IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Now that all the architectures implement the necessary glue code
we can introduce down_write_killable(). The only difference wrt. regular
down_write() is that the slow path waits in TASK_KILLABLE state and the
interruption by the fatal signal is reported as -EINTR to the caller.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-12-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While playing with the qstat statistics (in <debugfs>/qlockstat/) I ran into
the following splat on a VM when opening pv_hash_hops:
divide error: 0000 [#1] SMP
...
RIP: 0010:[<ffffffff810b61fe>] [<ffffffff810b61fe>] qstat_read+0x12e/0x1e0
...
Call Trace:
[<ffffffff811cad7c>] ? mem_cgroup_commit_charge+0x6c/0xd0
[<ffffffff8119750c>] ? page_add_new_anon_rmap+0x8c/0xd0
[<ffffffff8118d3b9>] ? handle_mm_fault+0x1439/0x1b40
[<ffffffff811937a9>] ? do_mmap+0x449/0x550
[<ffffffff811d3de3>] ? __vfs_read+0x23/0xd0
[<ffffffff811d4ab2>] ? rw_verify_area+0x52/0xd0
[<ffffffff811d4bb1>] ? vfs_read+0x81/0x120
[<ffffffff811d5f12>] ? SyS_read+0x42/0xa0
[<ffffffff815720f6>] ? entry_SYSCALL_64_fastpath+0x1e/0xa8
Fix this by verifying that qstat_pv_kick_unlock is in fact non-zero,
similarly to what the qstat_pv_latency_wake case does, as if nothing
else, this can come from resetting the statistics, thus having 0 kicks
should be quite valid in this context.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Waiman Long <Waiman.Long@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Cc: waiman.long@hpe.com
Link: http://lkml.kernel.org/r/1460961103-24953-1-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a generic implementation necessary for down_write_killable().
This is a trivial extension of the already existing down_write() call
which can be interrupted by SIGKILL. This patch doesn't provide
down_write_killable() yet because arches have to provide the necessary
pieces before.
rwsem_down_write_failed() which is a generic slow path for the
write lock is extended to take a task state and renamed to
__rwsem_down_write_failed_common(). The return value is either a valid
semaphore pointer or ERR_PTR(-EINTR).
rwsem_down_write_failed_killable() is exported as a new way to wait for
the lock and be killable.
For rwsem-spinlock implementation the current __down_write() it updated
in a similar way as __rwsem_down_write_failed_common() except it doesn't
need new exports just visible __down_write_killable().
Architectures which are not using the generic rwsem implementation are
supposed to provide their __down_write_killable() implementation and
use rwsem_down_write_failed_killable() for the slow path.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-7-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is no longer used anywhere and all callers (__down_write()) use
0 as a subclass. Ditch __down_write_nested() to make the code easier
to follow.
This shouldn't introduce any functional change.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Signed-off-by: Jason Low <jason.low2@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-xtensa@linux-xtensa.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1460041951-22347-2-git-send-email-mhocko@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This function compiles to 1328 bytes of machine code. Three callsites.
Registering a new lock class is definitely not *that* time-critical to inline it.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1460141926-13069-5-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It has been found that paths that invoke cleanups through
lock_torture_cleanup() can trigger NULL pointer dereferencing
bugs during the statistics printing phase. This is mainly
because we should not be calling into statistics before we are
sure things have been set up correctly.
Specifically, early checks (and the need for handling this in
the cleanup call) only include parameter checks and basic
statistics allocation. Once we start write/read kthreads
we then consider the test as started. As such, update the function
in question to check for cxt.lwsa writer stats, if not set,
we either have a bogus parameter or -ENOMEM situation and
therefore only need to deal with general torture calls.
Reported-and-tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bobby.prani@gmail.com
Cc: dhowells@redhat.com
Cc: dipankar@in.ibm.com
Cc: dvhart@linux.intel.com
Cc: edumazet@google.com
Cc: fweisbec@gmail.com
Cc: jiangshanlai@gmail.com
Cc: josh@joshtriplett.org
Cc: mathieu.desnoyers@efficios.com
Cc: oleg@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1460476038-27060-2-git-send-email-paulmck@linux.vnet.ibm.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For the case of rtmutex torturing we will randomly call into the
boost() handler, including upon module exiting when the tasks are
deboosted before stopping. In such cases the task may or may not have
already been boosted, and therefore the NULL being explicitly passed
can occur anywhere. Currently we only assume that the task will is
at a higher prio, and in consequence, dereference a NULL pointer.
This patch fixes the case of a rmmod locktorture exploding while
pounding on the rtmutex lock (partial trace):
task: ffff88081026cf80 ti: ffff880816120000 task.ti: ffff880816120000
RSP: 0018:ffff880816123eb0 EFLAGS: 00010206
RAX: ffff88081026cf80 RBX: ffff880816bfa630 RCX: 0000000000160d1b
RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000
RBP: ffff88081026cf80 R08: 000000000000001f R09: ffff88017c20ca80
R10: 0000000000000000 R11: 000000000048c316 R12: ffffffffa05d1840
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88203f880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 0000000001c0a000 CR4: 00000000000406e0
Stack:
ffffffffa05d141d ffff880816bfa630 ffffffffa05d1922 ffff88081e70c2c0
ffff880816bfa630 ffffffff81095fed 0000000000000000 ffffffff8107bf60
ffff880816bfa630 ffffffff00000000 ffff880800000000 ffff880816123f08
Call Trace:
[<ffffffff81095fed>] kthread+0xbd/0xe0
[<ffffffff815cf40f>] ret_from_fork+0x3f/0x70
This patch ensures that if the random state pointer is not NULL and current
is not boosted, then do nothing.
RIP: 0010:[<ffffffffa05c6185>] [<ffffffffa05c6185>] torture_random+0x5/0x60 [torture]
[<ffffffffa05d141d>] torture_rtmutex_boost+0x1d/0x90 [locktorture]
[<ffffffffa05d1922>] lock_torture_writer+0xe2/0x170 [locktorture]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bobby.prani@gmail.com
Cc: dhowells@redhat.com
Cc: dipankar@in.ibm.com
Cc: dvhart@linux.intel.com
Cc: edumazet@google.com
Cc: fweisbec@gmail.com
Cc: jiangshanlai@gmail.com
Cc: josh@joshtriplett.org
Cc: mathieu.desnoyers@efficios.com
Cc: oleg@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/1460476038-27060-1-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A sequence of pairs [class_idx -> corresponding chain_key iteration]
is printed for both the current held_lock chain and the cached chain.
That exposes the two different class_idx sequences that led to that
particular hash value.
This helps with debugging hash chain collision reports.
