IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull x86 paravirt update from Ingo Molnar:
"Various paravirtualization related changes - the biggest one makes
guest support optional via CONFIG_HYPERVISOR_GUEST"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, wakeup, sleep: Use pvops functions for changing GDT entries
x86, xen, gdt: Remove the pvops variant of store_gdt.
x86-32, gdt: Store/load GDT for ACPI S3 or hibernation/resume path is not needed
x86-64, gdt: Store/load GDT for ACPI S3 or hibernate/resume path is not needed.
x86: Make Linux guest support optional
x86, Kconfig: Move PARAVIRT_DEBUG into the paravirt menu
The two use-cases where we needed to store the GDT were during ACPI S3 suspend
and resume. As the patches:
x86/gdt/i386: store/load GDT for ACPI S3 or hibernation/resume path is not needed
x86/gdt/64-bit: store/load GDT for ACPI S3 or hibernate/resume path is not needed.
have demonstrated - there are other mechanism by which the GDT is
saved and reloaded during early resume path.
Hence we do not need to worry about the pvops call-chain for saving the
GDT and can and can eliminate it. The other areas where the store_gdt is
used are never going to be hit when running under the pvops platforms.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-4-git-send-email-konrad.wilk@oracle.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Invoking arch_flush_lazy_mmu_mode() results in calls to
preempt_enable()/disable() which may have performance impact.
Since lazy MMU is not used on bare metal we can patch away
arch_flush_lazy_mmu_mode() so that it is never called in such
environment.
[ hpa: the previous patch "Fix vmalloc_fault oops during lazy MMU
updates" may cause a minor performance regression on
bare metal. This patch resolves that performance regression. It is
somewhat unclear to me if this is a good -stable candidate. ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1364045796-10720-2-git-send-email-konrad.wilk@oracle.com
Tested-by: Josh Boyer <jwboyer@redhat.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> SEE NOTE ABOVE
There were paravirt_ops hooks for the full register set variant of
{rd,wr}msr_safe which are actually not used by anyone anymore. Remove
them to make the code cleaner and avoid silent breakages when the pvops
members were uninitialized. This has been boot-tested natively and under
Xen with PVOPS enabled and disabled on one machine.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Link: http://lkml.kernel.org/r/1338562358-28182-2-git-send-email-bp@amd64.org
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx().
Removing percpu_xxx() definition and replacing them by this_cpu_xxx()
in code. There is no function change in this patch, just preparation for
later percpu_xxx serial function removing.
On x86 machine the this_cpu_xxx() serial functions are same as
__this_cpu_xxx() without no unnecessary premmpt enable/disable.
Thanks for Stephen Rothwell, he found and fixed a i386 build error in
the patch.
Also thanks for Andrew Morton, he kept updating the patchset in Linus'
tree.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAT3NKzROxKuMESys7AQKElw/+JyDxJSlj+g+nymkx8IVVuU8CsEwNLgRk
8KEnRfLhGtkXFLSJYWO6jzGo16F8Uqli1PdMFte/wagSv0285/HZaKlkkBVHdJ/m
u40oSjgT013bBh6MQ0Oaf8pFezFUiQB5zPOA9QGaLVGDLXCmgqUgd7exaD5wRIwB
ZmyItjZeAVnDfk1R+ZiNYytHAi8A5wSB+eFDCIQYgyulA1Igd1UnRtx+dRKbvc/m
rWQ6KWbZHIdvP1ksd8wHHkrlUD2pEeJ8glJLsZUhMm/5oMf/8RmOCvmo8rvE/qwl
eDQ1h4cGYlfjobxXZMHqAN9m7Jg2bI946HZjdb7/7oCeO6VW3FwPZ/Ic75p+wp45
HXJTItufERYk6QxShiOKvA+QexnYwY0IT5oRP4DrhdVB/X9cl2MoaZHC+RbYLQy+
/5VNZKi38iK4F9AbFamS7kd0i5QszA/ZzEzKZ6VMuOp3W/fagpn4ZJT1LIA3m4A9
Q0cj24mqeyCfjysu0TMbPtaN+Yjeu1o1OFRvM8XffbZsp5bNzuTDEvviJ2NXw4vK
4qUHulhYSEWcu9YgAZXvEWDEM78FXCkg2v/CrZXH5tyc95kUkMPcgG+QZBB5wElR
FaOKpiC/BuNIGEf02IZQ4nfDxE90QwnDeoYeV+FvNj9UEOopJ5z5bMPoTHxm4cCD
NypQthI85pc=
=G9mT
-----END PGP SIGNATURE-----
Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
"[RFC - PATCH 0/7] consolidation of BUG support code."
