IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Without the newline character, the log may not be printed immediately
after the error occurs.
Fixes: ca376a9374 ("livepatch: Prevent module-specific KLP rela sections from referencing vmlinux symbols")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230914072644.4098857-1-zhengyejian1@huawei.com
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to cond_resched(),
this resolves livepatching busy-loop stalls with certain CPU-bound kthreads.
- Improve sched_move_task() performance on autogroup configs.
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK39cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hXPhAAk2WqOV2cW4BjSCHjWWE05IfTb0HMn8si
mFGBAnr1GIkJRvICAusAwDU3FcmP5mWyXA+LK110d3x4fKJP15vCD5ru5lHnBfX7
fSD+Ml8uM4Xlp8iUoQspilbQwmWkQSwhudbDs3Nj7XGUzJCvNgm1sM3xPRDlqSJ5
6zumfVOPTfzSGcZY3a8sMuJnCepZHLRR6NkLzo/DuI1NMy2Jw1dK43dh77AO1mBF
M53PF2IQgm6Wu/67p2k5eDq4c0AKL4PyIb4dRTGOPyljWMf41n28jwMv1tjlvu+Y
uT0JD8MJSrFiylyT41x7Asr7orAGXj3cPhShK5R0vrutx/SbqBiaaE1MO9U3aC3B
7xVXEORHWD6KIDqTvzmWGrMBkIdyWB6CLk6EJKr3MqM9hUtP2ift7bkAgIad9h+4
G9DdVePGoCyh/TQtJ9EPIULAYeu9mmDZe8rTQ8C5MCSg//05/CTMgBbb0NiFWhnd
0JQl1B0nNUA87whVUxK8Hfu4DLh7m9jrzgQr9Ww8/FwQ6tQHBOKWgDdbv45ckkaG
cJIQt/+vLilddazc8u8E+BGaD5w2uIYF0uL7kvG6Q5oARX06AZ5dj1m06vhZe/Ym
laOVZEpJsbQnxviY6jwj1n+CSB9aK7feiQfDePBPbpJGGUHyZoKrnLN6wmW2se+H
VCHtdgsEl5I=
=Hgci
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static
The summary of the changes for this pull requests is:
* Song Liu's new struct module_memory replacement
* Nick Alcock's MODULE_LICENSE() removal for non-modules
* My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded
prior to allocating the final module memory with vmalloc and the
respective debug code it introduces to help clarify the issue. Although
the functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to have
been picked up. Folks on larger CPU systems with modules will want to
just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details
on this pull request.
The functional change change in this pull request is the very first
patch from Song Liu which replaces the struct module_layout with a new
struct module memory. The old data structure tried to put together all
types of supported module memory types in one data structure, the new
one abstracts the differences in memory types in a module to allow each
one to provide their own set of details. This paves the way in the
future so we can deal with them in a cleaner way. If you look at changes
they also provide a nice cleanup of how we handle these different memory
areas in a module. This change has been in linux-next since before the
merge window opened for v6.3 so to provide more than a full kernel cycle
of testing. It's a good thing as quite a bit of fixes have been found
for it.
Jason Baron then made dynamic debug a first class citizen module user by
using module notifier callbacks to allocate / remove module specific
dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area
is active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without Makefile.modbuiltin
or tristate.conf"). Nick has been working on this *for years* and
AFAICT I was the only one to suggest two alternatives to this approach
for tooling. The complexity in one of my suggested approaches lies in
that we'd need a possible-obj-m and a could-be-module which would check
if the object being built is part of any kconfig build which could ever
lead to it being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
suggested would be to have a tristate in kconfig imply the same new
-DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
mapping to modules always, and I don't think that's the case today. I am
not aware of Nick or anyone exploring either of these options. Quite
recently Josh Poimboeuf has pointed out that live patching, kprobes and
BPF would benefit from resolving some part of the disambiguation as
well but for other reasons. The function granularity KASLR (fgkaslr)
patches were mentioned but Joe Lawrence has clarified this effort has
been dropped with no clear solution in sight [1].
In the meantime removing module license tags from code which could never
be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up,
and so you'll see quite a bit of Nick's patches in other pull
requests for this merge window. I just picked up the stragglers after
rc3. LWN has good coverage on the motivation behind this work [2] and
the typical cross-tree issues he ran into along the way. The only
concrete blocker issue he ran into was that we should not remove the
MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
they can never be modules. Nick ended up giving up on his efforts due
to having to do this vetting and backlash he ran into from folks who
really did *not understand* the core of the issue nor were providing
any alternative / guidance. I've gone through his changes and dropped
the patches which dropped the module license tags where an SPDX
license tag was missing, it only consisted of 11 drivers. To see
if a pull request deals with a file which lacks SPDX tags you
can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above,
but that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but
it demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees,
and I just picked up the slack after rc3 for the last kernel was out.