Signed-off-by: Alfredo Alvarez Fernandez <alfredoalvarezfernandez@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-fsdevel@vger.kernel.org
Cc: sedat.dilek@gmail.com
Cc: tytso@mit.edu
Link: http://lkml.kernel.org/r/1459357416-19190-1-git-send-email-alfredoalvarezernandez@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
$ make tags
GEN tags
ctags: Warning: drivers/acpi/processor_idle.c:64: null expansion of name pattern "\1"
ctags: Warning: drivers/xen/events/events_2l.c:41: null expansion of name pattern "\1"
ctags: Warning: kernel/locking/lockdep.c:151: null expansion of name pattern "\1"
ctags: Warning: kernel/rcu/rcutorture.c:133: null expansion of name pattern "\1"
ctags: Warning: kernel/rcu/rcutorture.c:135: null expansion of name pattern "\1"
ctags: Warning: kernel/workqueue.c:323: null expansion of name pattern "\1"
ctags: Warning: net/ipv4/syncookies.c:53: null expansion of name pattern "\1"
ctags: Warning: net/ipv6/syncookies.c:44: null expansion of name pattern "\1"
ctags: Warning: net/rds/page.c:45: null expansion of name pattern "\1"
Which are all the result of the DEFINE_PER_CPU pattern:
scripts/tags.sh:200: '/\<DEFINE_PER_CPU([^,]*, *\([[:alnum:]_]*\)/\1/v/'
scripts/tags.sh:201: '/\<DEFINE_PER_CPU_SHARED_ALIGNED([^,]*, *\([[:alnum:]_]*\)/\1/v/'
The below cures them. All except the workqueue one are within reasonable
distance of the 80 char limit. TJ do you have any preference on how to
fix the wq one, or shall we just not care its too long?
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add detection for chain_key collision under CONFIG_DEBUG_LOCKDEP.
When a collision is detected the problem is reported and all lock
debugging is turned off.
Tested using liblockdep and the added tests before and after
applying the fix, confirming both that the code added for the
detection correctly reports the problem and that the fix actually
fixes it.
Tested tweaking lockdep to generate false collisions and
verified that the problem is reported and that lock debugging is
turned off.
Also tested with lockdep's test suite after applying the patch:
[ 0.000000] Good, all 253 testcases passed! |
Signed-off-by: Alfredo Alvarez Fernandez <alfredoalvarezernandez@gmail.com>
Cc: Alfredo Alvarez Fernandez <alfredoalvarezfernandez@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sasha.levin@oracle.com
Link: http://lkml.kernel.org/r/1455864533-7536-4-git-send-email-alfredoalvarezernandez@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The chain_key hashing macro iterate_chain_key(key1, key2) does not
generate a new different value if both key1 and key2 are 0. In that
case the generated value is again 0. This can lead to collisions which
can result in lockdep not detecting deadlocks or circular
dependencies.
Avoid the problem by using class_idx (1-based) instead of class id
(0-based) as an input for the hashing macro 'key2' in
iterate_chain_key(key1, key2).
The use of class id created collisions in cases like the following:
1.- Consider an initial state in which no class has been acquired yet.
Under these circumstances an AA deadlock will not be detected by
lockdep:
lock [key1,key2]->new key (key1=old chain_key, key2=id)
--------------------------
A [0,0]->0
A [0,0]->0 (collision)
The newly generated chain_key collides with the one used before and as
a result the check for a deadlock is skipped
A simple test using liblockdep and a pthread mutex confirms the
problem: (omitting stack traces)
new class 0xe15038: 0x7ffc64950f20
acquire class [0xe15038] 0x7ffc64950f20
acquire class [0xe15038] 0x7ffc64950f20
hash chain already cached, key: 0000000000000000 tail class:
[0xe15038] 0x7ffc64950f20
2.- Consider an ABBA in 2 different tasks and no class yet acquired.
T1 [key1,key2]->new key T2[key1,key2]->new key
-- --
A [0,0]->0
B [0,1]->1
B [0,1]->1 (collision)
A
In this case the collision prevents lockdep from creating the new
dependency A->B. This in turn results in lockdep not detecting the
circular dependency when T2 acquires A.
Signed-off-by: Alfredo Alvarez Fernandez <alfredoalvarezernandez@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: sasha.levin@oracle.com
Link: http://lkml.kernel.org/r/1455147212-2389-4-git-send-email-alfredoalvarezernandez@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make use of wake-queues and enable the wakeup to occur after releasing the
wait_lock. This is similar to what we do with rtmutex top waiter,
slightly shortening the critical region and allow other waiters to
acquire the wait_lock sooner. In low contention cases it can also help
the recently woken waiter to find the wait_lock available (fastpath)
when it continues execution.
Reviewed-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@us.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <waiman.long@hpe.com>
Cc: Will Deacon <Will.Deacon@arm.com>
Link: http://lkml.kernel.org/r/20160125022343.GA3322@linux-uzut.site
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch enables the tracking of the number of slowpath locking
operations performed. This can be used to compare against the number
of lock stealing operations to see what percentage of locks are stolen
versus acquired via the regular slowpath.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449778666-13593-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The newly introduced smp_cond_acquire() was used to replace the
slowpath lock acquisition loop. Similarly, the new function can also
be applied to the pending bit locking loop. This patch uses the new
function in that loop.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449778666-13593-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch moves the lock stealing count tracking code into
pv_queued_spin_steal_lock() instead of via a jacket function simplifying
the code.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449778666-13593-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Similar to commit b4b29f9485 ("locking/osq: Fix ordering of node
initialisation in osq_lock") the use of xchg_acquire() is
fundamentally broken with MCS like constructs.
Furthermore, it turns out we rely on the global transitivity of this
operation because the unlock path observes the pointer with a
READ_ONCE(), not an smp_load_acquire().
This is non-critical because the MCS code isn't actually used and
mostly serves as documentation, a stepping stone to the more complex
things we've build on top of the idea.
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 3552a07a9c ("locking/mcs: Use acquire/release semantics")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lockdep is initialized at compile time now. Get rid of lockdep_init().
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Krinkin <krinkin.m.u@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: mm-commits@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike said:
: CONFIG_UBSAN_ALIGNMENT breaks x86-64 kernel with lockdep enabled, i.e.
: kernel with CONFIG_UBSAN_ALIGNMENT=y fails to load without even any error
: message.
:
: The problem is that ubsan callbacks use spinlocks and might be called
: before lockdep is initialized. Particularly this line in the
: reserve_ebda_region function causes problem:
:
: lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
:
: If i put lockdep_init() before reserve_ebda_region call in
: x86_64_start_reservations kernel loads well.
Fix this ordering issue permanently: change lockdep so that it uses hlists
for the hash tables. Unlike a list_head, an hlist_head is in its
initialized state when it is all-zeroes, so lockdep is ready for operation
immediately upon boot - lockdep_init() need not have run.
The patch will also save some memory.
Probably lockdep_init() and lockdep_initialized can be done away with now.
Suggested-by: Mike Krinkin <krinkin.m.u@gmail.com>
Reported-by: Mike Krinkin <krinkin.m.u@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: mm-commits@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
check_prev_add() caches saved stack trace in static trace variable
to avoid duplicate save_trace() calls in dependencies involving trylocks.