https://lkml.org/lkml/2012/1/26/525
--
The changes shown here are to unify linux's BUG support under
the one <linux/bug.h> file. Due to historical reasons, we have
some BUG code in bug.h and some in kernel.h -- i.e. the support for
BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h,
but old code in kernel.h wasn't moved to bug.h at that time. As
a band-aid, kernel.h was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions.
Here is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.]
Ugh - very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and
hence relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2.
But to ensure that git history for bisect doesn't get needless
build failures introduced, the commits have been reorderd to fix
the problem areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ
GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip
CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X
y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL
LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS
GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu
LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu
HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7
fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS
AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs
iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8
Ko9g8J3BMxcMkXLHT9ud
=PYQT
-----END PGP SIGNATURE-----
Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/bug.h> cleanup from Paul Gortmaker:
"The changes shown here are to unify linux's BUG support under the one
<linux/bug.h> file. Due to historical reasons, we have some BUG code
in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in
linux/kernel.h predates the addition of linux/bug.h, but old code in
kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h
was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions. Here
is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and hence
relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2. But
to ensure that git history for bisect doesn't get needless build
failures introduced, the commits have been reorderd to fix the problem
areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414"
Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.
* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
kernel.h: doesn't explicitly use bug.h, so don't include it.
bug: consolidate BUILD_BUG_ON with other bug code
BUG: headers with BUG/BUG_ON etc. need linux/bug.h
bug.h: add include of it to various implicit C users
lib: fix implicit users of kernel.h for TAINT_WARN
spinlock: macroize assert_spin_locked to avoid bug.h dependency
x86: relocate get/set debugreg fcns to include/asm/debugreg.
With bug.h currently living right in linux/kernel.h there
are files that use BUG_ON and friends but are not including
the header explicitly. Fix them up so we can remove the
presence in kernel.h file.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
So here's a boot tested patch on top of Jason's series that does
all the cleanups I talked about and turns jump labels into a
more intuitive to use facility. It should also address the
various misconceptions and confusions that surround jump labels.
Typical usage scenarios:
#include <linux/static_key.h>
struct static_key key = STATIC_KEY_INIT_TRUE;
if (static_key_false(&key))
do unlikely code
else
do likely code
Or:
if (static_key_true(&key))
do likely code
else
do unlikely code
The static key is modified via:
static_key_slow_inc(&key);
...
static_key_slow_dec(&key);
The 'slow' prefix makes it abundantly clear that this is an
expensive operation.
I've updated all in-kernel code to use this everywhere. Note
that I (intentionally) have not pushed through the rename
blindly through to the lowest levels: the actual jump-label
patching arch facility should be named like that, so we want to
decouple jump labels from the static-key facility a bit.
On non-jump-label enabled architectures static keys default to
likely()/unlikely() branches.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: a.p.zijlstra@chello.nl
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120222085809.GA26397@elte.hu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-tip:
x86-64: Rework vsyscall emulation and add vsyscall= parameter
x86-64: Wire up getcpu syscall
x86: Remove unnecessary compile flag tweaks for vsyscall code
x86-64: Add vsyscall:emulate_vsyscall trace event
x86-64: Add user_64bit_mode paravirt op
x86-64, xen: Enable the vvar mapping
x86-64: Work around gold bug 13023
x86-64: Move the "user" vsyscall segment out of the data segment.
x86-64: Pad vDSO to a page boundary
Three places in the kernel assume that the only long mode CPL 3
selector is __USER_CS. This is not true on Xen -- Xen's sysretq
changes cs to the magic value 0xe033.
