IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We need to do the same things when preparing to enter a guest for booke and
book3s_pr cores. Fold the generic code into a generic function that both call.
Signed-off-by: Alexander Graf <agraf@suse.de>
The e500 target has lived without mmu notifiers ever since it got
introduced, but fails for the user space check on them with hugetlbfs.
So in order to get that one working, implement mmu notifiers in a
reasonably dumb fashion and be happy. On embedded hardware, we almost
never end up with mmu notifier calls, since most people don't overcommit.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we map a page that wasn't icache cleared before, do so when first
mapping it in KVM using the same information bits as the Linux mapping
logic. That way we are 100% sure that any page we map does not have stale
entries in the icache.
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
When reading and writing SPRs, every SPR emulation piece had to read
or write the respective GPR the value was read from or stored in itself.
This approach is pretty prone to failure. What if we accidentally
implement mfspr emulation where we just do "break" and nothing else?
Suddenly we would get a random value in the return register - which is
always a bad idea.
So let's consolidate the generic code paths and only give the core
specific SPR handling code readily made variables to read/write from/to.
Functionally, this patch doesn't change anything, but it increases the
readability of the code and makes is less prone to bugs.
Signed-off-by: Alexander Graf <agraf@suse.de>
This is necessary for qemu to be able to pass the right information
to the guest, such as the supported page sizes and corresponding
encodings in the SLB and hash table, which can vary depending
on the processor type, the type of KVM used (PR vs HV) and the
version of KVM
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix compilation on hv, adjust for newer ioctl numbers]
Signed-off-by: Alexander Graf <agraf@suse.de>
There is nothing in the code for emulating TCE tables in the kernel
that prevents it from working on "PR" KVM... other than ifdef's and
location of the code.
This and moves the bulk of the code there to a new file called
book3s_64_vio.c.
This speeds things up a bit on my G5.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[agraf: fix for hv kvm, 32bit, whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
Instead of checking whether we should reschedule only when we exited
due to an interrupt, let's always check before entering the guest back
again. This gets the target more in line with the other archs.
Also while at it, generalize the whole thing so that eventually we could
have a single kvmppc_prepare_to_enter function for all ppc targets that
does signal and reschedule checking for us.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Chips such as e500mc that implement category E.HV in Power ISA 2.06
provide hardware virtualization features, including a new MSR mode for
guest state. The guest OS can perform many operations without trapping
into the hypervisor, including transitions to and from guest userspace.
Since we can use SRR1[GS] to reliably tell whether an exception came from
guest state, instead of messing around with IVPR, we use DO_KVM similarly
to book3s.
Current issues include:
- Machine checks from guest state are not routed to the host handler.
- The guest can cause a host oops by executing an emulated instruction
in a page that lacks read permission. Existing e500/4xx support has
the same problem.
Includes work by Ashish Kalra <Ashish.Kalra@freescale.com>,
Varun Sethi <Varun.Sethi@freescale.com>, and
Liu Yu <yu.liu@freescale.com>.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: remove pt_regs usage]
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We'll use it on e500mc as well.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We're currently allocating 16MB of linear memory on demand when creating
a guest. That does work some times, but finding 16MB of linear memory
available in the system at runtime is definitely not a given.
So let's add another command line option similar to the RMA preallocator,
that we can use to keep a pool of page tables around. Now, when a guest
gets created it has a pretty low chance of receiving an OOM.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We have code to allocate big chunks of linear memory on bootup for later use.
This code is currently used for RMA allocation, but can be useful beyond that
extent.
Make it generic so we can reuse it for other stuff later.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
This moves the get/set_one_reg implementation down from powerpc.c into
booke.c, book3s_pr.c and book3s_hv.c. This avoids #ifdefs in C code,
but more importantly, it fixes a bug on Book3s HV where we were
accessing beyond the end of the kvm_vcpu struct (via the to_book3s()
macro) and corrupting memory, causing random crashes and file corruption.