Those changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on
a systems with over 400 CPUs when KASAN was enabled due to running
out of virtual memory space. Although the functional change only
consists of 3 lines in the patch "module: avoid allocation if module is
already present and ready", proving that this was the best we can
do on the modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been
in linux-next since around rc3 of the last kernel, the actual final
fix for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported
with larger number of CPUs. Userspace is not yet fixed as it is taking
a bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge them,
but I'm currently inclined to just see if userspace can fix this
instead.
[0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
[1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
[2] https://lwn.net/Articles/927569/
[3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
agiwdHUMVN7X
=56WK
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
The parameter 'struct module *' in the hook function associated with
{module_}kallsyms_on_each_symbol() is no longer used. Delete it.
Suggested-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definitions to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230217-kobj_type-livepatch-v1-1-06ded292e897@weissschuh.net
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmP01jEACgkQUqAMR0iA
lPIH1g/9G3CLt9+by3d0FiS5AsbK6vohZRzKxqCTyX9b2p2sLQuiTu8TodJ9IOur
axpaOuPOIjQ253yfqrYL2YZHdfr/632nSTGsT18p7k8a9m6ghQ6cW+uq23Ro9W43
uubjyvFMTeLBnkDTSJquciENdMtyPwyiTN0+ZvDOsAOKoBt7i3Rt7lcorjDuALwb
2SQ80qCjYLy1r6mkQyy3IhLQVSeRiaqkR6IAdxR5EeXmbSi0YYh0Jxz5AzPMeDw6
F1w7Whe6Vf8vf4JHVDqNazB3f+JH4JrmRvk6LxlGU33z9uJac4NIbboGDXzRP21h
A0UGqwJimeoi8dji9Y3cXRIYRc+HqyqL0IadSHHLCou746/CJDBQN1EjNNBgZgu6
cTELnRL9TsV9tWt9boqbMK0KfCFnOsGPMDAXXDH5G/ZUsvyDweGMNelgNTXURHFX
f1cTfdDj2T/iG3XDZHf35/rSI56BDQJcJ1G1fQc3sl+G9jDGxX3PBJYNAUpvC6cy
iewDeROcAAXmwUqaC8epJJfN2m9zJJpDgR1t4mZTnKkmRF090ZApyDA4M769kn0J
ioHvE8Pe9+GjY8syGzq3EJRyQnfXgTbAyKfiTpGWefLPrgkQ9LfFQRQ1S21sy483
Bz/KrNl1tMWFsSmngNYaiOZifjxVj8pYoIz1W2s0ore9sYu78YM=
=xdQJ
-----END PGP SIGNATURE-----
Merge tag 'livepatching-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching
Pull livepatching updates from Petr Mladek:
- Allow reloading a livepatched module by clearing livepatch-specific
relocations in the livepatch module.
Otherwise, the repeated load would fail on consistency checks.
* tag 'livepatching-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
livepatch,x86: Clear relocation targets on a module removal
x86/module: remove unused code in __apply_relocate_add
Josh reported a bug:
When the object to be patched is a module, and that module is
rmmod'ed and reloaded, it fails to load with:
module: x86/modules: Skipping invalid relocation target, existing value is nonzero for type 2, loc 00000000ba0302e9, val ffffffffa03e293c
livepatch: failed to initialize patch 'livepatch_nfsd' for module 'nfsd' (-8)
livepatch: patch 'livepatch_nfsd' failed for module 'nfsd', refusing to load module 'nfsd'
The livepatch module has a relocation which references a symbol
in the _previous_ loading of nfsd. When apply_relocate_add()
tries to replace the old relocation with a new one, it sees that
the previous one is nonzero and it errors out.
He also proposed three different solutions. We could remove the error
check in apply_relocate_add() introduced by commit eda9cec4c9
("x86/module: Detect and skip invalid relocations"). However the check
is useful for detecting corrupted modules.
We could also deny the patched modules to be removed. If it proved to be
a major drawback for users, we could still implement a different
approach. The solution would also complicate the existing code a lot.
We thus decided to reverse the relocation patching (clear all relocation
targets on x86_64). The solution is not
universal and is too much arch-specific, but it may prove to be simpler
in the end.
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Originally-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
Tested-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230125185401.279042-2-song@kernel.org
Currently we traverse all symbols of all modules to find the specified
function for the specified module. But in reality, we just need to find
the given module and then traverse all the symbols in it.
Let's add a new parameter 'const char *modname' to function
module_kallsyms_on_each_symbol(), then we can compare the module names
directly in this function and call hook 'fn' after matching. If 'modname'
is NULL, the symbols of all modules are still traversed for compatibility
with other usage cases.