Two of the places are corner cases, but as of "x86-64: Improve
vsyscall emulation CS and RIP handling"
(c9712944b2a12373cb6ff8059afcfb7e826a6c54), vsyscalls will segfault
if called with Xen's extra CS selector. This causes a panic when
older init builds die.
It seems impossible to make Xen use __USER_CS reliably without
taking a performance hit on every system call, so this fixes the
tests instead with a new paravirt op. It's a little ugly because
ptrace.h can't include paravirt.h.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/f4fcb3947340d9e96ce1054a432f183f9da9db83.1312378163.git.luto@mit.edu
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch adds a function pointer in one of the many paravirt_ops
structs, to allow guests to register a steal time function. Besides
a steal time function, we also declare two jump_labels. They will be
used to allow the steal time code to be easily bypassed when not
in use.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Paravirt ops pmd_update/pmd_update_defer/pmd_set_at. Not all might be
necessary (vmware needs pmd_update, Xen needs set_pmd_at, nobody needs
pmd_update_defer), but this is to keep full simmetry with pte paravirt
ops, which looks cleaner and simpler from a common code POV.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
VMI was the only user of the alloc_pmd_clone hook, given that VMI
is now removed we can also remove this hook.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
LKML-Reference: <1282608357.19396.36.camel@ank32.eng.vmware.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now that both Xen and VMI disable allocations of PTE pages from high
memory this paravirt op serves no further purpose.
This effectively reverts ce6234b5 "add kmap_atomic_pte for mapping
highpte pages".
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
LKML-Reference: <1267204562-11844-3-git-send-email-ian.campbell@citrix.com>
Acked-by: Alok Kataria <akataria@vmware.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (38 commits)
x86: Move get/set_wallclock to x86_platform_ops
x86: platform: Fix section annotations
x86: apic namespace cleanup
x86: Distangle ioapic and i8259
x86: Add Moorestown early detection
x86: Add hardware_subarch ID for Moorestown
x86: Add early platform detection
x86: Move tsc_init to late_time_init
x86: Move tsc_calibration to x86_init_ops
x86: Replace the now identical time_32/64.c by time.c
x86: time_32/64.c unify profile_pc
x86: Move calibrate_cpu to tsc.c
x86: Make timer setup and global variables the same in time_32/64.c
x86: Remove mca bus ifdef from timer interrupt
x86: Simplify timer_ack magic in time_32.c
x86: Prepare unification of time_32/64.c
x86: Remove do_timer hook
x86: Add timer_init to x86_init_ops
x86: Move percpu clockevents setup to x86_init_ops
x86: Move xen_post_allocator_init into xen_pagetable_setup_done
...
Fix up conflicts in arch/x86/include/asm/io_apic.h
get/set_wallclock() have already a set of platform dependent
implementations (default, EFI, paravirt). MRST will add another
variant.
Moving them to platform ops simplifies the existing code and minimizes
the effort to integrate new variants.
Signed-off-by: Feng Tang <feng.tang@intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Switch them to native_{rd,wr}msr_safe_regs and remove
pv_cpu_ops.read_msr_amd.
Signed-off-by: Borislav Petkov <petkovbb@gmail.com>
LKML-Reference: <1251705011-18636-2-git-send-email-petkovbb@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
native_{rdmsr,wrmsr}_safe_regs are two new interfaces which allow
presetting of a subset of eight x86 GPRs before executing the rd/wrmsr
instructions. This is needed at least on AMD K8 for accessing an erratum
workaround MSR.
Originally based on an idea by H. Peter Anvin.
Signed-off-by: Borislav Petkov <petkovbb@gmail.com>
LKML-Reference: <1251705011-18636-1-git-send-email-petkovbb@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
TSC calibration is modified by the vmware hypervisor and paravirt by
separate means. Moorestown wants to add its own calibration routine as
well. So make calibrate_tsc a proper x86_init_ops function and
override it by paravirt or by the early setup of the vmware
hypervisor.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timer init code is convoluted with several quirks and the paravirt
timer chooser. Figuring out which code path is actually taken is not
for the faint hearted.