But that caching logic contains a bug. We may not save trace on first
iteration due to early return from check_prev_add(). Then on the
second iteration when we actually need the trace we don't save it
because we think that we've already saved it.
Let check_prev_add() itself control when stack is saved.
There is another bug. Trace variable is protected by graph lock.
But we can temporary release graph lock during printing.
Fix this by invalidating cached stack trace when we release graph lock.
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: glider@google.com
Cc: kcc@google.com
Cc: peter@hurleysoftware.com
Cc: sasha.levin@oracle.com
Link: http://lkml.kernel.org/r/1454593240-121647-1-git-send-email-dvyukov@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reported a lockdep splat about a potential deadlock between RCU boosting
rtmutex and the posix timer it_lock.
CPU0 CPU1
rtmutex_lock(&rcu->rt_mutex)
spin_lock(&rcu->rt_mutex.wait_lock)
local_irq_disable()
spin_lock(&timer->it_lock)
spin_lock(&rcu->mutex.wait_lock)
--> Interrupt
spin_lock(&timer->it_lock)
This is caused by the following code sequence on CPU1
rcu_read_lock()
x = lookup();
if (x)
spin_lock_irqsave(&x->it_lock);
rcu_read_unlock();
return x;
We could fix that in the posix timer code by keeping rcu read locked across
the spinlocked and irq disabled section, but the above sequence is common and
there is no reason not to support it.
Taking rt_mutex.wait_lock irq safe prevents the deadlock.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Pull locking updates from Ingo Molnar:
"So we have a laundry list of locking subsystem changes:
- continuing barrier API and code improvements
- futex enhancements
- atomics API improvements
- pvqspinlock enhancements: in particular lock stealing and adaptive
spinning
- qspinlock micro-enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op
futex: Cleanup the goto confusion in requeue_pi()
futex: Remove pointless put_pi_state calls in requeue()
futex: Document pi_state refcounting in requeue code
futex: Rename free_pi_state() to put_pi_state()
futex: Drop refcount if requeue_pi() acquired the rtmutex
locking/barriers, arch: Remove ambiguous statement in the smp_store_mb() documentation
lcoking/barriers, arch: Use smp barriers in smp_store_release()
locking/cmpxchg, arch: Remove tas() definitions
locking/pvqspinlock: Queue node adaptive spinning
locking/pvqspinlock: Allow limited lock stealing
locking/pvqspinlock: Collect slowpath lock statistics
sched/core, locking: Document Program-Order guarantees
locking, sched: Introduce smp_cond_acquire() and use it
locking/pvqspinlock, x86: Optimize the PV unlock code path
locking/qspinlock: Avoid redundant read of next pointer
locking/qspinlock: Prefetch the next node cacheline
locking/qspinlock: Use _acquire/_release() versions of cmpxchg() & xchg()
atomics: Add test for atomic operations with _relaxed variants
The Cavium guys reported a soft lockup on their arm64 machine, caused by
commit c55a6ffa62 ("locking/osq: Relax atomic semantics"):
mutex_optimistic_spin+0x9c/0x1d0
__mutex_lock_slowpath+0x44/0x158
mutex_lock+0x54/0x58
kernfs_iop_permission+0x38/0x70
__inode_permission+0x88/0xd8
inode_permission+0x30/0x6c
link_path_walk+0x68/0x4d4
path_openat+0xb4/0x2bc
do_filp_open+0x74/0xd0
do_sys_open+0x14c/0x228
SyS_openat+0x3c/0x48
el0_svc_naked+0x24/0x28
This is because in osq_lock we initialise the node for the current CPU:
node->locked = 0;
node->next = NULL;
node->cpu = curr;
and then publish the current CPU in the lock tail:
old = atomic_xchg_acquire(&lock->tail, curr);
Once the update to lock->tail is visible to another CPU, the node is
then live and can be both read and updated by concurrent lockers.
Unfortunately, the ACQUIRE semantics of the xchg operation mean that
there is no guarantee the contents of the node will be visible before
lock tail is updated. This can lead to lock corruption when, for
example, a concurrent locker races to set the next field.
Fixes: c55a6ffa62 ("locking/osq: Relax atomic semantics"):
Reported-by: David Daney <ddaney@caviumnetworks.com>
Reported-by: Andrew Pinski <andrew.pinski@caviumnetworks.com>
Tested-by: Andrew Pinski <andrew.pinski@caviumnetworks.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1449856001-21177-1-git-send-email-will.deacon@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In an overcommitted guest where some vCPUs have to be halted to make
forward progress in other areas, it is highly likely that a vCPU later
in the spinlock queue will be spinning while the ones earlier in the
queue would have been halted. The spinning in the later vCPUs is then
just a waste of precious CPU cycles because they are not going to
get the lock soon as the earlier ones have to be woken up and take
their turn to get the lock.
This patch implements an adaptive spinning mechanism where the vCPU
will call pv_wait() if the previous vCPU is not running.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
After patch 3m03.0s 4m37.5s 1m43.0s 2m47.2s
For 32 vCPUs, this patch doesn't cause any noticeable change in
performance. For 48 vCPUs (over-committed), there is about 8%
performance improvement.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-8-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch allows one attempt for the lock waiter to steal the lock
when entering the PV slowpath. To prevent lock starvation, the pending
bit will be set by the queue head vCPU when it is in the active lock
spinning loop to disable any lock stealing attempt. This helps to
reduce the performance penalty caused by lock waiter preemption while
not having much of the downsides of a real unfair lock.
The pv_wait_head() function was renamed as pv_wait_head_or_lock()
as it was modified to acquire the lock before returning. This is
necessary because of possible lock stealing attempts from other tasks.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m15.6s 10m56.1s 1m44.1s 5m29.1s
After patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
For the overcommited case (48 vCPUs), this patch is able to reduce
kernel build time by more than 54% for Westmere and 44% for Haswell.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447190336-53317-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch enables the accumulation of kicking and waiting related
PV qspinlock statistics when the new QUEUED_LOCK_STAT configuration
option is selected. It also enables the collection of data which
enable us to calculate the kicking and wakeup latencies which have
a heavy dependency on the CPUs being used.
The statistical counters are per-cpu variables to minimize the
performance overhead in their updates. These counters are exported
via the debugfs filesystem under the qlockstat directory. When the
corresponding debugfs files are read, summation and computing of the
required data are then performed.
The measured latencies for different CPUs are:
CPU Wakeup Kicking
--- ------ -------
Haswell-EX 63.6us 7.4us
Westmere-EX 67.6us 9.3us
The measured latencies varied a bit from run-to-run. The wakeup
latency is much higher than the kicking latency.
