IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The cpupid (or access time) is stored in the head page for THP, so it is
safely to make should_numa_migrate_memory() and numa_hint_fault_latency()
to take a folio. This is in preparation for large folio numa balancing.
Link: https://lkml.kernel.org/r/20230921074417.24004-7-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The PSI trigger code is now making a distinction between privileged and
unprivileged triggers, after the following commit:
65457b74aa94 ("sched/psi: Rename existing poll members in preparation")
But some comments have not been modified along with the code, so they
need to be updated.
This will help readers better understand the code.
Signed-off-by: Fan Yu <fan.yu9@zte.com.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Peter Ziljstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/202310161920399921184@zte.com.cn
The PELT acronym definition can be found right at the top of
kernel/sched/pelt.c (of course), but it cannot be found through use of
grep -r PELT kernel/sched/
Add the acronym "(PELT)" after "Per Entity Load Tracking" at the top of
the source file.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231012125824.1260774-1-mathieu.desnoyers@efficios.com
Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.
Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().
The race scenario is:
CPU0 CPU1
// doing _cpu_down()
__set_cpus_allowed_ptr()
task_rq_lock();
takedown_cpu()
stop_machine_cpuslocked(take_cpu_down..)
<PREEMPT: cpu_stopper_thread()
MULTI_STOP_PREPARE
...
__set_cpus_allowed_ptr_locked()
affine_move_task()
task_rq_unlock();
<PREEMPT: cpu_stopper_thread()\>
ack_state()
MULTI_STOP_RUN
take_cpu_down()
__cpu_disable();
stop_machine_park();
stopper->enabled = false;
/>
/>
stop_one_cpu_nowait(.fn = migration_cpu_stop);
if (stopper->enabled) // false!!!
That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.
OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.
Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:
preempt_disable();
task_rq_unlock(...);
if (!stop_pending)
stop_one_cpu_nowait(...)
preempt_enable();
This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.
Apply this pattern to all similar stop_one_cpu_nowait() invocations.
Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
We could bail out early when psi was disabled.
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Link: https://lore.kernel.org/r/20230926115722.467833-1-haifeng.xu@shopee.com
While reworking the x86 topology code Thomas tripped over creating a 'DIE' domain
for the package mask. :-)
Since these names are CONFIG_SCHED_DEBUG=y only, rename them to make the
name less ambiguous.
[ Shrikanth Hegde: rename on s390 as well. ]
[ Valentin Schneider: also rename it in the comments. ]
[ mingo: port to recent kernels & find all remaining occurances. ]
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230712141056.GI3100107@hirez.programming.kicks-ass.net
The 'update_total' parameter of update_triggers() is always true after the
previous commit:
80cc1d1d5ee3 ("sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes")
If the 'changed_states & group->rtpoll_states' condition is true,
'new_stall' in update_triggers() will be true, and then 'update_total'
should also be true.
So update_total is redundant - remove it.
[ mingo: Changelog updates ]
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Peter Ziljstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/202310101645437859599@zte.com.cn
When psimon wakes up and there are no state changes for ->rtpoll_states,
it's unnecessary to update triggers and ->rtpoll_total because the pressures
being monitored by the user have not changed.
This will help to slightly reduce unnecessary computations of PSI.
[ mingo: Changelog updates ]
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Peter Ziljstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/202310101641075436843@zte.com.cn
There is a comment that refers to cpu_load, however, this cpu_load was
removed with:
55627e3cd22c ("sched/core: Remove rq->cpu_load[]")
... back in 2019. The comment does not make sense with respect to this
removed array, so remove the comment.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010155744.1381065-1-colin.i.king@gmail.com
VMAs are skipped if there is no recent fault activity but this represents
a chicken-and-egg problem as there may be no fault activity if the PTEs
are never updated to trap NUMA hints. There is an indirect reliance on
scanning to be forced early in the lifetime of a task but this may fail
to detect changes in phase behaviour. Force inactive VMAs to be scanned
when all other eligible VMAs have been updated within the same scan
sequence.