Phase1: mod1-->mod2..(subsequent modules do not need to be compared)
|
Phase2: -->f1-->f2-->f3
Assuming that there are m modules, each module has n symbols on average,
then the time complexity is reduced from O(m * n) to O(m) + O(n).
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/r/20230116101009.23694-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The implementation of function klp_match_callback() is identical to the
partial implementation of function klp_find_callback(). So call function
klp_match_callback() in function klp_find_callback() instead of the
duplicated code.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Suggested-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Based on the test results of kallsyms_on_each_match_symbol() and
kallsyms_on_each_symbol(), the average performance can be improved by
more than 1500 times.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmM9Y/gACgkQUqAMR0iA
lPJxwg//SJsMwv3zDDP3YAzhROongc9mlNL9yTNo5zMFYaLIF6j0UkN7zP7+ChTY
u3rfiOYOiSNVyylC4+Auznqi219wjEPedDtJkP6Gx6mHJIArXoFltOGct1fz3CH6
xJjBYPpRVQTP54HQ/OEM4kfxn7eG1HXpErxIYUfeRzM5REJR0iZFfI6FwyXVhjsL
1lDTHc/qlLlaDMqik2sQ/3yJ391SQKodAwkJY9d2wS06OjMmvtX+dADZJkXwv14f
5wnBXG/4Zr0HSR2JW3VgU7AwZptaRLYF2PtYdDp+yI0DSsmjPq4d+0YqTVbgLNSq
r0XmewMpnNUNojEuFpW4/+RGZo0pnlJpjUOYfKTbDecnYfMjUFtSGPLVTMnN1OT+
xcW/Q8jO4nQ24993xrQbOr/vBT6nIsePkJAOJkTPzzAxkPF3X7ik3lZyjb7ntDlV
mTfUpmTiFtmdMsDaKFxbgRknPre7z4XASMAiErHU4TGNyKBHsRDXmAdtC8hNn7ZU
z2NGlDrBKuHL8IcKQ6uH/SYtyG3HIVCeiWqkRd9Sm9RKoz4p+sGl3I4D367O+fGX
GGwXj8b5wvjl/BGXHoM+kQKmclYB8kD/8iQSwd64qooTkiDtt1HDPGr2Ewa5thiz
fDoVyy98vyRSNmXtst9S7+IMmdjQ7mjmW9AlAITOwIo89UW+7GQ=
=+qS1
-----END PGP SIGNATURE-----
Merge tag 'livepatching-for-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching
Pull livepatching updates from Petr Mladek:
- Fix race between fork and livepatch transition revert
- Add sysfs entry that shows "patched" state for each object (module)
that can be livepatched by the given livepatch
- Some clean up
* tag 'livepatching-for-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
selftests/livepatch: add sysfs test
livepatch: add sysfs entry "patched" for each klp_object
selftests/livepatch: normalize sysctl error message
livepatch: Add a missing newline character in klp_module_coming()
livepatch: fix race between fork and KLP transition
Rust symbols can become quite long due to namespacing introduced
by modules, types, traits, generics, etc. For instance,
the following code:
pub mod my_module {
pub struct MyType;
pub struct MyGenericType<T>(T);
pub trait MyTrait {
fn my_method() -> u32;
}
impl MyTrait for MyGenericType<MyType> {
fn my_method() -> u32 {
42
}
}
}
generates a symbol of length 96 when using the upcoming v0 mangling scheme:
_RNvXNtCshGpAVYOtgW1_7example9my_moduleINtB2_13MyGenericTypeNtB2_6MyTypeENtB2_7MyTrait9my_method
At the moment, Rust symbols may reach up to 300 in length.
Setting 512 as the maximum seems like a reasonable choice to
keep some headroom.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Co-developed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Add per klp_object sysfs entry "patched". It makes it easier to debug
typos in the module name.
Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
[pmladek@suse.com: Updated kernel version when the sysfs file will be introduced]
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220902205208.3117798-2-song@kernel.org
The error message is not printed immediately because it does not end with
a newline character.
Before:
root@localhost:~# insmod vmlinux.ko
insmod: ERROR: could not insert module vmlinux.ko: Invalid parameters
After:
root@localhost:~# insmod vmlinux.ko
[ 43.982558] livepatch: vmlinux.ko: invalid module name
insmod: ERROR: could not insert module vmlinux.ko: Invalid parameters
Fixes: dcf550e52f ("livepatch: Disallow vmlinux.ko")
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220830112855.749-1-thunder.leizhen@huawei.com
When enabling a klp patch with klp_enable_patch(), klp_init_patch_early()
is invoked to initialize the kobjects for the patch itself, as well as the
'struct klp_object' and 'struct klp_func' objects that comprise it.
