IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
KVM x86 Hyper-V changes for 6.8:
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
Hyper-V emulation in KVM is a fairly big chunk and in some cases it may be
desirable to not compile it in to reduce module sizes as well as the attack
surface. Introduce CONFIG_KVM_HYPERV option to make it possible.
Note, there's room for further nVMX/nSVM code optimizations when
!CONFIG_KVM_HYPERV, this will be done in follow-up patches.
Reorganize Makefile a bit so all CONFIG_HYPERV and CONFIG_KVM_HYPERV files
are grouped together.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-13-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
cpuid.c utilizes vmemdup_user() and array_size() to copy two userspace
arrays. This, currently, does not check for an overflow.
Use the new wrapper vmemdup_array_user() to copy the arrays more safely,
as vmemdup_user() doesn't check for overflow.
Note, KVM explicitly checks the number of entries before duplicating the
array, i.e. adding the overflow check should be a glorified nop.
Suggested-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: Philipp Stanner <pstanner@redhat.com>
Link: https://lore.kernel.org/r/20231102181526.43279-2-pstanner@redhat.com
[sean: call out that KVM pre-checks the number of entries]
Signed-off-by: Sean Christopherson <seanjc@google.com>
KVM x86 Xen changes for 6.7:
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering Xen timer
events. Avoid the problematic races with using the fast path by ensuring
the hrtimer isn't running when (re)starting the timer or saving the timer
information (for userspace).
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
KVM x86 misc changes for 6.7:
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
Define an X86_FEATURE_* flag for CPUID.80000021H:EAX.[bit 1], and
advertise the feature to userspace via KVM_GET_SUPPORTED_CPUID.
Per AMD's "Processor Programming Reference (PPR) for AMD Family 19h
Model 61h, Revision B1 Processors (56713-B1-PUB)," this CPUID bit
indicates that a WRMSR to MSR_FS_BASE, MSR_GS_BASE, or
MSR_KERNEL_GS_BASE is non-serializing. This is a change in previously
architected behavior.
Effectively, this CPUID bit is a "defeature" bit, or a reverse
polarity feature bit. When this CPUID bit is clear, the feature
(serialization on WRMSR to any of these three MSRs) is available. When
this CPUID bit is set, the feature is not available.
KVM_GET_SUPPORTED_CPUID must pass this bit through from the underlying
hardware, if it is set. Leaving the bit clear claims that WRMSR to
these three MSRs will be serializing in a guest running under
KVM. That isn't true. Though KVM could emulate the feature by
intercepting writes to the specified MSRs, it does not do so
today. The guest is allowed direct read/write access to these MSRs
without interception, so the innate hardware behavior is preserved
under KVM.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231005031237.1652871-1-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Mask off xfeatures that aren't exposed to the guest only when saving guest
state via KVM_GET_XSAVE{2} instead of modifying user_xfeatures directly.
Preserving the maximal set of xfeatures in user_xfeatures restores KVM's
ABI for KVM_SET_XSAVE, which prior to commit ad856280dd ("x86/kvm/fpu:
Limit guest user_xfeatures to supported bits of XCR0") allowed userspace
to load xfeatures that are supported by the host, irrespective of what
xfeatures are exposed to the guest.
There is no known use case where userspace *intentionally* loads xfeatures
that aren't exposed to the guest, but the bug fixed by commit ad856280dd
was specifically that KVM_GET_SAVE{2} would save xfeatures that weren't
exposed to the guest, e.g. would lead to userspace unintentionally loading
guest-unsupported xfeatures when live migrating a VM.
Restricting KVM_SET_XSAVE to guest-supported xfeatures is especially
problematic for QEMU-based setups, as QEMU has a bug where instead of
terminating the VM if KVM_SET_XSAVE fails, QEMU instead simply stops
loading guest state, i.e. resumes the guest after live migration with
incomplete guest state, and ultimately results in guest data corruption.
Note, letting userspace restore all host-supported xfeatures does not fix
setups where a VM is migrated from a host *without* commit ad856280dd,
to a target with a subset of host-supported xfeatures. However there is
no way to safely address that scenario, e.g. KVM could silently drop the
unsupported features, but that would be a clear violation of KVM's ABI and
so would require userspace to opt-in, at which point userspace could
simply be updated to sanitize the to-be-loaded XSAVE state.
Reported-by: Tyler Stachecki <stachecki.tyler@gmail.com>
Closes: https://lore.kernel.org/all/20230914010003.358162-1-tstachecki@bloomberg.net
Fixes: ad856280dd ("x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0")
Cc: stable@vger.kernel.org
Cc: Leonardo Bras <leobras@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Message-Id: <20230928001956.924301-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for the AMD Selective Branch Predictor Barrier (SBPB) by
advertising the CPUID bit and handling PRED_CMD writes accordingly.
Note, like SRSO_NO and IBPB_BRTYPE before it, advertise support for SBPB
even if it's not enumerated by in the raw CPUID. Some CPUs that gained
support via a uCode patch don't report SBPB via CPUID (the kernel forces
the flag).