A sample of statistical counters after system bootup (with vCPU
overcommit) was:
pv_hash_hops=1.00
pv_kick_unlock=1148
pv_kick_wake=1146
pv_latency_kick=11040
pv_latency_wake=194840
pv_spurious_wakeup=7
pv_wait_again=4
pv_wait_head=23
pv_wait_node=1129
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-6-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The unlock function in queued spinlocks was optimized for better
performance on bare metal systems at the expense of virtualized guests.
For x86-64 systems, the unlock call needs to go through a
PV_CALLEE_SAVE_REGS_THUNK() which saves and restores 8 64-bit
registers before calling the real __pv_queued_spin_unlock()
function. The thunk code may also be in a separate cacheline from
__pv_queued_spin_unlock().
This patch optimizes the PV unlock code path by:
1) Moving the unlock slowpath code from the fastpath into a separate
__pv_queued_spin_unlock_slowpath() function to make the fastpath
as simple as possible..
2) For x86-64, hand-coded an assembly function to combine the register
saving thunk code with the fastpath code. Only registers that
are used in the fastpath will be saved and restored. If the
fastpath fails, the slowpath function will be called via another
PV_CALLEE_SAVE_REGS_THUNK(). For 32-bit, it falls back to the C
__pv_queued_spin_unlock() code as the thunk saves and restores
only one 32-bit register.
With a microbenchmark of 5M lock-unlock loop, the table below shows
the execution times before and after the patch with different number
of threads in a VM running on a 32-core Westmere-EX box with x86-64
4.2-rc1 based kernels:
Threads Before patch After patch % Change
------- ------------ ----------- --------
1 134.1 ms 119.3 ms -11%
2 1286 ms 953 ms -26%
3 3715 ms 3480 ms -6.3%
4 4092 ms 3764 ms -8.0%
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-5-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With optimistic prefetch of the next node cacheline, the next pointer
may have been properly inititalized. As a result, the reading
of node->next in the contended path may be redundant. This patch
eliminates the redundant read if the next pointer value is not NULL.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-4-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A queue head CPU, after acquiring the lock, will have to notify
the next CPU in the wait queue that it has became the new queue
head. This involves loading a new cacheline from the MCS node of the
next CPU. That operation can be expensive and add to the latency of
locking operation.
This patch addes code to optmistically prefetch the next MCS node
cacheline if the next pointer is defined and it has been spinning
for the MCS lock for a while. This reduces the locking latency and
improves the system throughput.
The performance change will depend on whether the prefetch overhead
can be hidden within the latency of the lock spin loop. On really
short critical section, there may not be performance gain at all. With
longer critical section, however, it was found to have a performance
boost of 5-10% over a range of different queue depths with a spinlock
loop microbenchmark.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch replaces the cmpxchg() and xchg() calls in the native
qspinlock code with the more relaxed _acquire or _release versions of
those calls to enable other architectures to adopt queued spinlocks
with less memory barrier performance overhead.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were still a number of references to my old Red Hat email
address in the kernel source. Remove these while keeping the
Red Hat copyright notices intact.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle were:
- sched/fair load tracking fixes and cleanups (Byungchul Park)
- Make load tracking frequency scale invariant (Dietmar Eggemann)
- sched/deadline updates (Juri Lelli)
- stop machine fixes, cleanups and enhancements for bugs triggered by
CPU hotplug stress testing (Oleg Nesterov)
- scheduler preemption code rework: remove PREEMPT_ACTIVE and related
cleanups (Peter Zijlstra)
- Rework the sched_info::run_delay code to fix races (Peter Zijlstra)
- Optimize per entity utilization tracking (Peter Zijlstra)
- ... misc other fixes, cleanups and smaller updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()
sched: Start stopper early
stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark()
stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled
stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works()
stop_machine: Ensure that a queued callback will be called before cpu_stop_park()
sched/x86: Fix typo in __switch_to() comments
sched/core: Remove a parameter in the migrate_task_rq() function
sched/core: Drop unlikely behind BUG_ON()
sched/core: Fix task and run queue sched_info::run_delay inconsistencies
sched/numa: Fix task_tick_fair() from disabling numa_balancing
sched/core: Add preempt_count invariant check
sched/core: More notrace annotations
sched/core: Kill PREEMPT_ACTIVE
sched/core, sched/x86: Kill thread_info::saved_preempt_count
sched/core: Simplify preempt_count tests
sched/core: Robustify preemption leak checks
sched/core: Stop setting PREEMPT_ACTIVE
...
Pull locking changes from Ingo Molnar:
"The main changes in this cycle were:
- More gradual enhancements to atomic ops: new atomic*_read_ctrl()
ops, synchronize atomic_{read,set}() ordering requirements between
architectures, add atomic_long_t bitops. (Peter Zijlstra)
- Add _{relaxed|acquire|release}() variants for inc/dec atomics and
use them in various locking primitives: mutex, rtmutex, mcs, rwsem.
This enables weakly ordered architectures (such as arm64) to make
use of more locking related optimizations. (Davidlohr Bueso)
- Implement atomic[64]_{inc,dec}_relaxed() on ARM. (Will Deacon)
- Futex kernel data cache footprint micro-optimization. (Rasmus
Villemoes)
- pvqspinlock runtime overhead micro-optimization. (Waiman Long)
- misc smaller fixlets"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ARM, locking/atomics: Implement _relaxed variants of atomic[64]_{inc,dec}
locking/rwsem: Use acquire/release semantics
locking/mcs: Use acquire/release semantics
locking/rtmutex: Use acquire/release semantics
locking/mutex: Use acquire/release semantics
locking/asm-generic: Add _{relaxed|acquire|release}() variants for inc/dec atomics
atomic: Implement atomic_read_ctrl()
atomic, arch: Audit atomic_{read,set}()
atomic: Add atomic_long_t bitops
futex: Force hot variables into a single cache line
locking/pvqspinlock: Kick the PV CPU unconditionally when _Q_SLOW_VAL
locking/osq: Relax atomic semantics
locking/qrwlock: Rename ->lock to ->wait_lock
locking/Documentation/lockstat: Fix typo - lokcing -> locking
locking/atomics, cmpxchg: Privatize the inclusion of asm/cmpxchg.h
Pull RCU updates from Paul E. McKenney:
- Miscellaneous fixes. (Paul E. McKenney, Boqun Feng, Oleg Nesterov, Patrick Marlier)
- Improvements to expedited grace periods. (Paul E. McKenney)
- Performance improvements to and locktorture tests for percpu-rwsem.
(Oleg Nesterov, Paul E. McKenney)
- Torture-test changes. (Paul E. McKenney, Davidlohr Bueso)
- Documentation updates. (Paul E. McKenney)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locktorture module has a list of torture types, and specifying
a type not on this list is supposed to cleanly fail the module load.
Unfortunately, the "fail" happens without the "cleanly". This commit
therefore adds the needed clean-up after an incorrect torture_type.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Based on Peter Zijlstra's earlier patch.
Change percpu_down_read() to use __down_read(), this way we can
do rwsem_acquire_read() unconditionally at the start to make this
code more symmetric and clean.
