IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Omitting suffixes from instructions in AT&T mode is bad practice when
operand size cannot be determined by the assembler from register
operands, and is likely going to be warned about by upstream gas in the
future (mine does already). Add the missing suffixes here. Note that for
64-bit this means some operations change from being 32-bit to 64-bit.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/5A93F98702000078001ABACC@prv-mh.provo.novell.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There is no need for \n\t in front of CC_SET(), as the macro already includes these two.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170906151808.5634-1-ubizjak@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit 62906027091f ("mm: add PageWaiters indicating tasks are
waiting for a page bit") Nick Piggin made our page locking no longer
unconditionally touch the hashed page waitqueue, which not only helps
performance in general, but is particularly helpful on NUMA machines
where the hashed wait queues can bounce around a lot.
However, the "clear lock bit atomically and then test the waiters bit"
sequence turns out to be much more expensive than it needs to be,
because you get a nasty stall when trying to access the same word that
just got updated atomically.
On architectures where locking is done with LL/SC, this would be trivial
to fix with a new primitive that clears one bit and tests another
atomically, but that ends up not working on x86, where the only atomic
operations that return the result end up being cmpxchg and xadd. The
atomic bit operations return the old value of the same bit we changed,
not the value of an unrelated bit.
On x86, we could put the lock bit in the high bit of the byte, and use
"xadd" with that bit (where the overflow ends up not touching other
bits), and look at the other bits of the result. However, an even
simpler model is to just use a regular atomic "and" to clear the lock
bit, and then the sign bit in eflags will indicate the resulting state
of the unrelated bit #7.
So by moving the PageWaiters bit up to bit #7, we can atomically clear
the lock bit and test the waiters bit on x86 too. And architectures
with LL/SC (which is all the usual RISC suspects), the particular bit
doesn't matter, so they are fine with this approach too.
This avoids the extra access to the same atomic word, and thus avoids
the costly stall at page unlock time.
The only downside is that the interface ends up being a bit odd and
specialized: clear a bit in a byte, and test the sign bit. Nick doesn't
love the resulting name of the new primitive, but I'd rather make the
name be descriptive and very clear about the limitation imposed by
trying to work across all relevant architectures than make it be some
generic thing that doesn't make the odd semantics explicit.
So this introduces the new architecture primitive
clear_bit_unlock_is_negative_byte();
and adds the trivial implementation for x86. We have a generic
non-optimized fallback (that just does a "clear_bit()"+"test_bit(7)"
combination) which can be overridden by any architecture that can do
better. According to Nick, Power has the same hickup x86 has, for
example, but some other architectures may not even care.
All these optimizations mean that my page locking stress-test (which is
just executing a lot of small short-lived shell scripts: "make test" in
the git source tree) no longer makes our page locking look horribly bad.
Before all these optimizations, just the unlock_page() costs were just
over 3% of all CPU overhead on "make test". After this, it's down to
0.66%, so just a quarter of the cost it used to be.
(The difference on NUMA is bigger, but there this micro-optimization is
likely less noticeable, since the big issue on NUMA was not the accesses
to 'struct page', but the waitqueue accesses that were already removed
by Nick's earlier commit).
Acked-by: Nick Piggin <npiggin@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove open-coded uses of set instructions to use CC_SET()/CC_OUT() in
<asm/bitops.h>.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-7-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Change the lexical defintion of the GEN_*_RMWcc() macros to not take
the condition code as a quoted string. This will help support
changing them to use the new __GCC_ASM_FLAG_OUTPUTS__ feature in a
subsequent patch.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-4-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
The gcc people have confirmed that using "bool" when combined with
inline assembly always is treated as a byte-sized operand that can be
assumed to be 0 or 1, which is exactly what the SET instruction
emits. Change the output types and intermediate variables of as many
operations as practical to "bool".
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-3-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Use SETC instead of SBB to return the value of CF from assembly. Using
SETcc enables uniformity with other flags-returning pieces of assembly
code.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-2-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
It used to be an ad-hoc hack defined by the x86 version of
<asm/bitops.h> that enabled a couple of library routines to know whether
an integer multiply is faster than repeated shifts and additions.
This just makes it use the real Kconfig system instead, and makes x86
(which was the only architecture that did this) select the option.
NOTE! Even for x86, this really is kind of wrong. If we cared, we would
probably not enable this for builds optimized for netburst (P4), where
shifts-and-adds are generally faster than multiplies. This patch does
*not* change that kind of logic, though, it is purely a syntactic change
with no code changes.
This was triggered by the fact that we have other places that really
want to know "do I want to expand multiples by constants by hand or
not", particularly the hash generation code.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
x86 is strongly ordered and all its atomic ops imply a full barrier.