Test results in general look good with some changes in performance, both
negative and positive, depending on whether the additional scanning and
faulting was beneficial or not to the workload. The autonuma benchmark
workload NUMA01_THREADLOCAL was picked for closer examination. The workload
creates two processes with numerous threads and thread-local storage that
is zero-filled in a loop. It exercises the corner case where unrelated
threads may skip VMAs that are thread-local to another thread and still
has some VMAs that inactive while the workload executes.
The VMA skipping activity frequency with and without the patch:
6.6.0-rc2-sched-numabtrace-v1
=============================
649 reason=scan_delay
9,094 reason=unsuitable
48,915 reason=shared_ro
143,919 reason=inaccessible
193,050 reason=pid_inactive
6.6.0-rc2-sched-numabselective-v1
=============================
146 reason=seq_completed
622 reason=ignore_pid_inactive
624 reason=scan_delay
6,570 reason=unsuitable
16,101 reason=shared_ro
27,608 reason=inaccessible
41,939 reason=pid_inactive
Note that with the patch applied, the PID activity is ignored
(ignore_pid_inactive) to ensure a VMA with some activity is completely
scanned. In addition, a small number of VMAs are scanned when no other
eligible VMA is available during a single scan window (seq_completed).
The number of times a VMA is skipped due to no PID activity from the
scanning task (pid_inactive) drops dramatically. It is expected that
this will increase the number of PTEs updated for NUMA hinting faults
as well as hinting faults but these represent PTEs that would otherwise
have been missed. The tradeoff is scan+fault overhead versus improving
locality due to migration.
On a 2-socket Cascade Lake test machine, the time to complete the
workload is as follows;
6.6.0-rc2 6.6.0-rc2
sched-numabtrace-v1 sched-numabselective-v1
Min elsp-NUMA01_THREADLOCAL 174.22 ( 0.00%) 117.64 ( 32.48%)
Amean elsp-NUMA01_THREADLOCAL 175.68 ( 0.00%) 123.34 * 29.79%*
Stddev elsp-NUMA01_THREADLOCAL 1.20 ( 0.00%) 4.06 (-238.20%)
CoeffVar elsp-NUMA01_THREADLOCAL 0.68 ( 0.00%) 3.29 (-381.70%)
Max elsp-NUMA01_THREADLOCAL 177.18 ( 0.00%) 128.03 ( 27.74%)
The time to complete the workload is reduced by almost 30%:
6.6.0-rc2 6.6.0-rc2
sched-numabtrace-v1 sched-numabselective-v1 /
Duration User 91201.80 63506.64
Duration System 2015.53 1819.78
Duration Elapsed 1234.77 868.37
In this specific case, system CPU time was not increased but it's not
universally true.
From vmstat, the NUMA scanning and fault activity is as follows;
6.6.0-rc2 6.6.0-rc2
sched-numabtrace-v1 sched-numabselective-v1
Ops NUMA base-page range updates 64272.00 26374386.00
Ops NUMA PTE updates 36624.00 55538.00
Ops NUMA PMD updates 54.00 51404.00
Ops NUMA hint faults 15504.00 75786.00
Ops NUMA hint local faults % 14860.00 56763.00
Ops NUMA hint local percent 95.85 74.90
Ops NUMA pages migrated 1629.00 6469222.00
Both the number of PTE updates and hint faults is dramatically
increased. While this is superficially unfortunate, it represents
ranges that were simply skipped without the patch. As a result
of the scanning and hinting faults, many more pages were also
migrated but as the time to completion is reduced, the overhead
is offset by the gain.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Link: https://lore.kernel.org/r/20231010083143.19593-7-mgorman@techsingularity.net
NUMA Balancing skips VMAs when the current task has not trapped a NUMA
fault within the VMA. If the VMA is skipped then mm->numa_scan_offset
advances and a task that is trapping faults within the VMA may never
fully update PTEs within the VMA.