Originally-From: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Update the comments broken by the previous change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently down_write/up_write calls synchronize_sched_expedited()
twice, which is evil. Change this code to rely on rcu-sync primitives.
This avoids the _expedited "big hammer", and this can be faster in
the contended case or even in the case when a single thread does
down_write/up_write in a loop.
Of course, a single down_write() will take more time, but otoh it
will be much more friendly to the whole system.
To simplify the review this patch doesn't update the comments, fixed
by the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This is the temporary ugly hack which will be reverted later. We only
need it to ensure that the next patch will not break "change sb_writers
to use percpu_rw_semaphore" patches routed via the VFS tree.
The alloc_super()->destroy_super() error path assumes that it is safe
to call percpu_free_rwsem() after kzalloc() without percpu_init_rwsem(),
so let's not disappoint it.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit adds percpu_rwsem tests based on the earlier rwsem tests.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit exports percpu_down_read(), percpu_down_write(),
__percpu_init_rwsem(), percpu_up_read(), and percpu_up_write() to allow
locktorture to test them when built as a module.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Real time mutexes is one of the few general primitives
that we do not have in locktorture. Address this -- a few
considerations:
o To spice things up, enable competing thread(s) to become
rt, such that we can stress different prio boosting paths
in the rtmutex code. Introduce a ->task_boost callback,
only used by rtmutex-torturer. Tasks will boost/deboost
around every 50k (arbitrarily) lock/unlock operations.
o Hold times are similar to what we have for other locks:
only occasionally having longer hold times (per ~200k ops).
So we roughly do two full rt boost+deboosting ops with
short hold times.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
As of 654672d4ba (locking/atomics: Add _{acquire|release|relaxed}()
variants of some atomic operations) and 6d79ef2d30 (locking, asm-generic:
Add _{relaxed|acquire|release}() variants for 'atomic_long_t'), weakly
ordered archs can benefit from more relaxed use of barriers when locking
and unlocking, instead of regular full barrier semantics. While currently
only arm64 supports such optimizations, updating corresponding locking
primitives serves for other archs to immediately benefit as well, once the
necessary machinery is implemented of course.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E.McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443643395-17016-6-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As of 654672d4ba (locking/atomics: Add _{acquire|release|relaxed}()
variants of some atomic operations) and 6d79ef2d30 (locking, asm-generic:
Add _{relaxed|acquire|release}() variants for 'atomic_long_t'), weakly
ordered archs can benefit from more relaxed use of barriers when locking
and unlocking, instead of regular full barrier semantics. While currently
only arm64 supports such optimizations, updating corresponding locking
primitives serves for other archs to immediately benefit as well, once the
necessary machinery is implemented of course.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E.McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443643395-17016-5-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As of 654672d4ba (locking/atomics: Add _{acquire|release|relaxed}()
variants of some atomic operations) and 6d79ef2d30 (locking, asm-generic:
Add _{relaxed|acquire|release}() variants for 'atomic_long_t'), weakly
ordered archs can benefit from more relaxed use of barriers when locking
and unlocking, instead of regular full barrier semantics. While currently
only arm64 supports such optimizations, updating corresponding locking
primitives serves for other archs to immediately benefit as well, once the
necessary machinery is implemented of course.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E.McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443643395-17016-4-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As of 654672d4ba (locking/atomics: Add _{acquire|release|relaxed}()
variants of some atomic operations) and 6d79ef2d30 (locking, asm-generic:
Add _{relaxed|acquire|release}() variants for 'atomic_long_t'), weakly
ordered archs can benefit from more relaxed use of barriers when locking
and unlocking, instead of regular full barrier semantics. While currently
only arm64 supports such optimizations, updating corresponding locking
primitives serves for other archs to immediately benefit as well, once the
necessary machinery is implemented of course.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E.McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443643395-17016-3-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
rt_mutex_waiter_less() check of task deadlines is open coded. Since this
is subject to wraparound bugs, make it use the correct helper.
Reported-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441188096-23021-4-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Various people reported hitting the "unpinning an unpinned lock"
warning. As it turns out there are 2 places where we take a lock out
of the middle of a stack, and in those cases it would fail to preserve
the pin_count when rebuilding the lock stack.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Tim Spriggs <tspriggs@apple.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davej@codemonkey.org.uk
Link: http://lkml.kernel.org/r/20150916141040.GA11639@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If _Q_SLOW_VAL has been set, the vCPU state must have been vcpu_hashed.
The extra check at the end of __pv_queued_spin_unlock() is unnecessary
and can be removed.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441996658-62854-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... by using acquire/release for ops around the lock->tail. As such,
weakly ordered archs can benefit from more relaxed use of barriers
when issuing atomics.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hpe.com>
Link: http://lkml.kernel.org/r/1442216244-4409-3-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... trivial, but reads a little nicer when we name our
actual primitive 'lock'.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hpe.com>
Link: http://lkml.kernel.org/r/1442216244-4409-1-git-send-email-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull locking fixes from Ingo Molnar:
"Spinlock performance regression fix, plus documentation fixes"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/static_keys: Fix up the static keys documentation
locking/qspinlock/x86: Only emit the test-and-set fallback when building guest support
locking/qspinlock/x86: Fix performance regression under unaccelerated VMs
locking/static_keys: Fix a silly typo
Dave ran into horrible performance on a VM without PARAVIRT_SPINLOCKS
set and Linus noted that the test-and-set implementation was retarded.
One should spin on the variable with a load, not a RMW.
While there, remove 'queued' from the name, as the lock isn't queued
at all, but a simple test-and-set.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: stable@vger.kernel.org # v4.2+
Link: http://lkml.kernel.org/r/20150904152523.GR18673@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull vfs updates from Al Viro:
"In this one:
- d_move fixes (Eric Biederman)
- UFS fixes (me; locking is mostly sane now, a bunch of bugs in error
handling ought to be fixed)
- switch of sb_writers to percpu rwsem (Oleg Nesterov)
- superblock scalability (Josef Bacik and Dave Chinner)
- swapon(2) race fix (Hugh Dickins)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (65 commits)
vfs: Test for and handle paths that are unreachable from their mnt_root
dcache: Reduce the scope of i_lock in d_splice_alias
dcache: Handle escaped paths in prepend_path
mm: fix potential data race in SyS_swapon
inode: don't softlockup when evicting inodes
inode: rename i_wb_list to i_io_list
sync: serialise per-superblock sync operations
inode: convert inode_sb_list_lock to per-sb
inode: add hlist_fake to avoid the inode hash lock in evict
writeback: plug writeback at a high level
change sb_writers to use percpu_rw_semaphore
shift percpu_counter_destroy() into destroy_super_work()
percpu-rwsem: kill CONFIG_PERCPU_RWSEM
percpu-rwsem: introduce percpu_rwsem_release() and percpu_rwsem_acquire()
percpu-rwsem: introduce percpu_down_read_trylock()
document rwsem_release() in sb_wait_write()
fix the broken lockdep logic in __sb_start_write()
introduce __sb_writers_{acquired,release}() helpers
ufs_inode_get{frag,block}(): get rid of 'phys' argument
ufs_getfrag_block(): tidy up a bit
...