However, there are some error paths in klp_enable_patch() where some
kobjects may have been initialized with kobject_init(), but an error code
is still returned due to e.g. a 'struct klp_object' having a NULL funcs
pointer.
In these paths, the initial reference of the kobject of the 'struct
klp_patch' may never be released, along with one or more of its objects and
their functions, as kobject_put() is not invoked on the cleanup path if
klp_init_patch_early() returns an error code.
For example, if an object entry such as the following were added to the
sample livepatch module's klp patch, it would cause the vmlinux klp_object,
and its klp_func which updates 'cmdline_proc_show', to never be released:
static struct klp_object objs[] = {
{
/* name being NULL means vmlinux */
.funcs = funcs,
},
{
/* NULL funcs -- would cause reference leak */
.name = "kvm",
}, { }
};
Without this change, if CONFIG_DEBUG_KOBJECT is enabled, and the sample klp
patch is loaded, the kobjects (the patch, the vmlinux 'struct klp_object',
and its func) are observed as initialized, but never released, in the dmesg
log output. With the change, these kobject references no longer fail to be
released as the error case is properly handled before they are initialized.
Signed-off-by: David Vernet <void@manifault.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Require an explicit call to module_kallsyms_on_each_symbol to look
for symbols in modules instead of the call from kallsyms_on_each_symbol,
and acquire module_mutex inside of module_kallsyms_on_each_symbol instead
of leaving that up to the caller. Note that this slightly changes the
behavior for the livepatch code in that the symbols from vmlinux are not
iterated anymore if objname is set, but that actually is the desired
behavior in this case.
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Allow for a RCU-sched critical section around find_module, following
the lower level find_module_all helper, and switch the two callers
outside of module.c to use such a RCU-sched critical section instead
of module_mutex.
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Fix the following sparse warning:
kernel/livepatch/core.c:748:5: warning: symbol 'klp_apply_object_relocs' was
not declared.
The klp_apply_object_relocs() has only one call site within core.c;
it should be static
Fixes: 7c8e2bdd5f ("livepatch: Apply vmlinux-specific KLP relocations early")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Samuel Zou <zou_wei@huawei.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Now that the livepatch code no longer needs the text_mutex for changing
module permissions, move its usage down to apply_relocate_add().
Note the s390 version of apply_relocate_add() doesn't need to use the
text_mutex because it already uses s390_kernel_write_lock, which
accomplishes the same task.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
With arch_klp_init_object_loaded() gone, and apply_relocate_add() now
using text_poke(), livepatch no longer needs to use module_disable_ro().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Prevent module-specific KLP rela sections from referencing vmlinux
symbols. This helps prevent ordering issues with module special section
initializations. Presumably such symbols are exported and normal relas
can be used instead.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
After the previous patch, vmlinux-specific KLP relocations are now
applied early during KLP module load. This means that .klp.arch
sections are no longer needed for *vmlinux-specific* KLP relocations.
One might think they're still needed for *module-specific* KLP
relocations. If a to-be-patched module is loaded *after* its
corresponding KLP module is loaded, any corresponding KLP relocations
will be delayed until the to-be-patched module is loaded. If any
special sections (.parainstructions, for example) rely on those
relocations, their initializations (apply_paravirt) need to be done
afterwards. Thus the apparent need for arch_klp_init_object_loaded()
and its corresponding .klp.arch sections -- it allows some of the
special section initializations to be done at a later time.
But... if you look closer, that dependency between the special sections
and the module-specific KLP relocations doesn't actually exist in
reality. Looking at the contents of the .altinstructions and
.parainstructions sections, there's not a realistic scenario in which a
KLP module's .altinstructions or .parainstructions section needs to
access a symbol in a to-be-patched module. It might need to access a
local symbol or even a vmlinux symbol; but not another module's symbol.
When a special section needs to reference a local or vmlinux symbol, a
normal rela can be used instead of a KLP rela.
Since the special section initializations don't actually have any real
dependency on module-specific KLP relocations, .klp.arch and
arch_klp_init_object_loaded() no longer have a reason to exist. So
remove them.
As Peter said much more succinctly:
So the reason for .klp.arch was that .klp.rela.* stuff would overwrite
paravirt instructions. If that happens you're doing it wrong. Those
RELAs are core kernel, not module, and thus should've happened in
.rela.* sections at patch-module loading time.
Reverting this removes the two apply_{paravirt,alternatives}() calls
from the late patching path, and means we don't have to worry about
them when removing module_disable_ro().