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/a4ab1e7fe50096d50fde33e739ed2da40b41ea6a.1692919072.git.jpoimboe@kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for the IBPB_BRTYPE CPUID flag, which indicates that IBPB
includes branch type prediction flushing.
Note, like SRSO_NO, advertise support for IBPB_BRTYPE even if it's not
enumerated by in the raw CPUID, i.e. bypass the cpuid_count() in
__kvm_cpu_cap_mask(). Some CPUs that gained support via a uCode patch
don't report IBPB_BRTYPE via CPUID (the kernel forces the flag).
Opportunistically use kvm_cpu_cap_check_and_set() for SRSO_NO instead
of manually querying host support (cpu_feature_enabled() and
boot_cpu_has() yield the same end result in this case).
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/79d5f5914fb42c2c62418ffbcd78f138645ded21.1692919072.git.jpoimboe@kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
Now that KVM has a framework for caching guest CPUID feature flags, add
a "rule" that IRQs must be enabled when doing guest CPUID lookups, and
enforce the rule via a lockdep assertion. CPUID lookups are slow, and
within KVM, IRQs are only ever disabled in hot paths, e.g. the core run
loop, fast page fault handling, etc. I.e. querying guest CPUID with IRQs
disabled, especially in the run loop, should be avoided.
Link: https://lore.kernel.org/r/20230815203653.519297-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce yet another X86_FEATURE flag framework to manage and cache KVM
governed features (for lack of a better name). "Governed" in this case
means that KVM has some level of involvement and/or vested interest in
whether or not an X86_FEATURE can be used by the guest. The intent of the
framework is twofold: to simplify caching of guest CPUID flags that KVM
needs to frequently query, and to add clarity to such caching, e.g. it
isn't immediately obvious that SVM's bundle of flags for "optional nested
SVM features" track whether or not a flag is exposed to L1.
Begrudgingly define KVM_MAX_NR_GOVERNED_FEATURES for the size of the
bitmap to avoid exposing governed_features.h in arch/x86/include/asm/, but
add a FIXME to call out that it can and should be cleaned up once
"struct kvm_vcpu_arch" is no longer expose to the kernel at large.
Cc: Zeng Guang <guang.zeng@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Latest Intel platform GraniteRapids-D introduces AMX-COMPLEX, which adds
two instructions to perform matrix multiplication of two tiles containing
complex elements and accumulate the results into a packed single precision
tile.
AMX-COMPLEX is enumerated via CPUID.(EAX=7,ECX=1):EDX[bit 8]
Advertise AMX_COMPLEX if it's supported in hardware. There are no VMX
controls for the feature, i.e. the instructions can't be interecepted, and
KVM advertises base AMX in CPUID if AMX is supported in hardware, even if
KVM doesn't advertise AMX as being supported in XCR0, e.g. because the
process didn't opt-in to allocating tile data.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230802022954.193843-1-tao1.su@linux.intel.com
[sean: tweak last paragraph of changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise CPUID 0x80000005 (L1 cache and TLB info) to userspace so that
VMMs that reflect KVM_GET_SUPPORTED_CPUID into KVM_SET_CPUID2 will
enumerate sane cache/TLB information to the guest.
CPUID 0x80000006 (L2 cache and TLB and L3 cache info) has been returned
since commit 43d05de2be ("KVM: pass through CPUID(0x80000006)").
Enumerating both 0x80000005 and 0x80000006 with KVM_GET_SUPPORTED_CPUID
is better than reporting one or the other, and 0x80000005 could be helpful
for VMM to pass it to KVM_SET_CPUID{,2} for the same reason with
0x80000006.
Signed-off-by: Takahiro Itazuri <itazur@amazon.com>
Link: https://lore.kernel.org/all/ZK7NmfKI9xur%2FMop@google.com
Link: https://lore.kernel.org/r/20230712183136.85561-1-itazur@amazon.com
[sean: add link, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new
performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring Version 2
(PerfMonV2) features. If found to be set during PMU initialization,
the EBX bits of the same CPUID function can be used to determine
the number of available PMCs for different PMU types.
Expose the relevant bits via KVM_GET_SUPPORTED_CPUID so that
guests can make use of the PerfMonV2 features.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop KVM's manipulation of guest's CPUID.0x12.1 ECX and EDX, i.e. the
allowed XFRM of SGX enclaves, now that KVM explicitly checks the guest's
allowed XCR0 when emulating ECREATE.
Note, this could theoretically break a setup where userspace advertises
a "bad" XFRM and relies on KVM to provide a sane CPUID model, but QEMU
is the only known user of KVM SGX, and QEMU explicitly sets the SGX CPUID
XFRM subleaf based on the guest's XCR0.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230503160838.3412617-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM selftests, and an AMX/XCR0 bugfix, for 6.4:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
Add a helper, kvm_get_filtered_xcr0(), to dedup code that needs to account
for XCR0 features that require explicit opt-in on a per-process basis. In
addition to documenting when KVM should/shouldn't consult
xstate_get_guest_group_perm(), the helper will also allow sanitizing the
filtered XCR0 to avoid enumerating architecturally illegal XCR0 values,
e.g. XTILE_CFG without XTILE_DATA.