Force tasks to update PTEs for partially scanned PTEs. The VMA will
be tagged for NUMA hints by some task but this removes some of the
benefit of tracking PID activity within a VMA. A follow-on patch
will mitigate this problem.
The test cases and machines evaluated did not trigger the corner case so
the performance results are neutral with only small changes within the
noise from normal test-to-test variance. However, the next patch makes
the corner case easier to trigger.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Link: https://lore.kernel.org/r/20231010083143.19593-6-mgorman@techsingularity.net
Recent NUMA hinting faulting activity is reset approximately every
VMA_PID_RESET_PERIOD milliseconds. However, if the current task has not
accessed a VMA then the reset check is missed and the reset is potentially
deferred forever. Check if the PID activity information should be reset
before checking if the current task recently trapped a NUMA hinting fault.
[ mgorman@techsingularity.net: Rewrite changelog ]
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-5-mgorman@techsingularity.net
NUMA balancing skips or scans VMAs for a variety of reasons. In preparation
for completing scans of VMAs regardless of PID access, trace the reasons
why a VMA was skipped. In a later patch, the tracing will be used to track
if a VMA was forcibly scanned.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-4-mgorman@techsingularity.net
The access_pids[] field name is somewhat ambiguous as no PIDs are accessed.
Similarly, it's not clear that next_pid_reset is related to access_pids[].
Rename the fields to more accurately reflect their purpose.
[ mingo: Rename in the comments too. ]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231010083143.19593-3-mgorman@techsingularity.net
Move it out of the .c file into the shared scheduler-internal header file,
to gain type-checking.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20231009060037.170765-3-sshegde@linux.vnet.ibm.com
The 'sched_energy_aware' sysctl is available for the admin to disable/enable
energy aware scheduling(EAS). EAS is enabled only if few conditions are
met by the platform. They are, asymmetric CPU capacity, no SMT,
schedutil CPUfreq governor, frequency invariant load tracking etc.
A platform may boot without EAS capability, but could gain such
capability at runtime. For example, changing/registering the cpufreq
governor to schedutil.
At present, though platform doesn't support EAS, this sysctl returns 1
and it ends up calling build_perf_domains on write to 1 and
NOP when writing to 0. That is confusing and un-necessary.
Desired behavior would be to have this sysctl to enable/disable the EAS
on supported platform. On non-supported platform write to the sysctl
would return not supported error and read of the sysctl would return
empty. So sched_energy_aware returns empty - EAS is not possible at this moment
This will include EAS capable platforms which have at least one EAS
condition false during startup, e.g. not using the schedutil cpufreq governor
sched_energy_aware returns 0 - EAS is supported but disabled by admin.
sched_energy_aware returns 1 - EAS is supported and enabled.
User can find out the reason why EAS is not possible by checking
info messages. sched_is_eas_possible returns true if the platform
can do EAS at this moment.
Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Pierre Gondois <pierre.gondois@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20231009060037.170765-3-sshegde@linux.vnet.ibm.com
Update_triggers() always returns now + group->rtpoll_min_period, and the
return value is only used by psi_rtpoll_work(), so change update_triggers()
to a void function, let group->rtpoll_next_update = now +
group->rtpoll_min_period directly.
This will avoid unnecessary function return value passing & simplifies
the function.
[ mingo: Updated changelog ]
Suggested-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/202310092024289721617@zte.com.cn
The Energy Aware Scheduler (EAS) estimates the energy consumption
of placing a task on different CPUs. The goal is to minimize this
energy consumption. Estimating the energy of different task placements
is increasingly complex with the size of the platform.
To avoid having a slow wake-up path, EAS is only enabled if this
complexity is low enough.