The qrwlock implementation is slightly heavy in its use of memory
barriers, mainly through the use of _cmpxchg() and _return() atomics, which
imply full barrier semantics.
This patch modifies the qrwlock code to use the more relaxed atomic
routines so that we can reduce the unnecessary barrier overhead on
weakly-ordered architectures.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman.Long@hp.com
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1438880084-18856-7-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For an over-committed guest with more vCPUs than physical CPUs
available, it is possible that a vCPU may be kicked twice before
getting the lock - once before it becomes queue head and once again
before it gets the lock. All these CPU kicking and halting (VMEXIT)
can be expensive and slow down system performance.
This patch adds a new vCPU state (vcpu_hashed) which enables the code
to delay CPU kicking until at unlock time. Once this state is set,
the new lock holder will set _Q_SLOW_VAL and fill in the hash table
on behalf of the halted queue head vCPU. The original vcpu_halted
state will be used by pv_wait_node() only to differentiate other
queue nodes from the qeue head.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436647018-49734-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, a reader will check first to make sure that the writer mode
byte is cleared before incrementing the reader count. That waiting is
not really necessary. It increases the latency in the reader/writer
to reader transition and reduces readers performance.
This patch eliminates that waiting. It also has the side effect
of reducing the chance of writer lock stealing and improving the
fairness of the lock. Using a locking microbenchmark, a 10-threads 5M
locking loop of mostly readers (RW ratio = 10,000:1) has the following
performance numbers in a Haswell-EX box:
Kernel Locking Rate (Kops/s)
------ ---------------------
4.1.1 15,063,081
4.1.1+patch 17,241,552 (+14.4%)
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/1436459543-29126-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we unlock in __pv_queued_spin_unlock(), a failed cmpxchg() on the lock
value indicates that we need to take the slow-path and unhash the
corresponding node blocked on the lock.
Since a failed cmpxchg() does not provide any memory-ordering guarantees,
it is possible that the node data could be read before the cmpxchg() on
weakly-ordered architectures and therefore return a stale value, leading
to hash corruption and/or a BUG().
This patch adds an smb_rmb() following the failed cmpxchg operation, so
that the unhashing is ordered after the lock has been checked.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[ Added more comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Steve Capper <Steve.Capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150713155830.GL2632@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Rename the on-stack variable to match the datastructure variable,
- place the cmpxchg back under the comment that explains it,
- clean up the WARN() statement to avoid superfluous conditionals
and line-breaks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Enabling locking-selftest in a VM guest may cause the following
kernel panic:
kernel BUG at .../kernel/locking/qspinlock_paravirt.h:137!
This is due to the fact that the pvqspinlock unlock function is
expecting either a _Q_LOCKED_VAL or _Q_SLOW_VAL in the lock
byte. This patch prevents that bug report by ignoring it when
debug_locks_silent is set. Otherwise, a warning will be printed
if it contains an unexpected value.
With this patch applied, the kernel locking-selftest completed
without any noise.
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436663959-53092-1-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No one uses this anymore, and this is not the first time the
idea of replacing it with a (now possible) userspace side.
Lock stealing logic was removed long ago in when the lock
was granted to the highest prio.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1435782588-4177-2-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The qrwlock is fair in the process context, but becoming unfair when
in the interrupt context to support use cases like the tasklist_lock.
The current code isn't that well-documented on what happens when
in the interrupt context. The rspin_until_writer_unlock() will only
spin if the writer has gotten the lock. If the writer is still in the
waiting state, the increment in the reader count will cause the writer
to remain in the waiting state and the new interrupt context reader
will get the lock and return immediately. The current code, however,
does an additional read of the lock value which is not necessary as
the information has already been there in the fast path. This may
sometime cause an additional cacheline transfer when the lock is
highly contended.
This patch passes the lock value information gotten in the fast path
to the slow path to eliminate the additional read. It also documents
the action for the interrupt context readers more clearly.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1434729002-57724-3-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To sync up with the naming convention used in qspinlock, all the
qrwlock functions were renamed to started with "queued" instead of
"queue".
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/1434729002-57724-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Thomas Gleixner:
"This series of scheduler updates depends on sched/core and timers/core
branches, which are already in your tree:
- Scheduler balancing overhaul to plug a hard to trigger race which
causes an oops in the balancer (Peter Zijlstra)
- Lockdep updates which are related to the balancing updates (Peter
Zijlstra)"
* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched,lockdep: Employ lock pinning
lockdep: Implement lock pinning
lockdep: Simplify lock_release()
sched: Streamline the task migration locking a little
sched: Move code around
sched,dl: Fix sched class hopping CBS hole
sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
sched,dl: Remove return value from pull_dl_task()
sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
sched,rt: Remove return value from pull_rt_task()
sched: Allow balance callbacks for check_class_changed()
sched: Use replace normalize_task() with __sched_setscheduler()
sched: Replace post_schedule with a balance callback list
Pull locking updates from Thomas Gleixner:
"These locking updates depend on the alreay merged sched/core branch:
- Lockless top waiter wakeup for rtmutex (Davidlohr)
- Reduce hash bucket lock contention for PI futexes (Sebastian)
- Documentation update (Davidlohr)"
* 'sched-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rtmutex: Update stale plist comments
futex: Lower the lock contention on the HB lock during wake up
locking/rtmutex: Implement lockless top-waiter wakeup
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Pull locking updates from Ingo Molnar:
"The main changes are:
- 'qspinlock' support, enabled on x86: queued spinlocks - these are
now the spinlock variant used by x86 as they outperform ticket
spinlocks in every category. (Waiman Long)
- 'pvqspinlock' support on x86: paravirtualized variant of queued
spinlocks. (Waiman Long, Peter Zijlstra)
- 'qrwlock' support, enabled on x86: queued rwlocks. Similar to
queued spinlocks, they are now the variant used by x86:
CONFIG_ARCH_USE_QUEUED_SPINLOCKS=y
CONFIG_QUEUED_SPINLOCKS=y
CONFIG_ARCH_USE_QUEUED_RWLOCKS=y
CONFIG_QUEUED_RWLOCKS=y
- various lockdep fixlets
- various locking primitives cleanups, further WRITE_ONCE()
propagation"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
locking/lockdep: Remove hard coded array size dependency
locking/qrwlock: Don't contend with readers when setting _QW_WAITING
lockdep: Do not break user-visible string
locking/arch: Rename set_mb() to smp_store_mb()
locking/arch: Add WRITE_ONCE() to set_mb()
rtmutex: Warn if trylock is called from hard/softirq context
arch: Remove __ARCH_HAVE_CMPXCHG
locking/rtmutex: Drop usage of __HAVE_ARCH_CMPXCHG
locking/qrwlock: Rename QUEUE_RWLOCK to QUEUED_RWLOCKS
locking/pvqspinlock: Rename QUEUED_SPINLOCK to QUEUED_SPINLOCKS
locking/pvqspinlock: Replace xchg() by the more descriptive set_mb()
locking/pvqspinlock, x86: Enable PV qspinlock for Xen
locking/pvqspinlock, x86: Enable PV qspinlock for KVM
locking/pvqspinlock, x86: Implement the paravirt qspinlock call patching
locking/pvqspinlock: Implement simple paravirt support for the qspinlock
locking/qspinlock: Revert to test-and-set on hypervisors
locking/qspinlock: Use a simple write to grab the lock
locking/qspinlock: Optimize for smaller NR_CPUS
locking/qspinlock: Extract out code snippets for the next patch
locking/qspinlock: Add pending bit
...