[ jpoimboe: Rewrote patch description. Tweaked klp_init_object_loaded()
error path. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
KLP relocations are livepatch-specific relocations which are applied to
a KLP module's text or data. They exist for two reasons:
1) Unexported symbols: replacement functions often need to access
unexported symbols (e.g. static functions), which "normal"
relocations don't allow.
2) Late module patching: this is the ability for a KLP module to
bypass normal module dependencies, such that the KLP module can be
loaded *before* a to-be-patched module. This means that
relocations which need to access symbols in the to-be-patched
module might need to be applied to the KLP module well after it has
been loaded.
Non-late-patched KLP relocations are applied from the KLP module's init
function. That usually works fine, unless the patched code wants to use
alternatives, paravirt patching, jump tables, or some other special
section which needs relocations. Then we run into ordering issues and
crashes.
In order for those special sections to work properly, the KLP
relocations should be applied *before* the special section init code
runs, such as apply_paravirt(), apply_alternatives(), or
jump_label_apply_nops().
You might think the obvious solution would be to move the KLP relocation
initialization earlier, but it's not necessarily that simple. The
problem is the above-mentioned late module patching, for which KLP
relocations can get applied well after the KLP module is loaded.
To "fix" this issue in the past, we created .klp.arch sections:
.klp.arch.{module}..altinstructions
.klp.arch.{module}..parainstructions
Those sections allow KLP late module patching code to call
apply_paravirt() and apply_alternatives() after the module-specific KLP
relocations (.klp.rela.{module}.{section}) have been applied.
But that has a lot of drawbacks, including code complexity, the need for
arch-specific code, and the (per-arch) danger that we missed some
special section -- for example the __jump_table section which is used
for jump labels.
It turns out there's a simpler and more functional approach. There are
two kinds of KLP relocation sections:
1) vmlinux-specific KLP relocation sections
.klp.rela.vmlinux.{sec}
These are relocations (applied to the KLP module) which reference
unexported vmlinux symbols.
2) module-specific KLP relocation sections
.klp.rela.{module}.{sec}:
These are relocations (applied to the KLP module) which reference
unexported or exported module symbols.
Up until now, these have been treated the same. However, they're
inherently different.
Because of late module patching, module-specific KLP relocations can be
applied very late, thus they can create the ordering headaches described
above.
But vmlinux-specific KLP relocations don't have that problem. There's
nothing to prevent them from being applied earlier. So apply them at
the same time as normal relocations, when the KLP module is being
loaded.
This means that for vmlinux-specific KLP relocations, we no longer have
any ordering issues. vmlinux-referencing jump labels, alternatives, and
paravirt patching will work automatically, without the need for the
.klp.arch hacks.
All that said, for module-specific KLP relocations, the ordering
problems still exist and we *do* still need .klp.arch. Or do we? Stay
tuned.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This is purely a theoretical issue, but if there were a module named
vmlinux.ko, the livepatch relocation code wouldn't be able to
distinguish between vmlinux-specific and vmlinux.o-specific KLP
relocations.
If CONFIG_LIVEPATCH is enabled, don't allow a module named vmlinux.ko.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The atomic replace runs pre/post (un)install callbacks only from the new
livepatch. There are several reasons for this:
+ Simplicity: clear ordering of operations, no interactions between
old and new callbacks.
+ Reliability: only new livepatch knows what changes can already be made
by older livepatches and how to take over the state.
+ Testing: the atomic replace can be properly tested only when a newer
livepatch is available. It might be too late to fix unwanted effect
of callbacks from older livepatches.
It might happen that an older change is not enough and the same system
state has to be modified another way. Different changes need to get
distinguished by a version number added to struct klp_state.
The version can also be used to prevent loading incompatible livepatches.
The check is done when the livepatch is enabled. The rules are:
+ Any completely new system state modification is allowed.
+ System state modifications with the same or higher version are allowed
for already modified system states.
+ Cumulative livepatches must handle all system state modifications from
already installed livepatches.
+ Non-cumulative livepatches are allowed to touch already modified
system states.
Link: http://lkml.kernel.org/r/20191030154313.13263-4-pmladek@suse.com
To: Jiri Kosina <jikos@kernel.org>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: live-patching@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Pre/post (un)patch callbacks might manipulate the system state. Cumulative
livepatches might need to take over the changes made by the replaced
ones. For this they might need to access some data stored or referenced
by the old livepatches.
Therefore the replaced livepatches have to stay around until post_patch()
callback is called. It is achieved by calling the free functions later.
It is the same location where disabled livepatches have already been
freed.
Link: http://lkml.kernel.org/r/20191030154313.13263-2-pmladek@suse.com
To: Jiri Kosina <jikos@kernel.org>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: live-patching@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
klp_module_coming() is called for every module appearing in the system.
