages, and return -EIO if there is
misplaced or unmovable page.  Then commit 6f4576e3687b ("mempolicy: apply
page table walker on queue_pages_range()") messed up the return value and
didn't break VMA scan early ianymore when MPOL_MF_STRICT alone.  The
return value problem was fixed by commit a7f40cfe3b7a ("mm: mempolicy:
make mbind() return -EIO when MPOL_MF_STRICT is specified"), but it broke
the VMA walk early if unmovable page is met, it may cause some pages are
not migrated as expected.

The code should conceptually do:

 if (MPOL_MF_MOVE|MOVEALL)
     scan all vmas
     try to migrate the existing pages
     return success
 else if (MPOL_MF_MOVE* | MPOL_MF_STRICT)
     scan all vmas
     try to migrate the existing pages
     return -EIO if unmovable or migration failed
 else /* MPOL_MF_STRICT alone */
     break early if meets unmovable and don't call mbind_range() at all
 else /* none of those flags */
     check the ranges in test_walk, EFAULT without mbind_range() if discontig.

Fixed the behavior.

Link: https://lkml.kernel.org/r/20230920223242.3425775-1-yang@os.amperecomputing.com
Fixes: a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-29 17:20:48 -07:00
Yury Norov
b1f099b1cf numa: Generalize numa_map_to_online_node()
The function in fact searches the nearest node for a given one,
based on a N_ONLINE state. This is a common pattern to search
for a nearest node.

This patch converts numa_map_to_online_node() to numa_nearest_node()
so that others won't need to opencode the logic.

Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20230819141239.287290-2-yury.norov@gmail.com
2023-09-15 13:48:09 +02:00
Matthew Wilcox (Oracle)
da6e7bf3a0 mm: convert prep_transhuge_page() to folio_prep_large_rmappable()
Match folio_undo_large_rmappable(), and move the casting from page to
folio into the callers (which they were largely doing anyway).

Link: https://lkml.kernel.org/r/20230816151201.3655946-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 14:28:43 -07:00
Suren Baghdasaryan
49b0638502 mm: enable page walking API to lock vmas during the walk
walk_page_range() and friends often operate under write-locked mmap_lock. 
With introduction of vma locks, the vmas have to be locked as well during
such walks to prevent concurrent page faults in these areas.  Add an
additional member to mm_walk_ops to indicate locking requirements for the
walk.

The change ensures that page walks which prevent concurrent page faults
by write-locking mmap_lock, operate correctly after introduction of
per-vma locks.  With per-vma locks page faults can be handled under vma
lock without taking mmap_lock at all, so write locking mmap_lock would
not stop them.  The change ensures vmas are properly locked during such
walks.

A sample issue this solves is do_mbind() performing queue_pages_range()
to queue pages for migration.  Without this change a concurrent page
can be faulted into the area and be left out of migration.

Link: https://lkml.kernel.org/r/20230804152724.3090321-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Suggested-by: Jann Horn <jannh@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21 13:07:20 -07:00
Jann Horn
6c21e066f9 mm/mempolicy: Take VMA lock before replacing policy
mbind() calls down into vma_replace_policy() without taking the per-VMA
locks, replaces the VMA's vma->vm_policy pointer, and frees the old
policy.  That's bad; a concurrent page fault might still be using the
old policy (in vma_alloc_folio()), resulting in use-after-free.

Normally this will manifest as a use-after-free read first, but it can
result in memory corruption, including because vma_alloc_folio() can
call mpol_cond_put() on the freed policy, which conditionally changes
the policy's refcount member.

This bug is specific to CONFIG_NUMA, but it does also affect non-NUMA
systems as long as the kernel was built with CONFIG_NUMA.

Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Fixes: 5e31275cc997 ("mm: add per-VMA lock and helper functions to control it")
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-07-28 09:44:06 -07:00
Ryan Roberts
c33c794828 mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper.  This means that by default, the accesses change from a
C dereference to a READ_ONCE().  This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.

But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte.  Arch code
is deliberately not converted, as the arch code knows best.  It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.