Pull RCU updates from Ingo Molnar:
- Continued initialization/Kconfig updates: hide most Kconfig options
from unsuspecting users.
There's now a single high level configuration option:
*
* RCU Subsystem
*
Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)
Which if answered in the negative, leaves us with a single
interactive configuration option:
Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)
All the rest of the RCU options are configured automatically. Later
on we'll remove this single leftover configuration option as well.
- Remove all uses of RCU-protected array indexes: replace the
rcu_[access|dereference]_index_check() APIs with READ_ONCE() and
rcu_lockdep_assert()
- RCU CPU-hotplug cleanups
- Updates to Tiny RCU: a race fix and further code shrinkage.
- RCU torture-testing updates: fixes, speedups, cleanups and
documentation updates.
- Miscellaneous fixes
- Documentation updates
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
rcutorture: Allow repetition factors in Kconfig-fragment lists
rcutorture: Display "make oldconfig" errors
rcutorture: Update TREE_RCU-kconfig.txt
rcutorture: Make rcutorture scripts force RCU_EXPERT
rcutorture: Update configuration fragments for rcutree.rcu_fanout_exact
rcutorture: TASKS_RCU set directly, so don't explicitly set it
rcutorture: Test SRCU cleanup code path
rcutorture: Replace barriers with smp_store_release() and smp_load_acquire()
locktorture: Change longdelay_us to longdelay_ms
rcutorture: Allow negative values of nreaders to oversubscribe
rcutorture: Exchange TREE03 and TREE08 NR_CPUS, speed up CPU hotplug
rcutorture: Exchange TREE03 and TREE04 geometries
locktorture: fix deadlock in 'rw_lock_irq' type
rcu: Correctly handle non-empty Tiny RCU callback list with none ready
rcutorture: Test both RCU-sched and RCU-bh for Tiny RCU
rcu: Further shrink Tiny RCU by making empty functions static inlines
rcu: Conditionally compile RCU's eqs warnings
rcu: Remove prompt for RCU implementation
rcu: Make RCU able to tolerate undefined CONFIG_RCU_KTHREAD_PRIO
rcu: Make RCU able to tolerate undefined CONFIG_RCU_FANOUT_LEAF
...
... as of fb00aca474 (rtmutex: Turn the plist into an rb-tree) we
no longer use plists for queuing any waiters. Update stale comments.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1432056298-18738-4-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
wake_futex_pi() wakes the task before releasing the hash bucket lock
(HB). The first thing the woken up task usually does is to acquire the
lock which requires the HB lock. On SMP Systems this leads to blocking
on the HB lock which is released by the owner shortly after.
This patch rearranges the unlock path by first releasing the HB lock and
then waking up the task.
[ tglx: Fixed up the rtmutex unlock path ]
Originally-from: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Link: http://lkml.kernel.org/r/20150617083350.GA2433@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Jiri reported a machine stuck in multi_cpu_stop() with
migrate_swap_stop() as function and with the following src,dst cpu
pairs: {11, 4} {13, 11} { 4, 13}
4 11 13
cpuM: queue(4 ,13)
*Ma
cpuN: queue(13,11)
*N Na
*M Mb
cpuO: queue(11, 4)
*O Oa
*Nb
*Ob
Where *X denotes the cpu running the queueing of cpu-X and X[ab] denotes
the first/second queued work.
You'll observe the top of the workqueue for each cpu: 4,11,13 to be work
from cpus: M, O, N resp. IOW. deadlock.
Do away with the queueing trickery and introduce lg_double_lock() to
lock both CPUs and fully serialize the stop_two_cpus() callers instead
of the partial (and buggy) serialization we have now.
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150605153023.GH19282@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current cmpxchg() loop in setting the _QW_WAITING flag for writers
in queue_write_lock_slowpath() will contend with incoming readers
causing possibly extra cmpxchg() operations that are wasteful. This
patch changes the code to do a byte cmpxchg() to eliminate contention
with new readers.
A multithreaded microbenchmark running 5M read_lock/write_lock loop
on a 8-socket 80-core Westmere-EX machine running 4.0 based kernel
with the qspinlock patch have the following execution times (in ms)
with and without the patch:
With R:W ratio = 5:1
Threads w/o patch with patch % change
------- --------- ---------- --------
2 990 895 -9.6%
3 2136 1912 -10.5%
4 3166 2830 -10.6%
5 3953 3629 -8.2%
6 4628 4405 -4.8%
7 5344 5197 -2.8%
8 6065 6004 -1.0%
9 6826 6811 -0.2%
10 7599 7599 0.0%
15 9757 9766 +0.1%
20 13767 13817 +0.4%
With small number of contending threads, this patch can improve
locking performance by up to 10%. With more contending threads,
however, the gain diminishes.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433863153-30722-3-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a lockdep annotation that WARNs if you 'accidentially' unlock a
lock.
This is especially helpful for code with callbacks, where the upper
layer assumes a lock remains taken but a lower layer thinks it maybe
can drop and reacquire the lock.
By unwittingly breaking up the lock, races can be introduced.
Lock pinning is a lockdep annotation that helps with this, when you
lockdep_pin_lock() a held lock, any unlock without a
lockdep_unpin_lock() will produce a WARN. Think of this as a relative
of lockdep_assert_held(), except you don't only assert its held now,
but ensure it stays held until you release your assertion.
RFC: a possible alternative API would be something like:
int cookie = lockdep_pin_lock(&foo);
...
lockdep_unpin_lock(&foo, cookie);
Where we pick a random number for the pin_count; this makes it
impossible to sneak a lock break in without also passing the right
cookie along.
I've not done this because it ends up generating code for !LOCKDEP,
esp. if you need to pass the cookie around for some reason.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.906731065@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Mark the task for later wakeup after the wait_lock has been released.