Implement the two new primitives as the old ones were.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-knswsr5mldkr0w1lrdxvc81w@git.kernel.org
Cc: Dave Jones <davej@redhat.com>
Cc: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In checkin:
0c44c2d0f459 x86: Use asm goto to implement better modify_and_test() functions
the various functions which do modify and test were unified and
optimized using "asm goto". However, this change missed the detail
that the bitops require an "Ir" constraint rather than an "er"
constraint ("I" = integer constant from 0-31, "e" = signed 32-bit
integer constant). This would cause code to miscompile if these
functions were used on constant bit positions 32-255 and the build to
fail if used on constant bit positions above 255.
Add the constraints as a parameter to the GEN_BINARY_RMWcc() macro to
avoid this problem.
Reported-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/529E8719.4070202@zytor.com
Linus suggested using asm goto to get rid of the typical SETcc + TEST
instruction pair -- which also clobbers an extra register -- for our
typical modify_and_test() functions.
Because asm goto doesn't allow output fields it has to include an
unconditinal memory clobber when it changes a memory variable to force
a reload.
Luckily all atomic ops already imply a compiler barrier to go along
with their memory barrier semantics.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-0mtn9siwbeo1d33bap1422se@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the bitops operation to be naturally "long", i.e. 63 bits on
the 64-bit kernel. Additional bugs are likely to crop up in the
future.
We already have bugs which machines with > 16 TiB of memory in a
single node, as can happen if memory is interleaved. The x86 bitop
operations take a signed index, so using an unsigned type is not an
option.
Jim Kukunas measured the effect of this patch on kernel size: it adds
2779 bytes to the allyesconfig kernel. Some of that probably could be
elided by replacing the inline functions with macros which select the
32-bit type if the index is a 32-bit value, something like:
In that case we could also use "Jr" constraints for the 64-bit
version.
However, this would more than double the amount of code for a
relatively small gain.
Note that we can't use ilog2() for _BITOPS_LONG_SHIFT, as that causes
a recursive header inclusion problem.
The change to constant_test_bit() should both generate better code and
give correct result for negative bit indicies. As previously written
the compiler had to generate extra code to create the proper wrong
result for negative values.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Jim Kukunas <james.t.kukunas@intel.com>
Link: http://lkml.kernel.org/n/tip-z61ofiwe90xeyb461o72h8ya@git.kernel.org
Make "REP BSF" unconditional, as per the suggestion of hpa
and Linus, this removes the insane BSF_PREFIX conditional
and simplifies the logic.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/5058741E020000780009C014@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Following a relatively recent compiler change, make use of the
fact that for non-zero input BSF and TZCNT produce the same
result, and that CPUs not knowing of TZCNT will treat the
instruction as BSF (i.e. ignore what looks like a REP prefix to
them). The assumption here is that TZCNT would never have worse
performance than BSF.
For the moment, only do this when the respective generic-CPU
option is selected (as there are no specific-CPU options
covering the CPUs supporting TZCNT), and don't do that when size
optimization was requested.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/504DEA1B020000780009A277@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 64-bit special cases of the former two (the thrird one is
64-bit only anyway) don't need to use "long" temporaries, as the
result will always fit in a 32-bit variable, and the functions
return plain "int". This avoids a few REX prefixes, i.e.
minimally reduces code size.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/504DE550020000780009A258@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__test_and_clear_bit is actually atomic with respect
to the local CPU. Add a note saying that KVM on x86
relies on this behaviour so people don't accidentaly break it.
Also warn not to rely on this in portable code.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Needed for shifting 64-bit values on 32-bit, like MSR values,
for example.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frank Arnold <frank.arnold@amd.com>
Link: http://lkml.kernel.org/r/1337684026-19740-1-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fls(N), ffs(N) and fls64(N) can be optimised on x86_64. Currently they use a
CMOV instruction after the BSR/BSF to set the destination register to -1 if the
value to be scanned was 0 (in which case BSR/BSF set the Z flag).
Instead, according to the AMD64 specification, we can make use of the fact that
BSR/BSF doesn't modify its output register if its input is 0. By preloading
the output with -1 and incrementing the result, we achieve the desired result
without the need for a conditional check.
The Intel x86_64 specification, however, says that the result of BSR/BSF in
such a case is undefined. That said, when queried, one of the Intel CPU
architects said that the behaviour on all Intel CPUs is that:
(1) with BSRQ/BSFQ, the 64-bit destination register is written with its
original value if the source is 0, thus, in essence, giving the effect we
want. And,
(2) with BSRL/BSFL, the lower half of the 64-bit destination register is
written with its original value if the source is 0, and the upper half is
cleared, thus giving us the effect we want (we return a 4-byte int).
Further, it was indicated that they (Intel) are unlikely to get away with
changing the behaviour.