Conversion was done using Coccinelle:

----

// $ make coccicheck \
//          COCCI=ptepget.cocci \
//          SPFLAGS="--include-headers" \
//          MODE=patch

virtual patch

@ depends on patch @
pte_t *v;
@@

- *v
+ ptep_get(v)

----

Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so.  This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.

Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot.  The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get().  HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined.  Fix by continuing to do a direct dereference
when MMU=n.  This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.

Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:25 -07:00
Hugh Dickins
7780d04046 mm/pagewalkers: ACTION_AGAIN if pte_offset_map_lock() fails
Simple walk_page_range() users should set ACTION_AGAIN to retry when
pte_offset_map_lock() fails.

No need to check pmd_trans_unstable(): that was precisely to avoid the
possiblity of calling pte_offset_map() on a racily removed or inserted THP
entry, but such cases are now safely handled inside it.  Likewise there is
no need to check pmd_none() or pmd_bad() before calling it.

Link: https://lkml.kernel.org/r/c77d9d10-3aad-e3ce-4896-99e91c7947f3@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: SeongJae Park <sj@kernel.org> for mm/damon part
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:13 -07:00
Matthew Wilcox (Oracle)
4e096ae180 mm: convert migrate_pages() to work on folios
Almost all of the callers & implementors of migrate_pages() were already
converted to use folios.  compaction_alloc() & compaction_free() are
trivial to convert a part of this patch and not worth splitting out.

Link: https://lkml.kernel.org/r/20230513001101.276972-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09 16:25:27 -07:00
Lorenzo Stoakes
00ca0f2e86 mm/mempolicy: correctly update prev when policy is equal on mbind
The refactoring in commit f4e9e0e69468 ("mm/mempolicy: fix use-after-free
of VMA iterator") introduces a subtle bug which arises when attempting to
apply a new NUMA policy across a range of VMAs in mbind_range().

The refactoring passes a **prev pointer to keep track of the previous VMA
in order to reduce duplication, and in all but one case it keeps this
correctly updated.

The bug arises when a VMA within the specified range has an equivalent
policy as determined by mpol_equal() - which unlike other cases, does not
update prev.

This can result in a situation where, later in the iteration, a VMA is
found whose policy does need to change.  At this point, vma_merge() is
invoked with prev pointing to a VMA which is before the previous VMA.

Since vma_merge() discovers the curr VMA by looking for the one
immediately after prev, it will now be in a situation where this VMA is
incorrect and the merge will not proceed correctly.

This is checked in the VM_WARN_ON() invariant case with end >
curr->vm_end, which, if a merge is possible, results in a warning (if
CONFIG_DEBUG_VM is specified).

I note that vma_merge() performs these invariant checks only after
merge_prev/merge_next are checked, which is debatable as it hides this
issue if no merge is possible even though a buggy situation has arisen.

The solution is simply to update the prev pointer even when policies are
equal.

This caused a bug to arise in the 6.2.y stable tree, and this patch
resolves this bug.

Link: https://lkml.kernel.org/r/83f1d612acb519d777bebf7f3359317c4e7f4265.1682866629.git.lstoakes@gmail.com
Fixes: f4e9e0e69468 ("mm/mempolicy: fix use-after-free of VMA iterator")
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
  Link: https://lore.kernel.org/oe-lkp/202304292203.44ddeff6-oliver.sang@intel.com
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-05-02 17:23:27 -07:00
Liam R. Howlett
f4e9e0e694 mm/mempolicy: fix use-after-free of VMA iterator
set_mempolicy_home_node() iterates over a list of VMAs and calls
mbind_range() on each VMA, which also iterates over the singular list of
the VMA passed in and potentially splits the VMA.  Since the VMA iterator
is not passed through, set_mempolicy_home_node() may now point to a stale
node in the VMA tree.  This can result in a UAF as reported by syzbot.

Avoid the stale maple tree node by passing the VMA iterator through to the
underlying call to split_vma().

mbind_range() is also overly complicated, since there are two calling
functions and one already handles iterating over the VMAs.  Simplify
mbind_range() to only handle merging and splitting of the VMAs.

