13 Commits

Author SHA1 Message Date
Herbert Xu
a8bdf2c42e crypto: curve25519 - Fix selftest build error
If CRYPTO_CURVE25519 is y, CRYPTO_LIB_CURVE25519_GENERIC will be
y, but CRYPTO_LIB_CURVE25519 may be set to m, this causes build
errors:

lib/crypto/curve25519-selftest.o: In function `curve25519':
curve25519-selftest.c:(.text.unlikely+0xc): undefined reference to `curve25519_arch'
lib/crypto/curve25519-selftest.o: In function `curve25519_selftest':
curve25519-selftest.c:(.init.text+0x17e): undefined reference to `curve25519_base_arch'

This is because the curve25519 self-test code is being controlled
by the GENERIC option rather than the overall CURVE25519 option,
as is the case with blake2s.  To recap, the GENERIC and ARCH options
for CURVE25519 are internal only and selected by users such as
the Crypto API, or the externally visible CURVE25519 option which
in turn is selected by wireguard.  The self-test is specific to the
the external CURVE25519 option and should not be enabled by the
Crypto API.

This patch fixes this by splitting the GENERIC module from the
CURVE25519 module with the latter now containing just the self-test.

Reported-by: Hulk Robot <hulkci@huawei.com>
Fixes: aa127963f1ca ("crypto: lib/curve25519 - re-add selftests")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-16 15:18:13 +08:00
Jason A. Donenfeld
1c08a10436 crypto: poly1305 - add new 32 and 64-bit generic versions
These two C implementations from Zinc -- a 32x32 one and a 64x64 one,
depending on the platform -- come from Andrew Moon's public domain
poly1305-donna portable code, modified for usage in the kernel. The
precomputation in the 32-bit version and the use of 64x64 multiplies in
the 64-bit version make these perform better than the code it replaces.
Moon's code is also very widespread and has received many eyeballs of
scrutiny.

There's a bit of interference between the x86 implementation, which
relies on internal details of the old scalar implementation. In the next
commit, the x86 implementation will be replaced with a faster one that
doesn't rely on this, so none of this matters much. But for now, to keep
this passing the tests, we inline the bits of the old implementation
that the x86 implementation relied on. Also, since we now support a
slightly larger key space, via the union, some offsets had to be fixed
up.

Nonce calculation was folded in with the emit function, to take
advantage of 64x64 arithmetic. However, Adiantum appeared to rely on no
nonce handling in emit, so this path was conditionalized. We also
introduced a new struct, poly1305_core_key, to represent the precise
amount of space that particular implementation uses.

Testing with kbench9000, depending on the CPU, the update function for
the 32x32 version has been improved by 4%-7%, and for the 64x64 by
19%-30%. The 32x32 gains are small, but I think there's great value in
having a parallel implementation to the 64x64 one so that the two can be
compared side-by-side as nice stand-alone units.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-16 15:18:12 +08:00
Jason A. Donenfeld
aa127963f1 crypto: lib/curve25519 - re-add selftests
Somehow these were dropped when Zinc was being integrated, which is
problematic, because testing the library interface for Curve25519 is
important.. This commit simply adds them back and wires them in in the
same way that the blake2s selftests are wired in.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-12-27 18:18:03 +08:00
Ard Biesheuvel
ed20078b7e crypto: chacha20poly1305 - import construction and selftest from Zinc
This incorporates the chacha20poly1305 from the Zinc library, retaining
the library interface, but replacing the implementation with calls into
the code that already existed in the kernel's crypto API.

Note that this library API does not implement RFC7539 fully, given that
it is limited to 64-bit nonces. (The 96-bit nonce version that was part
of the selftest only has been removed, along with the 96-bit nonce test
vectors that only tested the selftest but not the actual library itself)

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:44 +08:00
Jason A. Donenfeld
0ed42a6f43 crypto: curve25519 - generic C library implementations
This contains two formally verified C implementations of the Curve25519
scalar multiplication function, one for 32-bit systems, and one for
64-bit systems whose compiler supports efficient 128-bit integer types.
Not only are these implementations formally verified, but they are also
the fastest available C implementations. They have been modified to be
friendly to kernel space and to be generally less horrendous looking,
but still an effort has been made to retain their formally verified
characteristic, and so the C might look slightly unidiomatic.