The current complexity limit was set in:
b68a4c0dba3b1 ("sched/topology: Disable EAS on inappropriate platforms")
... based on the first implementation of EAS, which was re-computing
the power of the whole platform for each task placement scenario, see:
390031e4c309 ("sched/fair: Introduce an energy estimation helper function")
... but the complexity of EAS was reduced in:
eb92692b2544d ("sched/fair: Speed-up energy-aware wake-ups")
... and find_energy_efficient_cpu() (feec) algorithm was updated in:
3e8c6c9aac42 ("sched/fair: Remove task_util from effective utilization in feec()")
find_energy_efficient_cpu() (feec) is now doing:
feec()
\_ for_each_pd(pd) [0]
// get max_spare_cap_cpu and compute_prev_delta
\_ for_each_cpu(pd) [1]
\_ eenv_pd_busy_time(pd) [2]
\_ for_each_cpu(pd)
// compute_energy(pd) without the task
\_ eenv_pd_max_util(pd, -1) [3.0]
\_ for_each_cpu(pd)
\_ em_cpu_energy(pd, -1)
\_ for_each_ps(pd)
// compute_energy(pd) with the task on prev_cpu
\_ eenv_pd_max_util(pd, prev_cpu) [3.1]
\_ for_each_cpu(pd)
\_ em_cpu_energy(pd, prev_cpu)
\_ for_each_ps(pd)
// compute_energy(pd) with the task on max_spare_cap_cpu
\_ eenv_pd_max_util(pd, max_spare_cap_cpu) [3.2]
\_ for_each_cpu(pd)
\_ em_cpu_energy(pd, max_spare_cap_cpu)
\_ for_each_ps(pd)
[3.1] happens only once since prev_cpu is unique. With the same
definitions for nr_pd, nr_cpus and nr_ps, the complexity is of:
nr_pd * (2 * [nr_cpus in pd] + 2 * ([nr_cpus in pd] + [nr_ps in pd]))
+ ([nr_cpus in pd] + [nr_ps in pd])
[0] * ( [1] + [2] + [3.0] + [3.2] )
+ [3.1]
= nr_pd * (4 * [nr_cpus in pd] + 2 * [nr_ps in pd])
+ [nr_cpus in prev pd] + nr_ps
The complexity limit was set to 2048 in:
b68a4c0dba3b1 ("sched/topology: Disable EAS on inappropriate platforms")
... to make "EAS usable up to 16 CPUs with per-CPU DVFS and less than 8
performance states each". For the same platform, the complexity would
actually be of:
16 * (4 + 2 * 7) + 1 + 7 = 296
Since the EAS complexity was greatly reduced since the limit was
introduced, bigger platforms can handle EAS.
For instance, a platform with 112 CPUs with 7 performance states
each would not reach it:
112 * (4 + 2 * 7) + 1 + 7 = 2024
To reflect this improvement in the underlying EAS code, remove
the EAS complexity check.
Note that a limit on the number of CPUs still holds against
EM_MAX_NUM_CPUS to avoid overflows during the energy estimation.
[ mingo: Updates to the changelog. ]
Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20231009060037.170765-2-sshegde@linux.vnet.ibm.com
Remove the rq::cpu_capacity_orig field and use arch_scale_cpu_capacity()
instead.
The scheduler uses 3 methods to get access to a CPU's max compute capacity:
- arch_scale_cpu_capacity(cpu) which is the default way to get a CPU's capacity.
- cpu_capacity_orig field which is periodically updated with
arch_scale_cpu_capacity().
- capacity_orig_of(cpu) which encapsulates rq->cpu_capacity_orig.
There is no real need to save the value returned by arch_scale_cpu_capacity()
in struct rq. arch_scale_cpu_capacity() returns:
- either a per_cpu variable.
- or a const value for systems which have only one capacity.
Remove rq::cpu_capacity_orig and use arch_scale_cpu_capacity() everywhere.
No functional changes.