On Book3s HV we only accept setting the HIOR to zero, since the guest
runs in supervisor mode and its vectors are never offset from zero.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf update to apply on top of changed ONE_REG patches]
Signed-off-by: Avi Kivity <avi@redhat.com>
This relaxes the requirement that the guest memory be provided as
16MB huge pages, allowing it to be provided as normal memory, i.e.
in pages of PAGE_SIZE bytes (4k or 64k). To allow this, we index
the kvm->arch.slot_phys[] arrays with a small page index, even if
huge pages are being used, and use the low-order 5 bits of each
entry to store the order of the enclosing page with respect to
normal pages, i.e. log_2(enclosing_page_size / PAGE_SIZE).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Decrementers are now properly driven by TCR/TSR, and the guest
has full read/write access to these registers.
The decrementer keeps ticking (and setting the TSR bit) regardless of
whether the interrupts are enabled with TCR.
The decrementer stops at zero, rather than going negative.
Decrementers (and FITs, once implemented) are delivered as
level-triggered interrupts -- dequeued when the TSR bit is cleared, not
on delivery.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
[scottwood@freescale.com: significant changes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This function also updates paravirt int_pending, so rename it
to be more obvious that this is a collection of checks run prior
to (re)entering a guest.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
This implements a shared-memory API for giving host userspace access to
the guest's TLB.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
There are multiple features in PowerPC KVM that can now be enabled
depending on the user's wishes. Some of the combinations don't make
sense or don't work though.
So this patch adds a way to check if the executing environment would
actually be able to run the guest properly. It also adds sanity
checks if PVR is set (should always be true given the current code
flow), if PAPR is only used with book3s_64 where it works and that
HV KVM is only used in PAPR mode.
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode. H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.
Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The
ioctl returns a file descriptor which can be used to mmap the newly
created table. The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.
There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time. Specifically, allowing this will avoid awkwardness
when we need to reset the table. More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context. The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest. The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.
This also adds code to handle the following hcalls in real mode:
H_ENTER Add an HPTE to the hashed page table
H_REMOVE Remove an HPTE from the hashed page table
H_READ Read HPTEs from the hashed page table
H_PROTECT Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR Set the data address breakpoint register
Plus code to handle the following hcalls in the kernel:
H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)
The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module. The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable()
calls in powerpc.c, this moves them down into the subarch-specific
book3s_pr.c and booke.c. This eliminates an extra local_irq_enable()
call in book3s_pr.c, and will be needed for when we do SMT4 guest
support in the book3s hypervisor mode code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to
pass down some of the calls it gets to the lower-level subarchitecture
specific code. The lower-level implementations (in booke.c and book3s.c)
are no-ops. The coming book3s_hv.c will need this.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
This is a shared page used for paravirtualization. It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.
The physical address specified by the hypercall is not used, as
e500 does not have real mode.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
To communicate with KVM directly we need to plumb some sort of interface
between the guest and KVM. Usually those interfaces use hypercalls.
This hypercall implementation is described in the last patch of the series
in a special documentation file. Please read that for further information.
This patch implements stubs to handle KVM PPC hypercalls on the host and
guest side alike.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The host shadow mmu code needs to get initialized. It needs to fetch a
segment it can use to put shadow PTEs into.
That initialization code was in generic code, which is icky. Let's move
it over to the respective MMU file.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We already have some inline fuctions we use to access vcpu or svcpu structs,
depending on whether we're on booke or book3s. Since we just put a few more
registers into the svcpu, we also need to make sure the respective callbacks
are available and get used.
So this patch moves direct use of the now in the svcpu struct fields to
inline function calls. While at it, it also moves the definition of those
inline function calls to respective header files for booke and book3s,
greatly improving readability.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Userspace can tell us that it wants to trigger an interrupt. But
so far it can't tell us that it wants to stop triggering one.
So let's interpret the parameter to the ioctl that we have anyways
to tell us if we want to raise or lower the interrupt line.
Signed-off-by: Alexander Graf <agraf@suse.de>
v2 -> v3:
- Add CAP for unset irq
Signed-off-by: Avi Kivity <avi@redhat.com>
The PowerPC specification always lists bits from MSB to LSB. That is
really confusing when you're trying to write C code, because it fits
in pretty badly with the normal (1 << xx) schemes.
So I came up with some nice wrappers that allow to get and set fields
in a u64 with bit numbers exactly as given in the spec. That makes the
code in KVM and the spec easier comparable.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Emulation of an instruction can have different outcomes. It can succeed,
fail, require MMIO, do funky BookE stuff - or it can just realize something's
odd and will be fixed the next time around.