The 64-bit version comes from HACL*: https://github.com/project-everest/hacl-star
The 32-bit version comes from Fiat: https://github.com/mit-plv/fiat-crypto

Information: https://cr.yp.to/ecdh.html

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
[ardb: - move from lib/zinc to lib/crypto
       - replace .c #includes with Kconfig based object selection
       - drop simd handling and simplify support for per-arch versions ]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:43 +08:00
Jason A. Donenfeld
66d7fb94e4 crypto: blake2s - generic C library implementation and selftest
The C implementation was originally based on Samuel Neves' public
domain reference implementation but has since been heavily modified
for the kernel. We're able to do compile-time optimizations by moving
some scaffolding around the final function into the header file.

Information: https://blake2.net/

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Co-developed-by: Samuel Neves <sneves@dei.uc.pt>
[ardb: - move from lib/zinc to lib/crypto
       - remove simd handling
       - rewrote selftest for better coverage
       - use fixed digest length for blake2s_hmac() and rename to
         blake2s256_hmac() ]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:42 +08:00
Ard Biesheuvel
48ea8c6ebc crypto: poly1305 - move core routines into a separate library
Move the core Poly1305 routines shared between the generic Poly1305
shash driver and the Adiantum and NHPoly1305 drivers into a separate
library so that using just this pieces does not pull in the crypto
API pieces of the generic Poly1305 routine.

In a subsequent patch, we will augment this generic library with
init/update/final routines so that Poyl1305 algorithm can be used
directly without the need for using the crypto API's shash abstraction.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:41 +08:00
Ard Biesheuvel
5fb8ef2580 crypto: chacha - move existing library code into lib/crypto
Currently, our generic ChaCha implementation consists of a permute
function in lib/chacha.c that operates on the 64-byte ChaCha state
directly [and which is always included into the core kernel since it
is used by the /dev/random driver], and the crypto API plumbing to
expose it as a skcipher.

In order to support in-kernel users that need the ChaCha streamcipher
but have no need [or tolerance] for going through the abstractions of
the crypto API, let's expose the streamcipher bits via a library API
as well, in a way that permits the implementation to be superseded by
an architecture specific one if provided.

So move the streamcipher code into a separate module in lib/crypto,
and expose the init() and crypt() routines to users of the library.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:39 +08:00
Ard Biesheuvel
746b2e024c crypto: lib - tidy up lib/crypto Kconfig and Makefile
In preparation of introducing a set of crypto library interfaces, tidy
up the Makefile and split off the Kconfig symbols into a separate file.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17 09:02:38 +08:00
Hans de Goede
01d3aee866 crypto: sha256 - Make lib/crypto/sha256.c suitable for generic use
Before this commit lib/crypto/sha256.c has only been used in the s390 and
x86 purgatory code, make it suitable for generic use:

* Export interesting symbols
* Add  -D__DISABLE_EXPORTS to CFLAGS_sha256.o for purgatory builds to
  avoid the exports for the purgatory builds
* Add to lib/crypto/Makefile and crypto/Kconfig

Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-08-22 14:57:35 +10:00
Ard Biesheuvel
04007b0e6c crypto: des - split off DES library from generic DES cipher driver
Another one for the cipher museum: split off DES core processing into
a separate module so other drivers (mostly for crypto accelerators)
can reuse the code without pulling in the generic DES cipher itself.
This will also permit the cipher interface to be made private to the
crypto API itself once we move the only user in the kernel (CIFS) to
this library interface.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-08-22 14:57:33 +10:00
Ard Biesheuvel
e59c1c9874 crypto: aes - create AES library based on the fixed time AES code
Take the existing small footprint and mostly time invariant C code
and turn it into a AES library that can be used for non-performance
critical, casual use of AES, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits (e.g., in hard interrupts taken from kernel
context)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-07-26 14:55:33 +10:00
Ard Biesheuvel
dc51f25752 crypto: arc4 - refactor arc4 core code into separate library
Refactor the core rc4 handling so we can move most users to a library
interface, permitting us to drop the cipher interface entirely in a
future patch. This is part of an effort to simplify the crypto API
and improve its robustness against incorrect use.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-06-20 14:18:33 +08:00