Align the new loop in do_mbind() and existing loop in
set_mempolicy_home_node() to use the reduced mbind_range() function.  This
allows for a single location of the range calculation and avoids
constantly looking up the previous VMA (since this is a loop over the
VMAs).

Link: https://lore.kernel.org/linux-mm/000000000000c93feb05f87e24ad@google.com/
Fixes: 66850be55e8e ("mm/mempolicy: use vma iterator & maple state instead of vma linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com
  Link: https://lkml.kernel.org/r/20230410152205.2294819-1-Liam.Howlett@oracle.com
Tested-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-16 10:41:25 -07:00
Baolin Wang
9747b9e924 mm: hugetlb: change to return bool for isolate_hugetlb()
Now the isolate_hugetlb() only returns 0 or -EBUSY, and most users did not
care about the negative value, thus we can convert the isolate_hugetlb()
to return a boolean value to make code more clear when checking the
hugetlb isolation state.  Moreover converts 2 users which will consider
the negative value returned by isolate_hugetlb().

No functional changes intended.

[akpm@linux-foundation.org: shorten locked section, per SeongJae Park]
Link: https://lkml.kernel.org/r/12a287c5bebc13df304387087bbecc6421510849.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-20 12:46:17 -08:00
Baolin Wang
be2d575638 mm: change to return bool for folio_isolate_lru()
Patch series "Change the return value for page isolation functions", v3.

Now the page isolation functions did not return a boolean to indicate
success or not, instead it will return a negative error when failed
to isolate a page. So below code used in most places seem a boolean
success/failure thing, which can confuse people whether the isolation
is successful.

if (folio_isolate_lru(folio))
        continue;

Moreover the page isolation functions only return 0 or -EBUSY, and
most users did not care about the negative error except for few users,
thus we can convert all page isolation functions to return a boolean
value, which can remove the confusion to make code more clear.

No functional changes intended in this patch series.


This patch (of 4):

Now the folio_isolate_lru() did not return a boolean value to indicate
isolation success or not, however below code checking the return value can
make people think that it was a boolean success/failure thing, which makes
people easy to make mistakes (see the fix patch[1]).

if (folio_isolate_lru(folio))
	continue;

Thus it's better to check the negative error value expilictly returned by
folio_isolate_lru(), which makes code more clear per Linus's
suggestion[2].  Moreover Matthew suggested we can convert the isolation
functions to return a boolean[3], since most users did not care about the
negative error value, and can also remove the confusing of checking return
value.

So this patch converts the folio_isolate_lru() to return a boolean value,
which means return 'true' to indicate the folio isolation is successful,
and 'false' means a failure to isolation.  Meanwhile changing all users'
logic of checking the isolation state.

No functional changes intended.

[1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u
[2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/
[3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/

Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-20 12:46:17 -08:00
Vishal Moola (Oracle)
4a64981dfe mm/mempolicy: convert migrate_page_add() to migrate_folio_add()
Replace migrate_page_add() with migrate_folio_add().  migrate_folio_add()
does the same a migrate_page_add() but takes in a folio instead of a page.
This removes a couple of calls to compound_head().

Link: https://lkml.kernel.org/r/20230130201833.27042-7-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:31 -08:00
Vishal Moola (Oracle)
d451b89dcd mm/mempolicy: convert queue_pages_required() to queue_folio_required()
Replace queue_pages_required() with queue_folio_required(). 
queue_folio_required() does the same as queue_pages_required(), except
takes in a folio instead of a page.

Link: https://lkml.kernel.org/r/20230130201833.27042-6-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:31 -08:00
Vishal Moola (Oracle)
0a2c1e8183 mm/mempolicy: convert queue_pages_hugetlb() to queue_folios_hugetlb()
This change is in preparation for the conversion of queue_pages_required()
to queue_folio_required() and migrate_page_add() to migrate_folio_add().

Link: https://lkml.kernel.org/r/20230130201833.27042-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-13 15:54:31 -08:00