Some performance tests on Arm64:
- small SMP device (hikey): no noticeable changes
- HMP device (RB5): hackbench shows minor improvement (1-2%)
- large smp (thx2): hackbench and tbench shows minor improvement (1%)
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20231009103621.374412-2-vincent.guittot@linaro.org
Doing this matches the natural type of 'int' based calculus
in sched_rt_handler(), and also enables the adding in of a
correct upper bounds check on the sysctl interface.
[ mingo: Rewrote the changelog. ]
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231008021538.3063250-1-yajun.deng@linux.dev
find_new_ilb() returns nr_cpu_ids on failure - which is the usual
cpumask bitops return pattern, but is weird & unnecessary in this
context: not only is it a global variable, it it is a +1 out of
bounds CPU index and also has different signedness ...
Its only user, kick_ilb(), then checks the return against nr_cpu_ids
to decide to return. There's no other use.
So instead of this, use a standard -1 return on failure to find an
idle CPU, as the argument is signed already.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/20231006102518.2452758-4-mingo@kernel.org
The old pick_eevdf() could fail to find the actual earliest eligible
deadline when it descended to the right looking for min_deadline, but
it turned out that that min_deadline wasn't actually eligible. In that
case we need to go back and search through any left branches we
skipped looking for the actual best _eligible_ min_deadline.
This is more expensive, but still O(log n), and at worst should only
involve descending two branches of the rbtree.
I've run this through a userspace stress test (thank you
tools/lib/rbtree.c), so hopefully this implementation doesn't miss any
corner cases.
Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/xm261qego72d.fsf_-_@google.com
Marek and Biju reported instances of:
"EEVDF scheduling fail, picking leftmost"
which Mike correlated with cgroup scheduling and the min_deadline heap
getting corrupted; some trace output confirms:
> And yeah, min_deadline is hosed somehow:
>
> validate_cfs_rq: --- /
> __print_se: ffff88845cf48080 w: 1024 ve: -58857638 lag: 870381 vd: -55861854 vmd: -66302085 E (11372/tr)
> __print_se: ffff88810d165800 w: 25 ve: -80323686 lag: 22336429 vd: -41496434 vmd: -66302085 E (-1//autogroup-31)
> __print_se: ffff888108379000 w: 25 ve: 0 lag: -57987257 vd: 114632828 vmd: 114632828 N (-1//autogroup-33)
> validate_cfs_rq: min_deadline: -55861854 avg_vruntime: -62278313462 / 1074 = -57987256
Turns out that reweight_entity(), which tries really hard to be fast,
does not do the normal dequeue+update+enqueue pattern but *does* scale
the deadline.
However, it then fails to propagate the updated deadline value up the
heap.
Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reported-by: Biju Das <biju.das.jz@bp.renesas.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Biju Das <biju.das.jz@bp.renesas.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lkml.kernel.org/r/20231006192445.GE743@noisy.programming.kicks-ass.net
Multiple blocked tasks are printed when the system hangs. They may have
the same parent pid, but belong to different task groups.
Printing tgid lets users better know whether these tasks are from the same
task group or not.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230720080516.1515297-1-yajun.deng@linux.dev
The following commit:
9b3c4ab3045e ("sched,rcu: Rework try_invoke_on_locked_down_task()")
... renamed try_invoke_on_locked_down_task() to task_call_func(),
but forgot to update the comment in try_to_wake_up().
But it turns out that the smp_rmb() doesn't live in task_call_func()
either, it was moved to __task_needs_rq_lock() in:
91dabf33ae5d ("sched: Fix race in task_call_func()")
Fix that now.
Also fix the s/smb/smp typo while at it.
Reported-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230731085759.11443-1-zhangqiao22@huawei.com
The Energy Aware Scheduler (EAS) relies on the schedutil governor.
When moving to/from the schedutil governor, sched domains must be
rebuilt to allow re-evaluating the enablement conditions of EAS.