It sets obj->mod to a patched module for klp_object obj. Unfortunately
it leaves it set even if an error happens later in the function and the
patched module is not allowed to be loaded.
klp_is_object_loaded() uses obj->mod variable and could currently give a
wrong return value. The bug is probably harmless as of now.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
- Out of range read of stack trace output
- Fix for NULL pointer dereference in trace_uprobe_create()
- Fix to a livepatching / ftrace permission race in the module code
- Fix for NULL pointer dereference in free_ftrace_func_mapper()
- A couple of build warning clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXQToxhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qusmAP4/mmJPgsDchnu5ui0wB8BByzJlsPn8
luXFDuqI4f34zgD+JCmeYbj5LLh98D9XkaaEgP4yz3yKsWeSdwWPCU0vTgo=
=M/+E
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
- Out of range read of stack trace output
- Fix for NULL pointer dereference in trace_uprobe_create()
- Fix to a livepatching / ftrace permission race in the module code
- Fix for NULL pointer dereference in free_ftrace_func_mapper()
- A couple of build warning clean ups
* tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix NULL pointer dereference in free_ftrace_func_mapper()
module: Fix livepatch/ftrace module text permissions race
tracing/uprobe: Fix obsolete comment on trace_uprobe_create()
tracing/uprobe: Fix NULL pointer dereference in trace_uprobe_create()
tracing: Make two symbols static
tracing: avoid build warning with HAVE_NOP_MCOUNT
tracing: Fix out-of-range read in trace_stack_print()
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not see http www gnu org licenses
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details [based]
[from] [clk] [highbank] [c] you should have received a copy of the
gnu general public license along with this program if not see http
www gnu org licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 355 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- Removing of non-DYNAMIC_FTRACE from 32bit x86
- Removing of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on config
options
And other minor fixes and clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXNxMZxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qq4PAP44kP6VbwL8CHyI2A3xuJ6Hwxd+2Z2r
ip66RtzyJ+2iCgEA2QCuWUlEt2bLpF9a8IQ4N9tWenSeW2i7gunPb+tioQw=
=RVQo
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The major changes in this tracing update includes:
- Removal of non-DYNAMIC_FTRACE from 32bit x86
- Removal of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on
config options
And other minor fixes and clean ups"
* tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
x86: Hide the int3_emulate_call/jmp functions from UML
livepatch: Remove klp_check_compiler_support()
ftrace/x86: Remove mcount support
ftrace/x86_32: Remove support for non DYNAMIC_FTRACE
tracing: Simplify "if" macro code
tracing: Fix documentation about disabling options using trace_options
tracing: Replace kzalloc with kcalloc
tracing: Fix partial reading of trace event's id file
tracing: Allow RCU to run between postponed startup tests
tracing: Fix white space issues in parse_pred() function
tracing: Eliminate const char[] auto variables
ring-buffer: Fix mispelling of Calculate
tracing: probeevent: Fix to make the type of $comm string
tracing: probeevent: Do not accumulate on ret variable
tracing: uprobes: Re-enable $comm support for uprobe events
ftrace/x86_64: Emulate call function while updating in breakpoint handler
x86_64: Allow breakpoints to emulate call instructions
x86_64: Add gap to int3 to allow for call emulation
tracing: kdb: Allow ftdump to skip all but the last few entries
tracing: Add trace_total_entries() / trace_total_entries_cpu()
...
The only purpose of klp_check_compiler_support() is to make sure that we
are not using ftrace on x86 via mcount (because that's executed only after
prologue has already happened, and that's too late for livepatching
purposes).
Now that mcount is not supported by ftrace any more, there is no need for
klp_check_compiler_support() either.
Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1905102346100.17054@cbobk.fhfr.pm
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said they
should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here, due
to some changes to the kobject core code. Those too have all been acked
by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHDbw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynDAgCfbb4LBR6I50wFXb8JM/R6cAS7qrsAn1unshKV
8XCYcif2RxjtdJWXbjdm
=/rLh
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core/kobject updates from Greg KH:
"Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said
they should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here,
due to some changes to the kobject core code. Those too have all been
acked by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues"
* tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (47 commits)
kobject: clean up the kobject add documentation a bit more
kobject: Fix kernel-doc comment first line
kobject: Remove docstring reference to kset
firmware_loader: Fix a typo ("syfs" -> "sysfs")
kobject: fix dereference before null check on kobj
Revert "driver core: platform: Fix the usage of platform device name(pdev->name)"
init/config: Do not select BUILD_BIN2C for IKCONFIG
Provide in-kernel headers to make extending kernel easier
kobject: Improve doc clarity kobject_init_and_add()
kobject: Improve docs for kobject_add/del
driver core: platform: Fix the usage of platform device name(pdev->name)
livepatch: Replace klp_ktype_patch's default_attrs with groups
cpufreq: schedutil: Replace default_attrs field with groups
padata: Replace padata_attr_type default_attrs field with groups
irqdesc: Replace irq_kobj_type's default_attrs field with groups
net-sysfs: Replace ktype default_attrs field with groups
block: Replace all ktype default_attrs with groups
samples/kobject: Replace foo_ktype's default_attrs field with groups
kobject: Add support for default attribute groups to kobj_type
driver core: Postpone DMA tear-down until after devres release for probe failure
...
kobject_init() call added one more operation that has to be
done when doing the early initialization of both static and
dynamic livepatch structures.