Move the numaq TSC quirk to tsc_pre_init x86_init_ops function and
replace the paravirt time chooser and the remaining x86 quirk with a
simple x86_init_ops function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
paravirt overrides the setup of the default apic timers as per cpu
timers. Moorestown needs to override that as well.
Move it to x86_init_ops setup and create a separate x86_cpuinit struct
which holds the function for the secondary evtl. hotplugabble CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Replace another obscure paravirt magic and move it to
x86_init_ops. Such a hook is also useful for embedded and special
hardware.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ARCH_SETUP is a horrible leftover from the old arch/i386 mach support
code. It still has a lonely user in xen. Move it to x86_init_ops.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
irq_init is overridden by x86_quirks and by paravirts. Unify the whole
mess and make it an unconditional x86_init_ops function which defaults
to the standard function and can be overridden by the early platform
code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
memory_setup is overridden by x86_quirks and by paravirts with weak
functions and quirks. Unify the whole mess and make it an
unconditional x86_init_ops function which defaults to the standard
function and can be overridden by the early platform code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'x86-xen-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (42 commits)
xen: cache cr0 value to avoid trap'n'emulate for read_cr0
xen/x86-64: clean up warnings about IST-using traps
xen/x86-64: fix breakpoints and hardware watchpoints
xen: reserve Xen start_info rather than e820 reserving
xen: add FIX_TEXT_POKE to fixmap
lguest: update lazy mmu changes to match lguest's use of kvm hypercalls
xen: honour VCPU availability on boot
xen: add "capabilities" file
xen: drop kexec bits from /sys/hypervisor since kexec isn't implemented yet
xen/sys/hypervisor: change writable_pt to features
xen: add /sys/hypervisor support
xen/xenbus: export xenbus_dev_changed
xen: use device model for suspending xenbus devices
xen: remove suspend_cancel hook
xen/dev-evtchn: clean up locking in evtchn
xen: export ioctl headers to userspace
xen: add /dev/xen/evtchn driver
xen: add irq_from_evtchn
xen: clean up gate trap/interrupt constants
xen: set _PAGE_NX in __supported_pte_mask before pagetable construction
...
Xiaohui Xin and some other folks at Intel have been looking into what's
behind the performance hit of paravirt_ops when running native.
It appears that the hit is entirely due to the paravirtualized
spinlocks introduced by:
| commit 8efcbab674de2bee45a2e4cdf97de16b8e609ac8
| Date: Mon Jul 7 12:07:51 2008 -0700
|
| paravirt: introduce a "lock-byte" spinlock implementation
The extra call/return in the spinlock path is somehow
causing an increase in the cycles/instruction of somewhere around 2-7%
(seems to vary quite a lot from test to test). The working theory is
that the CPU's pipeline is getting upset about the
call->call->locked-op->return->return, and seems to be failing to
speculate (though I haven't seen anything definitive about the precise
reasons). This doesn't entirely make sense, because the performance
hit is also visible on unlock and other operations which don't involve
locked instructions. But spinlock operations clearly swamp all the
other pvops operations, even though I can't imagine that they're
nearly as common (there's only a .05% increase in instructions
executed).
If I disable just the pv-spinlock calls, my tests show that pvops is
identical to non-pvops performance on native (my measurements show that
it is actually about .1% faster, but Xiaohui shows a .05% slowdown).
Summary of results, averaging 10 runs of the "mmperf" test, using a
no-pvops build as baseline:
nopv Pv-nospin Pv-spin
CPU cycles 100.00% 99.89% 102.18%
instructions 100.00% 100.10% 100.15%
CPI 100.00% 99.79% 102.03%
cache ref 100.00% 100.84% 100.28%
cache miss 100.00% 90.47% 88.56%
cache miss rate 100.00% 89.72% 88.31%
branches 100.00% 99.93% 100.04%
branch miss 100.00% 103.66% 107.72%
branch miss rt 100.00% 103.73% 107.67%
wallclock 100.00% 99.90% 102.20%
The clear effect here is that the 2% increase in CPI is
directly reflected in the final wallclock time.