This is done through sched_cpufreq_governor_change().
Having a cpufreq governor assumes a cpufreq driver is running.
Inserting/removing a cpufreq driver should trigger a re-evaluation
of EAS enablement conditions, avoiding to see EAS enabled when
removing a running cpufreq driver.
Rebuild the sched domains in schedutil's sugov_init()/sugov_exit(),
allowing to check EAS's enablement condition whenever schedutil
governor is initialized/exited from.
Move relevant code up in schedutil.c to avoid a split and conditional
function declaration.
Rename sched_cpufreq_governor_change() to sugov_eas_rebuild_sd().
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The initialization code of the per-cpu sg_cpu struct is currently split
into two for-loop blocks. This can be simplified by merging the two
blocks into a single loop. This will make the code more maintainable.
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When cpufreq's policy is 'single', there is a scenario that will
cause sg_policy's next_freq to be unable to update.
When the CPU's util is always max, the cpufreq will be max,
and then if we change the policy's scaling_max_freq to be a
lower freq, indeed, the sg_policy's next_freq need change to
be the lower freq, however, because the cpu_is_busy, the next_freq
would keep the max_freq.
For example:
The cpu7 is a single CPU:
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # while true;do done& [1] 4737
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # taskset -p 80 4737
pid 4737's current affinity mask: ff
pid 4737's new affinity mask: 80
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_max_freq
2301000
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_cur_freq
2301000
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # echo 2171000 > scaling_max_freq
unisoc:/sys/devices/system/cpu/cpufreq/policy7 # cat scaling_max_freq
2171000
At this time, the sg_policy's next_freq would stay at 2301000, which
is wrong.
To fix this, add a check for the ->need_freq_update flag.
[ mingo: Clarified the changelog. ]
Co-developed-by: Guohua Yan <guohua.yan@unisoc.com>
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Guohua Yan <guohua.yan@unisoc.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Rafael J. Wysocki" <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230719130527.8074-1-xuewen.yan@unisoc.com
The expectation is that placing a task at avg_vruntime() makes it
eligible. Turns out there is a corner case where this is not the case.
Specifically, avg_vruntime() relies on the fact that integer division
is a flooring function (eg. it discards the remainder). By this
property the value returned is slightly left of the true average.
However! when the average is a negative (relative to min_vruntime) the
effect is flipped and it becomes a ceil, with the result that the
returned value is just right of the average and thus not eligible.
Fixes: af4cf40470c2 ("sched/fair: Add cfs_rq::avg_vruntime")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tasks that never consume their full slice would not update their slice value.
This means that tasks that are spawned before the sysctl scaling keep their
original (UP) slice length.
Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230915124822.847197830@noisy.programming.kicks-ass.net
The validation of the value written to sched_rt_period_us was broken
because:
- the sysclt_sched_rt_period is declared as unsigned int
- parsed by proc_do_intvec()
- the range is asserted after the value parsed by proc_do_intvec()
Because of this negative values written to the file were written into a
unsigned integer that were later on interpreted as large positive
integers which did passed the check:
if (sysclt_sched_rt_period <= 0)
return EINVAL;
This commit fixes the parsing by setting explicit range for both
perid_us and runtime_us into the sched_rt_sysctls table and processes
the values with proc_dointvec_minmax() instead.
Alternatively if we wanted to use full range of unsigned int for the
period value we would have to split the proc_handler and use
proc_douintvec() for it however even the
Documentation/scheduller/sched-rt-group.rst describes the range as 1 to
INT_MAX.
As far as I can tell the only problem this causes is that the sysctl
file allows writing negative values which when read back may confuse
userspace.
There is also a LTP test being submitted for these sysctl files at:
http://patchwork.ozlabs.org/project/ltp/patch/20230901144433.2526-1-chrubis@suse.cz/
Signed-off-by: Cyril Hrubis <chrubis@suse.cz>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231002115553.3007-2-chrubis@suse.cz
It was useful to track feec() placement decision and debug the spare
capacity and optimization issues vs uclamp_max.
