IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The socket's accept queue (socket->acceptq) should be accessed under
socket->call_lock, not under the connection lock.
Signed-off-by: David Howells <dhowells@redhat.com>
When a call is disconnected, clear the call's pointer to the connection and
release the associated ref on that connection. This means that the call no
longer pins the connection and the connection can be discarded even before
the call is.
As the code currently stands, the call struct is effectively pinned by
userspace until userspace has enacted a recvmsg() to retrieve the final
call state as sk_buffs on the receive queue pin the call to which they're
related because:
(1) The rxrpc_call struct contains the userspace ID that recvmsg() has to
include in the control message buffer to indicate which call is being
referred to. This ID must remain valid until the terminal packet is
completely read and must be invalidated immediately at that point as
userspace is entitled to immediately reuse it.
(2) The final ACK to the reply to a client call isn't sent until the last
data packet is entirely read (it's probably worth altering this in
future to be send the ACK as soon as all the data has been received).
This change requires a bit of rearrangement to make sure that the call
isn't going to try and access the connection again after protocol
completion:
(1) Delete the error link earlier when we're releasing the call. Possibly
network errors should be distributed via connections at the cost of
adding in an access to the rxrpc_connection struct.
(2) Remove the call from the connection's call tree before disconnecting
the call. The call tree needs to be removed anyway and incoming
packets delivered by channel pointer instead.
(3) The release call event should be considered last after all other
events have been processed so that we don't need access to the
connection again.
(4) Move the channel_lock taking from rxrpc_release_call() to
rxrpc_disconnect_call() where it will be required in future.
Signed-off-by: David Howells <dhowells@redhat.com>
Make rxrpc_send_packet() take a connection not a transport as part of the
phasing out of the rxrpc_transport struct.
Whilst we're at it, rename the function to rxrpc_send_data_packet() to
differentiate it from the other packet sending functions.
Signed-off-by: David Howells <dhowells@redhat.com>
Replace accesses of conn->trans->{local,peer} with
conn->params.{local,peer} thus making it easier for a future commit to
remove the rxrpc_transport struct.
This also reduces the number of memory accesses involved.
Signed-off-by: David Howells <dhowells@redhat.com>
Define and use a structure to hold connection parameters. This makes it
easier to pass multiple connection parameters around.
Define and use a structure to hold protocol information used to hash a
connection for lookup on incoming packet. Most of these fields will be
disposed of eventually, including the duplicate local pointer.
Whilst we're at it rename "proto" to "family" when referring to a protocol
family.
Signed-off-by: David Howells <dhowells@redhat.com>
Use the peer record to distribute network errors rather than the transport
object (which I want to get rid of). An error from a particular peer
terminates all calls on that peer.
For future consideration:
(1) For ICMP-induced errors it might be worth trying to extract the RxRPC
header from the offending packet, if one is returned attached to the
ICMP packet, to better direct the error.
This may be overkill, though, since an ICMP packet would be expected
to be relating to the destination port, machine or network. RxRPC
ABORT and BUSY packets give notice at RxRPC level.
(2) To also abort connection-level communications (such as CHALLENGE
packets) where indicted by an error - but that requires some revamping
of the connection event handling first.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
This will aid splitting those files by making easier to come up with new
names.
Note that the not all files are simply renamed from ar-X.c to X.c. The
following exceptions are made:
(*) ar-call.c -> call_object.c
ar-ack.c -> call_event.c
call_object.c is going to contain the core of the call object
handling. Call event handling is all going to be in call_event.c.
(*) ar-accept.c -> call_accept.c
Incoming call handling is going to be here.
(*) ar-connection.c -> conn_object.c
ar-connevent.c -> conn_event.c
The former file is going to have the basic connection object handling,
but there will likely be some differentiation between client
connections and service connections in additional files later. The
latter file will have all the connection-level event handling.
(*) ar-local.c -> local_object.c
This will have the local endpoint object handling code. The local
endpoint event handling code will later be split out into
local_event.c.
(*) ar-peer.c -> peer_object.c
This will have the peer endpoint object handling code. Peer event
handling code will be placed in peer_event.c (for the moment, there is
none).
(*) ar-error.c -> peer_event.c
This will become the peer event handling code, though for the moment
it's actually driven from the local endpoint's perspective.
Note that I haven't renamed ar-transport.c to transport_object.c as the
intention is to delete it when the rxrpc_transport struct is excised.
The only file that actually has its contents changed is net/rxrpc/Makefile.
net/rxrpc/ar-internal.h will need its section marker comments updating, but
I'll do that in a separate patch to make it easier for git to follow the
history across the rename. I may also want to rename ar-internal.h at some
point - but that would mean updating all the #includes and I'd rather do
that in a separate step.
Signed-off-by: David Howells <dhowells@redhat.com.