(The other interesting effect is that the more ops are
out of line calls via pvops, the lower the cache access
and miss rates. Not too surprising, but it suggests that
the non-pvops kernel is over-inlined. On the flipside,
the branch misses go up correspondingly...)
So, what's the fix?
Paravirt patching turns all the pvops calls into direct calls, so
_spin_lock etc do end up having direct calls. For example, the compiler
generated code for paravirtualized _spin_lock is:
<_spin_lock+0>: mov %gs:0xb4c8,%rax
<_spin_lock+9>: incl 0xffffffffffffe044(%rax)
<_spin_lock+15>: callq *0xffffffff805a5b30
<_spin_lock+22>: retq
The indirect call will get patched to:
<_spin_lock+0>: mov %gs:0xb4c8,%rax
<_spin_lock+9>: incl 0xffffffffffffe044(%rax)
<_spin_lock+15>: callq <__ticket_spin_lock>
<_spin_lock+20>: nop; nop /* or whatever 2-byte nop */
<_spin_lock+22>: retq
One possibility is to inline _spin_lock, etc, when building an
optimised kernel (ie, when there's no spinlock/preempt
instrumentation/debugging enabled). That will remove the outer
call/return pair, returning the instruction stream to a single
call/return, which will presumably execute the same as the non-pvops
case. The downsides arel 1) it will replicate the
preempt_disable/enable code at eack lock/unlock callsite; this code is
fairly small, but not nothing; and 2) the spinlock definitions are
already a very heavily tangled mass of #ifdefs and other preprocessor
magic, and making any changes will be non-trivial.
The other obvious answer is to disable pv-spinlocks. Making them a
separate config option is fairly easy, and it would be trivial to
enable them only when Xen is enabled (as the only non-default user).
But it doesn't really address the common case of a distro build which
is going to have Xen support enabled, and leaves the open question of
whether the native performance cost of pv-spinlocks is worth the
performance improvement on a loaded Xen system (10% saving of overall
system CPU when guests block rather than spin). Still it is a
reasonable short-term workaround.
[ Impact: fix pvops performance regression when running native ]
Analysed-by: "Xin Xiaohui" <xiaohui.xin@intel.com>
Analysed-by: "Li Xin" <xin.li@intel.com>
Analysed-by: "Nakajima Jun" <jun.nakajima@intel.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Xen-devel <xen-devel@lists.xensource.com>
LKML-Reference: <4A0B62F7.5030802@goop.org>
[ fixed the help text ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* commit 'origin/master': (4825 commits)
Fix build errors due to CONFIG_BRANCH_TRACER=y
parport: Use the PCI IRQ if offered
tty: jsm cleanups
Adjust path to gpio headers
KGDB_SERIAL_CONSOLE check for module
Change KCONFIG name
tty: Blackin CTS/RTS
Change hardware flow control from poll to interrupt driven
Add support for the MAX3100 SPI UART.
lanana: assign a device name and numbering for MAX3100
serqt: initial clean up pass for tty side
tty: Use the generic RS485 ioctl on CRIS
tty: Correct inline types for tty_driver_kref_get()
splice: fix deadlock in splicing to file
nilfs2: support nanosecond timestamp
nilfs2: introduce secondary super block
nilfs2: simplify handling of active state of segments
nilfs2: mark minor flag for checkpoint created by internal operation
nilfs2: clean up sketch file
nilfs2: super block operations fix endian bug
...
Conflicts:
arch/x86/include/asm/thread_info.h
arch/x86/lguest/boot.c
drivers/xen/manage.c
Impact: minor optimisation
percpu_read/write is a slightly more direct way of getting
to percpu data.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Impact: remove obsolete checks, simplification
Lift restrictions on preemption with lazy mmu mode, as it is now allowed.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Impact: fix lazy context switch API
Pass the previous and next tasks into the context switch start
end calls, so that the called functions can properly access the
task state (esp in end_context_switch, in which the next task
is not yet completely current).
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Impact: allow preemption during lazy mmu updates
If we're in lazy mmu mode when context switching, leave
lazy mmu mode, but remember the task's state in
TIF_LAZY_MMU_UPDATES. When we resume the task, check this
flag and re-enter lazy mmu mode if its set.
