6 Commits

Author SHA1 Message Date
Ezequiel Garcia
9d54c8a33e UBI: R/O block driver on top of UBI volumes
This commit introduces read-only block device emulation on top of UBI volumes.

Given UBI takes care of wear leveling and bad block management it's possible
to add a thin layer to enable block device access to UBI volumes.
This allows to use a block-oriented filesystem on a flash device.

The UBI block devices are meant to be used in conjunction with any
regular, block-oriented file system (e.g. ext4), although it's primarily
targeted at read-only file systems, such as squashfs.

Block devices are created upon user request through new ioctls:
UBI_IOCVOLATTBLK to attach and UBI_IOCVOLDETBLK to detach.
Also, a new UBI module parameter is added 'ubi.block'. This parameter is
needed in order to attach a block device on boot-up time, allowing to
mount the rootfs on a ubiblock device.
For instance, you could have these kernel parameters:

  ubi.mtd=5 ubi.block=0,0 root=/dev/ubiblock0_0

Or, if you compile ubi as a module:

  $ modprobe ubi mtd=/dev/mtd5 block=/dev/ubi0_0

Artem: amend commentaries and massage the patch a little bit.

Signed-off-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2014-02-28 16:29:48 +02:00
Richard Weinberger
76ac66e469 UBI: Wire-up fastmap
Make fastmap known to Kconfig, UBI Makefile and MAINTAINERS.

Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2012-10-03 16:39:37 +03:00
Artem Bityutskiy
ae4a8104e3 UBI: rename scan.c to attach.c
Finally, rename the scan.c file. Now adding fastmap support won't look that
hacky anymore.

Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2012-05-20 21:01:28 +03:00
Artem Bityutskiy
ef7088e7f8 UBI: always dump flash contents in case of errors
UBI (and UBIFS) are a bit over-engineered WRT debugging. The idea was to
link as few as possible when debugging is disabled, but the downside is
that most people produce bug reports which are difficult to understand.

Always dump the flash contents in case of errors, not only when debugging is
enabled.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
2012-05-20 20:25:58 +03:00
Dmitry Pervushin
2ba3d76a1e UBI: make gluebi a separate module
[Artem: re-worked the patch: made it release resources when the
module is unloaded, made it do module referencing, made it really
independent on UBI, tested it with the UBI test-suite which can
be found in ubi-2.6.git/tests/ubi-tests, re-named most of the
funcs/variables to get rid of the "ubi" word and make names
consistent.]

Signed-off-by: Dmitry Pervushin <dpervushin@embeddedalley.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2009-06-03 17:45:23 +03:00
Artem B. Bityutskiy
801c135ce7 UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.

In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.

More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html

Partitioning/Re-partitioning

  An UBI volume occupies a certain number of erase blocks. This is
  limited by a configured maximum volume size, which could also be
  viewed as the partition size. Each individual UBI volume's size can
  be changed independently of the other UBI volumes, provided that the
  sum of all volume sizes doesn't exceed a certain limit.

  UBI supports dynamic volumes and static volumes. Static volumes are
  read-only and their contents are protected by CRC check sums.

Bad eraseblocks handling

  UBI transparently handles bad eraseblocks. When a physical
  eraseblock becomes bad, it is substituted by a good physical
  eraseblock, and the user does not even notice this.

Scrubbing

  On a NAND flash bit flips can occur on any write operation,
  sometimes also on read. If bit flips persist on the device, at first
  they can still be corrected by ECC, but once they accumulate,
  correction will become impossible. Thus it is best to actively scrub
  the affected eraseblock, by first copying it to a free eraseblock
  and then erasing the original. The UBI layer performs this type of
  scrubbing under the covers, transparently to the UBI volume users.

Erase Counts

  UBI maintains an erase count header per eraseblock. This frees
  higher-level layers (like file systems) from doing this and allows
  for centralized erase count management instead. The erase counts are
  used by the wear-levelling algorithm in the UBI layer. The algorithm
  itself is exchangeable.

Booting from NAND

  For booting directly from NAND flash the hardware must at least be
  capable of fetching and executing a small portion of the NAND
  flash. Some NAND flash controllers have this kind of support. They
  usually limit the window to a few kilobytes in erase block 0. This
  "initial program loader" (IPL) must then contain sufficient logic to
  load and execute the next boot phase.

  Due to bad eraseblocks, which may be randomly scattered over the
  flash device, it is problematic to store the "secondary program
  loader" (SPL) statically. Also, due to bit-flips it may become
  corrupted over time. UBI allows to solve this problem gracefully by
  storing the SPL in a small static UBI volume.

UBI volumes vs. static partitions

  UBI volumes are still very similar to static MTD partitions:

    * both consist of eraseblocks (logical eraseblocks in case of UBI
      volumes, and physical eraseblocks in case of static partitions;
    * both support three basic operations - read, write, erase.

  But UBI volumes have the following advantages over traditional
  static MTD partitions:

    * there are no eraseblock wear-leveling constraints in case of UBI
      volumes, so the user should not care about this;
    * there are no bit-flips and bad eraseblocks in case of UBI volumes.

  So, UBI volumes may be considered as flash devices with relaxed
  restrictions.

Where can it be found?

  Documentation, kernel code and applications can be found in the MTD
  gits.

What are the applications for?

  The applications help to create binary flash images for two purposes: pfi
  files (partial flash images) for in-system update of UBI volumes, and plain
  binary images, with or without OOB data in case of NAND, for a manufacturing
  step. Furthermore some tools are/and will be created that allow flash content
  analysis after a system has crashed..

Who did UBI?

  The original ideas, where UBI is based on, were developed by Andreas
  Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
  were involved too. The implementation of the kernel layer was done by Artem
  B. Bityutskiy. The user-space applications and tools were written by Oliver
  Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
  Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
  a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
  Schmidt made some testing work as well as core functionality improvements.

Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
2007-04-27 14:23:33 +03:00