It might be possible to optimise the 32-bit versions of these functions, but
there's a lot more variation, and so the effective non-destructive property of
BSRL/BSRF cannot be relied on.
[ hpa: specifically, some 486 chips are known to NOT have this property. ]
I have benchmarked these functions on my Core2 Duo test machine using the
following program:
#include <stdlib.h>
#include <stdio.h>
#ifndef __x86_64__
#error
#endif
#define PAGE_SHIFT 12
typedef unsigned long long __u64, u64;
typedef unsigned int __u32, u32;
#define noinline __attribute__((noinline))
static __always_inline int fls64(__u64 x)
{
long bitpos = -1;
asm("bsrq %1,%0"
: "+r" (bitpos)
: "rm" (x));
return bitpos + 1;
}
static inline unsigned long __fls(unsigned long word)
{
asm("bsr %1,%0"
: "=r" (word)
: "rm" (word));
return word;
}
static __always_inline int old_fls64(__u64 x)
{
if (x == 0)
return 0;
return __fls(x) + 1;
}
static noinline // __attribute__((const))
int old_get_order(unsigned long size)
{
int order;
size = (size - 1) >> (PAGE_SHIFT - 1);
order = -1;
do {
size >>= 1;
order++;
} while (size);
return order;
}
static inline __attribute__((const))
int get_order_old_fls64(unsigned long size)
{
int order;
size--;
size >>= PAGE_SHIFT;
order = old_fls64(size);
return order;
}
static inline __attribute__((const))
int get_order(unsigned long size)
{
int order;
size--;
size >>= PAGE_SHIFT;
order = fls64(size);
return order;
}
unsigned long prevent_optimise_out;
static noinline unsigned long test_old_get_order(void)
{
unsigned long n, total = 0;
long rep, loop;
for (rep = 1000000; rep > 0; rep--) {
for (loop = 0; loop <= 16384; loop += 4) {
n = 1UL << loop;
total += old_get_order(n);
}
}
return total;
}
static noinline unsigned long test_get_order_old_fls64(void)
{
unsigned long n, total = 0;
long rep, loop;
for (rep = 1000000; rep > 0; rep--) {
for (loop = 0; loop <= 16384; loop += 4) {
n = 1UL << loop;
total += get_order_old_fls64(n);
}
}
return total;
}
static noinline unsigned long test_get_order(void)
{
unsigned long n, total = 0;
long rep, loop;
for (rep = 1000000; rep > 0; rep--) {
for (loop = 0; loop <= 16384; loop += 4) {
n = 1UL << loop;
total += get_order(n);
}
}
return total;
}
int main(int argc, char **argv)
{
unsigned long total;
switch (argc) {
case 1: total = test_old_get_order(); break;
case 2: total = test_get_order_old_fls64(); break;
default: total = test_get_order(); break;
}
prevent_optimise_out = total;
return 0;
}
This allows me to test the use of the old fls64() implementation and the new
fls64() implementation and also to contrast these to the out-of-line loop-based
implementation of get_order(). The results were:
warthog>time ./get_order
real 1m37.191s
user 1m36.313s
sys 0m0.861s
warthog>time ./get_order x
real 0m16.892s
user 0m16.586s
sys 0m0.287s
warthog>time ./get_order x x
real 0m7.731s
user 0m7.727s
sys 0m0.002s
Using the current upstream fls64() as a basis for an inlined get_order() [the
second result above] is much faster than using the current out-of-line
loop-based get_order() [the first result above].
Using my optimised inline fls64()-based get_order() [the third result above]
is even faster still.
[ hpa: changed the selection of 32 vs 64 bits to use CONFIG_X86_64
instead of comparing BITS_PER_LONG, updated comments, rebased manually
on top of 83d99df7c4bf x86, bitops: Move fls64.h inside __KERNEL__ ]
Signed-off-by: David Howells <dhowells@redhat.com>
Link: http://lkml.kernel.org/r/20111213145654.14362.39868.stgit@warthog.procyon.org.uk
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We would include <asm-generic/bitops/fls64.h> even without __KERNEL__,
but that doesn't make sense, as:
1. That file provides fls64(), but the corresponding function fls() is
not exported to user space.
2. The implementation of fls64.h uses kernel-only symbols.
3. fls64.h is not exported to user space.
This appears to have been a bug introduced in checkin:
d57594c203b1 bitops: use __fls for fls64 on 64-bit archs
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Alexander van Heukelum <heukelum@mailshack.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/4EEA77E1.6050009@zytor.com
The majority of architectures implement ext2 atomic bitops as
test_and_{set,clear}_bit() without spinlock.