This sets things up for allowing lazy mmu mode while preemptible,
though that won't actually be active until the next change.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Impact: simplification, prepare for later changes
Make lazy cpu mode more specific to context switching, so that
it makes sense to do more context-switch specific things in
the callbacks.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Impact: simplification, robustness
Make paravirt_lazy_mode() always return PARAVIRT_LAZY_NONE
when in an interrupt. This prevents interrupt code from
accidentally inheriting an outer lazy state, and instead
does everything synchronously. Outer batched operations
are left deferred.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Impact: cleanup
Make x86_quirks support more transparent. The highlevel
methods are now named:
extern void x86_quirk_pre_intr_init(void);
extern void x86_quirk_intr_init(void);
extern void x86_quirk_trap_init(void);
extern void x86_quirk_pre_time_init(void);
extern void x86_quirk_time_init(void);
This makes it clear that if some platform extension has to
do something here that it is considered ... weird, and is
discouraged.
Also remove arch_hooks.h and move it into setup.h (and other
header files where appropriate).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: Catch cases where lazy MMU state is active in a preemtible context
arch_flush_lazy_mmu_cpu() has been changed to disable preemption so
the checks in enter/leave will never trigger. Put the preemtible()
check into arch_flush_lazy_mmu_cpu() to catch such cases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: avoid access to percpu vars in preempible context
They are intended to be used whenever there's the possibility
that there's some stale state which is going to be overwritten
with a queued update, or to force a state change when we may be
in lazy mode. Either way, we could end up calling it with
preemption enabled, so wrap the functions in their own little
preempt-disable section so they can be safely called in any
context (though preemption should never be enabled if we're actually
in a lazy state).
(Move out of line to avoid #include dependencies.)
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Impact: Optimization
In the native case, pte_val, make_pte, etc are all just identity
functions, so there's no need to clobber a lot of registers over them.
(This changes the 32-bit callee-save calling convention to return both
EAX and EDX so functions can return 64-bit values.)
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: Optimization
One of the problems with inserting a pile of C calls where previously
there were none is that the register pressure is greatly increased.
The C calling convention says that the caller must expect a certain
set of registers may be trashed by the callee, and that the callee can
use those registers without restriction. This includes the function
argument registers, and several others.
This patch seeks to alleviate this pressure by introducing wrapper
thunks that will do the register saving/restoring, so that the
callsite doesn't need to worry about it, but the callee function can
be conventional compiler-generated code. In many cases (particularly
performance-sensitive cases) the callee will be in assembler anyway,
and need not use the compiler's calling convention.
Standard calling convention is:
arguments return scratch
x86-32 eax edx ecx eax ?
x86-64 rdi rsi rdx rcx rax r8 r9 r10 r11
The thunk preserves all argument and scratch registers. The return
register is not preserved, and is available as a scratch register for
unwrapped callee code (and of course the return value).
Wrapped function pointers are themselves wrapped in a struct
paravirt_callee_save structure, in order to get some warning from the
compiler when functions with mismatched calling conventions are used.
The most common paravirt ops, both statically and dynamically, are
interrupt enable/disable/save/restore, so handle them first. This is
particularly easy since their calls are handled specially anyway.
XXX Deal with VMI. What's their calling convention?
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: Optimization
Several paravirt ops implementations simply return their arguments,
the most obvious being the make_pte/pte_val class of operations on
native.
On 32-bit, the identity function is literally a no-op, as the calling
convention uses the same registers for the first argument and return.
On 64-bit, it can be implemented with a single "mov".
This patch adds special identity functions for 32 and 64 bit argument,
and machinery to recognize them and replace them with either nops or a
mov as appropriate.
At the moment, the only users for the identity functions are the
pagetable entry conversion functions.
The result is a measureable improvement on pagetable-heavy benchmarks
(2-3%, reducing the pvops overhead from 5 to 2%).
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
pte_flags() was introduced as a new pvop in order to extract just the
flags portion of a pte, which is a potentially cheaper operation than
extracting the page number as well. It turns out this operation is
not needed, because simply using a mask to extract the flags from a
pte is sufficient for all current users.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>