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-4-qyousef@layalina.io
find_energy_efficient_cpu() bails out early if effective util of the
task is 0 as the delta at this point will be zero and there's nothing
for EAS to do. When uclamp is being used, this could lead to wrong
decisions when uclamp_max is set to 0. In this case the task is capped
to performance point 0, but it is actually running and consuming energy
and we can benefit from EAS energy calculations.
Rework the condition so that it bails out when both util and uclamp_min
are 0.
We can do that without needing to use uclamp_task_util(); remove it.
Fixes: d81304bc6193 ("sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-3-qyousef@layalina.io
When uclamp_max is being used, the util of the task could be higher than
the spare capacity of the CPU, but due to uclamp_max value we force-fit
it there.
The way the condition for checking for max_spare_cap in
find_energy_efficient_cpu() was constructed; it ignored any CPU that has
its spare_cap less than or _equal_ to max_spare_cap. Since we initialize
max_spare_cap to 0; this lead to never setting max_spare_cap_cpu and
hence ending up never performing compute_energy() for this cluster and
missing an opportunity for a better energy efficient placement to honour
uclamp_max setting.
max_spare_cap = 0;
cpu_cap = capacity_of(cpu) - cpu_util(p); // 0 if cpu_util(p) is high
...
util_fits_cpu(...); // will return true if uclamp_max forces it to fit
...
// this logic will fail to update max_spare_cap_cpu if cpu_cap is 0
if (cpu_cap > max_spare_cap) {
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
prev_spare_cap suffers from a similar problem.
Fix the logic by converting the variables into long and treating -1
value as 'not populated' instead of 0 which is a viable and correct
spare capacity value. We need to be careful signed comparison is used
when comparing with cpu_cap in one of the conditions.
Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-2-qyousef@layalina.io
dl_rq->dl_nr_migratory is increased whenever a DL entity is enqueued and it has
nr_cpus_allowed > 1. Unlike the pushable_dl_tasks tree, dl_rq->dl_nr_migratory
includes a dl_rq's current task. This means a dl_rq can have a migratable
current, N non-migratable queued tasks, and be flagged as overloaded and have
its CPU set in the dlo_mask, despite having an empty pushable_tasks tree.
Make an dl_rq's overload logic be driven by {enqueue,dequeue}_pushable_dl_task(),
in other words make DL RQs only be flagged as overloaded if they have at
least one runnable-but-not-current migratable task.
o push_dl_task() is unaffected, as it is a no-op if there are no pushable
tasks.
o pull_dl_task() now no longer scans runqueues whose sole migratable task is
their current one, which it can't do anything about anyway.
It may also now pull tasks to a DL RQ with dl_nr_running > 1 if only its
current task is migratable.
Since dl_rq->dl_nr_migratory becomes unused, remove it.
RT had the exact same mechanism (rt_rq->rt_nr_migratory) which was dropped
in favour of relying on rt_rq->pushable_tasks, see:
612f769edd06 ("sched/rt: Make rt_rq->pushable_tasks updates drive rto_mask")
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20230928150251.463109-1-vschneid@redhat.com
During RCU-boost testing with the TREE03 rcutorture config, I found that
after a few hours, the machine locks up.
On tracing, I found that there is a live lock happening between 2 CPUs.
One CPU has an RT task running, while another CPU is being offlined
which also has an RT task running. During this offlining, all threads
are migrated. The migration thread is repeatedly scheduled to migrate
actively running tasks on the CPU being offlined. This results in a live
lock because select_fallback_rq() keeps picking the CPU that an RT task
is already running on only to get pushed back to the CPU being offlined.
It is anyway pointless to pick CPUs for pushing tasks to if they are
being offlined only to get migrated away to somewhere else. This could
also add unwanted latency to this task.