This adds this type of generic implementation in ext2-atomic-setbit.h and
use it wherever possible.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Suggested-by: Andreas Dilger <adilger@dilger.ca>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
minix bit operations are only used by minix filesystem and useless by
other modules. Because byte order of inode and block bitmaps is different
on each architecture like below:
m68k:
big-endian 16bit indexed bitmaps
h8300, microblaze, s390, sparc, m68knommu:
big-endian 32 or 64bit indexed bitmaps
m32r, mips, sh, xtensa:
big-endian 32 or 64bit indexed bitmaps for big-endian mode
little-endian bitmaps for little-endian mode
Others:
little-endian bitmaps
In order to move minix bit operations from asm/bitops.h to architecture
independent code in minix filesystem, this provides two config options.
CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED is only selected by m68k.
CONFIG_MINIX_FS_NATIVE_ENDIAN is selected by the architectures which use
native byte order bitmaps (h8300, microblaze, s390, sparc, m68knommu,
m32r, mips, sh, xtensa). The architectures which always use little-endian
bitmaps do not select these options.
Finally, we can remove minix bit operations from asm/bitops.h for all
architectures.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the result of conversions, there are no users of ext2 non-atomic bit
operations except for ext2 filesystem itself. Now we can put them into
architecture independent code in ext2 filesystem, and remove from
asm/bitops.h for all architectures.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce little-endian bit operations to the big-endian architectures
which do not have native little-endian bit operations and the
little-endian architectures. (alpha, avr32, blackfin, cris, frv, h8300,
ia64, m32r, mips, mn10300, parisc, sh, sparc, tile, x86, xtensa)
These architectures can just include generic implementation
(asm-generic/bitops/le.h).
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Grant Grundler <grundler@parisc-linux.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
asm-generic/bitops/find.h has the extern declarations of find_next_bit()
and find_next_zero_bit() and the macro definitions of find_first_bit()
and find_first_zero_bit(). It is only usable by the architectures which
enables CONFIG_GENERIC_FIND_NEXT_BIT and disables
CONFIG_GENERIC_FIND_FIRST_BIT.
x86 and tile enable both CONFIG_GENERIC_FIND_NEXT_BIT and
CONFIG_GENERIC_FIND_FIRST_BIT. These architectures cannot include
asm-generic/bitops/find.h in their asm/bitops.h. So ifdefed extern
declarations of find_first_bit and find_first_zero_bit() are put in
linux/bitops.h.
This makes asm-generic/bitops/find.h usable by these architectures
and use it. Also this change is needed for the forthcoming duplicated
extern declarations cleanup.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Chris Metcalf <cmetcalf@tilera.com>
While debugging bit_spin_lock() hang, it was tracked down to gcc-4.4
misoptimization of non-inlined constant_test_bit() due to non-volatile
addr when 'const volatile unsigned long *addr' cast to 'unsigned long *'
with subsequent unconditional jump to pause (and not to the test) leading
to hang.
Compiling with gcc-4.3 or disabling CONFIG_OPTIMIZE_INLINING yields inlined
constant_test_bit() and correct jump, thus working around the kernel bug.
Other arches than asm-x86 may implement this slightly differently;
2.6.29 mitigates the misoptimization by changing the function prototype
(commit c4295fbb6048d85f0b41c5ced5cbf63f6811c46c) but probably fixing the issue
itself is better.
Signed-off-by: Alexander Chumachenko <ledest@gmail.com>
Signed-off-by: Michael Shigorin <mike@osdn.org.ua>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Add support for the hardware version of the Hamming weight function,
popcnt, present in CPUs which advertize it under CPUID, Function
0x0000_0001_ECX[23]. On CPUs which don't support it, we fallback to the
default lib/hweight.c sw versions.
A synthetic benchmark comparing popcnt with __sw_hweight64 showed almost
a 3x speedup on a F10h machine.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100318112015.GC11152@aftab>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Impact: reduce kernel image size
Hugh Dickins noticed that older gcc versions when the kernel
is built for code size didn't inline some of the bitops.
Mark all complex x86 bitops that have more than a single
asm statement or two as always inline to avoid this problem.
Probably should be done for other architectures too.
Ingo then found a better fix that only requires
a single line change, but it unfortunately only
works on gcc 4.3.
On older gccs the original patch still makes a ~0.3% defconfig
difference with CONFIG_OPTIMIZE_INLINING=y.
With gcc 4.1 and a defconfig like build:
6116998 1138540 883788 8139326 7c323e vmlinux-oi-with-patch
6137043 1138540 883788 8159371 7c808b vmlinux-optimize-inlining
~20k / 0.3% difference.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ingo noticed that using signed arithmetic seems to confuse the gcc
inliner, and make it potentially decide that it's all too complicated.
(Yeah, yeah, it's a constant. It's always positive. Still..)
Based-on: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: Minor optimization.
Implement change_bit with immediate bit count as "lock xorb". This is
similar to "lock orb" and "lock andb" for set_bit and clear_bit
functions.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:
a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>