Exactly that is what EMULATE_AGAIN means. Using that flag we can now tell
the caller that nothing happened, but we still want to go back to the
guest and see what happens next time we come around.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The guest I was trying to get to run uses the LHA and LHAU instructions.
Those instructions basically do a load, but also sign extend the result.
Since we need to fill our registers by hand when doing MMIO, we also need
to sign extend manually.
This patch implements sign extended MMIO and the LHA(U) instructions.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Right now MMIO access can only happen for GPRs and is at most 32 bit wide.
That's actually enough for almost all types of hardware out there.
Unfortunately, the guest I was using used FPU writes to MMIO regions, so
it ended up writing 64 bit MMIOs using FPRs and QPRs.
So let's add code to handle those odd cases too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Commit 7d01b4c3ed2bb33ceaf2d270cb4831a67a76b51b introduced PACA backed vcpu
values. With this patch, when a userspace app was setting GPRs before it was
actually first loaded, the set values get discarded.
This is because vcpu_load loads them from the vcpu backing store that we use
whenever we're not owning the PACA.
That behavior is not really a major problem, because we don't need it for
qemu. Other users (like kvmctl) do have problems with it though, so let's
better do it right.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Book3S needs some flags in SRR1 to get to know details about an interrupt.
One such example is the trap instruction. It tells the guest kernel that
a program interrupt is due to a trap using a bit in SRR1.
This patch implements above behavior, making WARN_ON behave like WARN_ON.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We're being horribly racy right now. All the entry and exit code hijacks
random fields from the PACA that could easily be used by different code in
case we get interrupted, for example by a #MC or even page fault.
After discussing this with Ben, we figured it's best to reserve some more
space in the PACA and just shove off some vcpu state to there.
That way we can drastically improve the readability of the code, make it
less racy and less complex.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We now have helpers for the GPRs, so let's also add some for CR and XER.
Having them in the PACA simplifies code a lot, as we don't need to care
about where to store CC or not to overflow any integers.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
All code in PPC KVM currently accesses gprs in the vcpu struct directly.
While there's nothing wrong with that wrt the current way gprs are stored
and loaded, it doesn't suffice for the PACA acceleration that will follow
in this patchset.
So let's just create little wrapper inline functions that we call whenever
a GPR needs to be read from or written to. The compiled code shouldn't really
change at all for now.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
We treated the DEC interrupt like an edge based one. This is not true for
Book3s. The DEC keeps firing until mtdec is issued again and thus clears
the interrupt line.
So let's implement this logic in KVM too. This patch moves the line clearing
from the firing of the interrupt to the mtdec emulation.
This makes PPC64 guests work without AGGRESSIVE_DEC defined.
Signed-off-by: Alexander Graf <agraf@suse.de>
Acked-by: Acked-by: Hollis Blanchard <hollis@penguinppc.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
This is the of entry / exit code. In order to switch between host and guest
context, we need to switch register state and call the exit code handler on
exit.
This assembly file does exactly that. To finally enter the guest it calls
into book3s_64_slb.S. On exit it gets jumped at from book3s_64_slb.S too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
After the rewrite of KVM's debug support, this code doesn't even build any
more.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
When itlb or dtlb miss happens, E500 needs to update some mmu registers.
So that the auto-load mechanism can work on E500 when write a tlb entry.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Passing just the TLB index will ease an e500 implementation.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Formerly, we used to maintain a per-vcpu shadow TLB and on every entry to the
guest would load this array into the hardware TLB. This consumed 1280 bytes of
memory (64 entries of 16 bytes plus a struct page pointer each), and also
required some assembly to loop over the array on every entry.
Instead of saving a copy in memory, we can just store shadow mappings directly
into the hardware TLB, accepting that the host kernel will clobber these as
part of the normal 440 TLB round robin. When we do that we need less than half
the memory, and we have decreased the exit handling time for all guest exits,
at the cost of increased number of TLB misses because the host overwrites some
guest entries.
These savings will be increased on processors with larger TLBs or which
implement intelligent flush instructions like tlbivax (which will avoid the
need to walk arrays in software).
In addition to that and to the code simplification, we have a greater chance of
leaving other host userspace mappings in the TLB, instead of forcing all
subsequent tasks to re-fault all their mappings.
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>