It would have been easier when the early initialization code
was not duplicated. Let's deduplicate it for future generations
of livepatching hackers.
The patch does not change the existing behavior.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
kobject_init() always succeeds and sets the reference count to 1.
It allows to always free the structures via kobject_put() and
the related release callback.
Note that the custom kobject state handling was used only
because we did not know that kobject_put() can and actually
should get called even when kobject_init_and_add() fails.
The patch should not change the existing behavior.
Suggested-by: "Tobin C. Harding" <tobin@kernel.org>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The commit d0807da78e ("livepatch: Remove immediate feature") caused
that any livepatch was refused when reliable stacktraces were not supported
on the given architecture.
The limitation is too strong. User space processes are safely migrated
even when entering or leaving the kernel. Kthreads transition would
need to get forced. But it is safe when:
+ The livepatch does not change the semantic of the code.
+ Callbacks do not depend on a safely finished transition.
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
The kobj_type default_attrs field is being replaced by the
default_groups field. Replace klp_ktype_patch's default_attrs field
with default_groups and use the ATTRIBUTE_GROUPS macro to create
klp_patch_groups.
This patch was tested by loading the livepatch-sample module and
verifying that the sysfs files for the attributes in the default groups
were created.
Signed-off-by: Kimberly Brown <kimbrownkd@gmail.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The atomic replace allows to create cumulative patches. They are useful when
you maintain many livepatches and want to remove one that is lower on the
stack. In addition it is very useful when more patches touch the same function
and there are dependencies between them.
It's also a feature some of the distros are using already to distribute
their patches.
Livepatches can no longer get enabled and disabled repeatedly.
The list klp_patches contains only enabled patches and eventually
the patch in transition.
The module coming and going callbacks do no longer need to check
for these state. They have to proceed with all listed patches.
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
There are already macros to iterate over struct klp_func and klp_object.
Add also klp_for_each_patch(). But make it internal because also
klp_patches list is internal.
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
As a result of an unsupported operation is better to use EOPNOTSUPP
as error code.
ENOSYS is only used for 'invalid syscall nr' and nothing else.
Signed-off-by: Alice Ferrazzi <alice.ferrazzi@miraclelinux.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
The fake signal is send automatically now. We can rely on it completely
and remove the sysfs attribute.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The atomic replace and cumulative patches were introduced as a more secure
way to handle dependent patches. They simplify the logic:
+ Any new cumulative patch is supposed to take over shadow variables
and changes made by callbacks from previous livepatches.
+ All replaced patches are discarded and the modules can be unloaded.
As a result, there is only one scenario when a cumulative livepatch
gets disabled.
The different handling of "normal" and cumulative patches might cause
confusion. It would make sense to keep only one mode. On the other hand,
it would be rude to enforce using the cumulative livepatches even for
trivial and independent (hot) fixes.
However, the stack of patches is not really necessary any longer.
The patch ordering was never clearly visible via the sysfs interface.
Also the "normal" patches need a lot of caution anyway.
Note that the list of enabled patches is still necessary but the ordering
is not longer enforced.
Otherwise, the code is ready to disable livepatches in an random order.
Namely, klp_check_stack_func() always looks for the function from
the livepatch that is being disabled. klp_func structures are just
removed from the related func_stack. Finally, the ftrace handlers
is removed only when the func_stack becomes empty.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Replaced patches are removed from the stack when the transition is
finished. It means that Nop structures will never be needed again
and can be removed. Why should we care?
+ Nop structures give the impression that the function is patched
even though the ftrace handler has no effect.
+ Ftrace handlers do not come for free. They cause slowdown that might
be visible in some workloads. The ftrace-related slowdown might
actually be the reason why the function is no longer patched in
the new cumulative patch. One would expect that cumulative patch
would help solve these problems as well.
+ Cumulative patches are supposed to replace any earlier version of
the patch. The amount of NOPs depends on which version was replaced.
This multiplies the amount of scenarios that might happen.
One might say that NOPs are innocent. But there are even optimized
NOP instructions for different processors, for example, see
arch/x86/kernel/alternative.c. And klp_ftrace_handler() is much
more complicated.