Fix these issues by not selecting CPUs in RT if they are not 'active'
for scheduling, using the cpu_active_mask. Other parts in core.c already
use cpu_active_mask to prevent tasks from being put on CPUs going
offline.
With this fix I ran the tests for days and could not reproduce the
hang. Without the patch, I hit it in a few hours.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230923011409.3522762-1-joel@joelfernandes.org
Sebastian noted that the rto_push_work IRQ work can be queued for a CPU
that has an empty pushable_tasks list, which means nothing useful will be
done in the IPI other than queue the work for the next CPU on the rto_mask.
rto_push_irq_work_func() only operates on tasks in the pushable_tasks list,
but the conditions for that irq_work to be queued (and for a CPU to be
added to the rto_mask) rely on rq_rt->nr_migratory instead.
nr_migratory is increased whenever an RT task entity is enqueued and it has
nr_cpus_allowed > 1. Unlike the pushable_tasks list, nr_migratory includes a
rt_rq's current task. This means a rt_rq can have a migratible current, N
non-migratible queued tasks, and be flagged as overloaded / have its CPU
set in the rto_mask, despite having an empty pushable_tasks list.
Make an rt_rq's overload logic be driven by {enqueue,dequeue}_pushable_task().
Since rt_rq->{rt_nr_migratory,rt_nr_total} become unused, remove them.
Note that the case where the current task is pushed away to make way for a
migration-disabled task remains unchanged: the migration-disabled task has
to be in the pushable_tasks list in the first place, which means it has
nr_cpus_allowed > 1.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20230811112044.3302588-1-vschneid@redhat.com
Simplify the conditional logic for checking worker flags
by splitting the original compound `if` statement into
separate `if` and `else if` clauses.
This modification not only retains the previous functionality,
but also reduces a single `if` check, improving code clarity
and potentially enhancing performance.
Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZOIMvURE99ZRAYEj@fedora
We've observed the following warning being hit in
distribute_cfs_runtime():
SCHED_WARN_ON(cfs_rq->runtime_remaining > 0)
We have the following race:
- CPU 0: running bandwidth distribution (distribute_cfs_runtime).
Inspects the local cfs_rq and makes its runtime_remaining positive.
However, we defer unthrottling the local cfs_rq until after
considering all remote cfs_rq's.
- CPU 1: starts running bandwidth distribution from the slack timer. When
it finds the cfs_rq for CPU 0 on the throttled list, it observers the
that the cfs_rq is throttled, yet is not on the CSD list, and has a
positive runtime_remaining, thus triggering the warning in
distribute_cfs_runtime.
To fix this, we can rework the local unthrottling logic to put the local
cfs_rq on a local list, so that any future bandwidth distributions will
realize that the cfs_rq is about to be unthrottled.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230922230535.296350-2-joshdon@google.com
This makes the following patch cleaner by avoiding extra CONFIG_SMP
conditionals on the availability of rq->throttled_csd_list.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230922230535.296350-1-joshdon@google.com
in_atomic_preempt_off() already gets called in schedule_debug() once,
which is the only caller of __schedule_bug().
Skip the second call within __schedule_bug(), it should always be true
at this point.
[ mingo: Clarified the changelog. ]
Signed-off-by: Liming Wu <liming.wu@jaguarmicro.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230825023501.1848-1-liming.wu@jaguarmicro.com
Since commit:
8a99b6833c884 ("sched: Move SCHED_DEBUG sysctl to debugfs")
The sched_debug interface moved from /proc to debugfs. The comment
mentions still the outdated proc interfaces.
Update the comment, point to the current location of the interface.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230920130025.412071-3-bigeasy@linutronix.de
The /proc/sys/kernel/sched_child_runs_first knob is no longer connected since:
5e963f2bd4654 ("sched/fair: Commit to EEVDF")
Remove it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230920130025.412071-2-bigeasy@linutronix.de