This way, once the next task is awoken, it will have a better chance
to of finding the wait_lock free when continuing executing in
__rt_mutex_slowlock() when trying to acquire the rtmutex, calling
try_to_take_rt_mutex(). Upon contended scenarios, other tasks attempting
take the lock may acquire it first, right after the wait_lock is released,
but (a) this can also occur with the current code, as it relies on the
spinlock fairness, and (b) we are dealing with the top-waiter anyway,
so it will always take the lock next.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1432056298-18738-2-git-send-email-dave@stgolabs.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The lock_class iteration of /proc/lock_stat is not serialized against
the lockdep_free_key_range() call from module unload.
Therefore it can happen that we find a class of which ->name/->key are
no longer valid.
There is a further bug in zap_class() that left ->name dangling. Cure
this. Use RCU_INIT_POINTER() because NULL.
Since lockdep_free_key_range() is rcu_sched serialized, we can read
both ->name and ->key under rcu_read_lock_sched() (preempt-disable)
and be assured that if we observe a !NULL value it stays safe to use
for as long as we hold that lock.
If we observe both NULL, skip the entry.
Reported-by: Jerome Marchand <jmarchan@redhat.com>
Tested-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150602105013.GS3644@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the line-break in the user-visible string and add the
missing space in this error message:
WARNING: lockdep init error! lock-(console_sem).lock was acquiredbefore lockdep_init
Also:
- don't yell, it's just a debug warning
- denote references to function calls with '()'
- standardize the lock name quoting
- and finish the sentence.
The result:
WARNING: lockdep init error: lock '(console_sem).lock' was acquired before lockdep_init().
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150602133827.GD19887@pd.tnic
[ Added a few more stylistic tweaks to the error message. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU changes from Paul E. McKenney:
- Initialization/Kconfig updates: hide most Kconfig options from unsuspecting users.
There's now a single high level configuration option:
*
* RCU Subsystem
*
Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)
Which if answered in the negative, leaves us with a single interactive
configuration option:
Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)
All the rest of the RCU options are configured automatically.
- Remove all uses of RCU-protected array indexes: replace the
rcu_[access|dereference]_index_check() APIs with READ_ONCE() and rcu_lockdep_assert().
- RCU CPU-hotplug cleanups.
- Updates to Tiny RCU: a race fix and further code shrinkage.
- RCU torture-testing updates: fixes, speedups, cleanups and
documentation updates.
- Miscellaneous fixes.
- Documentation updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locktorture long delays are in milliseconds rather than microseconds,
so this commit changes the name of the corresponding variable from
longdelay_us to longdelay_ms.
Reported-by: Ben Goodwyn <bgoodwyn@softnas.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
torture_rwlock_read_unlock_irq() must use read_unlock_irqrestore()
instead of write_unlock_irqrestore().
Use read_unlock_irqrestore() instead of write_unlock_irqrestore().
Signed-off-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Since set_mb() is really about an smp_mb() -- not a IO/DMA barrier
like mb() rename it to match the recent smp_load_acquire() and
smp_store_release().
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
rt_mutex_trylock() must be called from thread context. It can be
called from atomic regions (preemption or interrupts disabled), but
not from hard/softirq/nmi context. Add a warning to alert abusers.
The reasons for this are:
1) There is a potential deadlock in the slowpath
2) Another cpu which blocks on the rtmutex will boost the task
which allegedly locked the rtmutex, but that cannot work
because the hard/softirq context borrows the task context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
The rtmutex code is the only user of __HAVE_ARCH_CMPXCHG and we have a few
other user of cmpxchg() which do not care about __HAVE_ARCH_CMPXCHG. This
define was first introduced in 23f78d4a0 ("[PATCH] pi-futex: rt mutex core")
which is v2.6.18. The generic cmpxchg was introduced later in 068fbad288
("Add cmpxchg_local to asm-generic for per cpu atomic operations") which is
v2.6.25.
Back then something was required to get rtmutex working with the fast
path on architectures without cmpxchg and this seems to be the result.
It popped up recently on rt-users because ARM (v6+) does not define
__HAVE_ARCH_CMPXCHG (even that it implements it) which results in slower
locking performance in the fast path.
To put some numbers on it: preempt -RT, am335x, 10 loops of
100000 invocations of rt_spin_lock() + rt_spin_unlock() (time "total" is
the average of the 10 loops for the 100000 invocations, "loop" is
"total / 100000 * 1000"):
cmpxchg | slowpath used || cmpxchg used
| total | loop || total | loop
--------|-----------|-------||------------|-------
ARMv6 | 9129.4 us | 91 ns || 3311.9 us | 33 ns
generic | 9360.2 us | 94 ns || 10834.6 us | 108 ns
----------------------------||--------------------
Forcing it to generic cmpxchg() made things worse for the slowpath and
even worse in cmpxchg() path. It boils down to 14ns more per lock+unlock
in a cache hot loop so it might not be that much in real world.
The last test was a substitute for pre ARMv6 machine but then I was able
to perform the comparison on imx28 which is ARMv5 and therefore is
always is using the generic cmpxchg implementation. And the numbers:
| total | loop
-------- |----------- |--------
slowpath | 263937.2 us | 2639 ns
cmpxchg | 16934.2 us | 169 ns
--------------------------------
The numbers are larger since the machine is slower in general. However,
letting rtmutex use cmpxchg() instead the slowpath seem to improve things.
Since from the ARM (tested on am335x + imx28) point of view always
using cmpxchg() in rt_mutex_lock() + rt_mutex_unlock() makes sense I
would drop the define.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: will.deacon@arm.com
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20150225175613.GE6823@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To be consistent with the queued spinlocks which use
CONFIG_QUEUED_SPINLOCKS config parameter, the one for the queued
rwlocks is now renamed to CONFIG_QUEUED_RWLOCKS.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431367031-36697-1-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Valentin Rothberg reported that we use CONFIG_QUEUED_SPINLOCKS
in arch/x86/kernel/paravirt_patch_32.c, while the symbol is
called CONFIG_QUEUED_SPINLOCK. (Note the extra 'S')
But the typo was natural: the proper English term for such
a generic object would be 'queued spinlocks' - so rename
this and related symbols accordingly to the plural form.
Reported-by: Valentin Rothberg <valentinrothberg@gmail.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The xchg() function was used in pv_wait_node() to set a certain
value and provide a memory barrier which is what the set_mb()
function is for. This patch replaces the xchg() call by
set_mb().
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide a separate (second) version of the spin_lock_slowpath for
paravirt along with a special unlock path.
The second slowpath is generated by adding a few pv hooks to the
normal slowpath, but where those will compile away for the native
case, they expand into special wait/wake code for the pv version.
The actual MCS queue can use extra storage in the mcs_nodes[] array to
keep track of state and therefore uses directed wakeups.
The head contender has no such storage directly visible to the
unlocker. So the unlocker searches a hash table with open addressing
using a simple binary Galois linear feedback shift register.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1429901803-29771-9-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we detect a hypervisor (!paravirt, see qspinlock paravirt support
patches), revert to a simple test-and-set lock to avoid the horrors
of queue preemption.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-8-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>