+ It sounds natural to clean up a mess that is no longer needed.
It could only be worse if we do not do it.
This patch allows to unpatch and free the dynamic structures independently
when the transition finishes.
The free part is a bit tricky because kobject free callbacks are called
asynchronously. We could not wait for them easily. Fortunately, we do
not have to. Any further access can be avoided by removing them from
the dynamic lists.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Sometimes we would like to revert a particular fix. Currently, this
is not easy because we want to keep all other fixes active and we
could revert only the last applied patch.
One solution would be to apply new patch that implemented all
the reverted functions like in the original code. It would work
as expected but there will be unnecessary redirections. In addition,
it would also require knowing which functions need to be reverted at
build time.
Another problem is when there are many patches that touch the same
functions. There might be dependencies between patches that are
not enforced on the kernel side. Also it might be pretty hard to
actually prepare the patch and ensure compatibility with the other
patches.
Atomic replace && cumulative patches:
A better solution would be to create cumulative patch and say that
it replaces all older ones.
This patch adds a new "replace" flag to struct klp_patch. When it is
enabled, a set of 'nop' klp_func will be dynamically created for all
functions that are already being patched but that will no longer be
modified by the new patch. They are used as a new target during
the patch transition.
The idea is to handle Nops' structures like the static ones. When
the dynamic structures are allocated, we initialize all values that
are normally statically defined.
The only exception is "new_func" in struct klp_func. It has to point
to the original function and the address is known only when the object
(module) is loaded. Note that we really need to set it. The address is
used, for example, in klp_check_stack_func().
Nevertheless we still need to distinguish the dynamically allocated
structures in some operations. For this, we add "nop" flag into
struct klp_func and "dynamic" flag into struct klp_object. They
need special handling in the following situations:
+ The structures are added into the lists of objects and functions
immediately. In fact, the lists were created for this purpose.
+ The address of the original function is known only when the patched
object (module) is loaded. Therefore it is copied later in
klp_init_object_loaded().
+ The ftrace handler must not set PC to func->new_func. It would cause
infinite loop because the address points back to the beginning of
the original function.
+ The various free() functions must free the structure itself.
Note that other ways to detect the dynamic structures are not considered
safe. For example, even the statically defined struct klp_object might
include empty funcs array. It might be there just to run some callbacks.
Also note that the safe iterator must be used in the free() functions.
Otherwise already freed structures might get accessed.
Special callbacks handling:
The callbacks from the replaced patches are _not_ called by intention.
It would be pretty hard to define a reasonable semantic and implement it.
It might even be counter-productive. The new patch is cumulative. It is
supposed to include most of the changes from older patches. In most cases,
it will not want to call pre_unpatch() post_unpatch() callbacks from
the replaced patches. It would disable/break things for no good reasons.
Also it should be easier to handle various scenarios in a single script
in the new patch than think about interactions caused by running many
scripts from older patches. Not to say that the old scripts even would
not expect to be called in this situation.
Removing replaced patches:
One nice effect of the cumulative patches is that the code from the
older patches is no longer used. Therefore the replaced patches can
be removed. It has several advantages:
+ Nops' structs will no longer be necessary and might be removed.
This would save memory, restore performance (no ftrace handler),
allow clear view on what is really patched.
+ Disabling the patch will cause using the original code everywhere.
Therefore the livepatch callbacks could handle only one scenario.
Note that the complication is already complex enough when the patch
gets enabled. It is currently solved by calling callbacks only from
the new cumulative patch.
+ The state is clean in both the sysfs interface and lsmod. The modules
with the replaced livepatches might even get removed from the system.
Some people actually expected this behavior from the beginning. After all
a cumulative patch is supposed to "completely" replace an existing one.
It is like when a new version of an application replaces an older one.
This patch does the first step. It removes the replaced patches from
the list of patches. It is safe. The consistency model ensures that
they are no longer used. By other words, each process works only with
the structures from klp_transition_patch.
The removal is done by a special function. It combines actions done by
__disable_patch() and klp_complete_transition(). But it is a fast
track without all the transaction-related stuff.
Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Split, reuse existing code, simplified]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Currently klp_patch contains a pointer to a statically allocated array of
struct klp_object and struct klp_objects contains a pointer to a statically
allocated array of klp_func. In order to allow for the dynamic allocation
of objects and functions, link klp_patch, klp_object, and klp_func together
via linked lists. This allows us to more easily allocate new objects and
functions, while having the iterator be a simple linked list walk.
The static structures are added to the lists early. It allows to add
the dynamically allocated objects before klp_init_object() and
klp_init_func() calls. Therefore it reduces the further changes
to the code.
This patch does not change the existing behavior.
Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Initialize lists before init calls]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>