No functional changes intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
[sean: rename helper, move to x86.h, massage changelog]
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to check if a specific CR0/CR4 bit is set to avoid a plethora
of implicit casts from the "unsigned long" return of kvm_read_cr*_bits(),
and to make each caller's intent more obvious.
Defer converting helpers that do truly ugly casts from "unsigned long" to
"int", e.g. is_pse(), to a future commit so that their conversion is more
isolated.
Opportunistically drop the superfluous pcid_enabled from kvm_set_cr3();
the local variable is used only once, immediately after its declaration.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-2-binbin.wu@linux.intel.com
[sean: move "obvious" conversions to this commit, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
FLUSH_L1D was already added in 11e34e64e4, but the feature is not
visible to userspace yet.
The bit definition:
CPUID.(EAX=7,ECX=0):EDX[bit 28]
If the feature is supported by the host, kvm should support it too so
that userspace can choose whether to expose it to the guest or not.
One disadvantage of not exposing it is that the guest will report
a non existing vulnerability in
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
because the mitigation is present only if the guest supports
(FLUSH_L1D and MD_CLEAR) or FB_CLEAR.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-4-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
Pull x86 cpuid updates from Borislav Petkov:
- Cache the AMD debug registers in per-CPU variables to avoid MSR
writes where possible, when supporting a debug registers swap feature
for SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which
is part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
* tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/amd: Cache debug register values in percpu variables
KVM: x86: Propagate the AMD Automatic IBRS feature to the guest
x86/cpu: Support AMD Automatic IBRS
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
x86/cpu, kvm: Add the Null Selector Clears Base feature
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code
x86/cpu, kvm: Add support for CPUID_80000021_EAX
x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h>
x86/gsseg: Use the LKGS instruction if available for load_gs_index()
x86/gsseg: Move load_gs_index() to its own new header file
x86/gsseg: Make asm_load_gs_index() take an u16
x86/opcode: Add the LKGS instruction to x86-opcode-map
x86/cpufeature: Add the CPU feature bit for LKGS
x86/bugs: Reset speculation control settings on init
x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.
Also drop the bit description comments now it's more self-describing.
[ bp: Convert test in check_null_seg_clears_base() too. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-6-kim.phillips@amd.com
The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add
it to its newly added CPUID leaf 0x80000021 EAX proper. With
LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will
effectively synthesize the feature for KVM going forward.
Also, DE_CFG[1] doesn't need to be set on such CPUs anymore.
[ bp: Massage and merge diff from Sean. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com
Move code from __do_cpuid_func() to kvm_set_cpu_caps() in preparation for adding
the features in their native leaf.
Also drop the bit description comments as it will be more self-describing once
the individual features are added.
Whilst there, switch to using the more efficient cpu_feature_enabled() instead
of static_cpu_has().
Note, LFENCE_RDTSC and "NULL selector clears base" are currently synthetic,
Linux-defined feature flags as Linux tracking of the features predates AMD's
definition. Keep the manual propagation of the flags from their synthetic
counterparts until the kernel fully converts to AMD's definition, otherwise KVM
would stop synthesizing the flags as intended.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-3-kim.phillips@amd.com
The scaling information in subleaf 1 should match the values set by KVM in
the 'vcpu_info' sub-structure 'time_info' (a.k.a. pvclock_vcpu_time_info)
which is shared with the guest, but is not directly available to the VMM.
The offset values are not set since a TSC offset is already applied.
The TSC frequency should also be set in sub-leaf 2.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230106103600.528-3-pdurrant@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
A subsequent patch will need to acquire the CPUID leaf range for emulated
Xen so explicitly pass the signature of the hypervisor we're interested in
to the new function. Also introduce a new kvm_hypervisor_cpuid structure
so we can neatly store both the base and limit leaf indices.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230106103600.528-2-pdurrant@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler. In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.
The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Normally, genuine Hyper-V doesn't expose architectural invariant TSC
(CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR
(HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID
feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the
PV MSR is set, invariant TSC bit starts to show up in CPUID. When the
feature is exposed to Hyper-V guests, reenlightenment becomes unneeded.
Add the feature to KVM. Keep CPUID output intact when the feature
wasn't exposed to L1 and implement the required logic for hiding
invariant TSC when the feature was exposed and invariant TSC control
MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to
disable the feature once it was enabled.
For the reference, for linux guests, support for the feature was added
in commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC").
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a9: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
Pull x86 sgx updates from Dave Hansen:
"The biggest deal in this series is support for a new hardware feature
that allows enclaves to detect and mitigate single-stepping attacks.
There's also a minor performance tweak and a little piece of the
kmap_atomic() -> kmap_local() transition.
Summary:
- Introduce a new SGX feature (Asynchrounous Exit Notification) for
bare-metal enclaves and KVM guests to mitigate single-step attacks
- Increase batching to speed up enclave release
- Replace kmap/kunmap_atomic() calls"
* tag 'x86_sgx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Replace kmap/kunmap_atomic() calls
KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest
x86/sgx: Allow enclaves to use Asynchrounous Exit Notification
x86/sgx: Reduce delay and interference of enclave release
CPUID.80000021H:EAX[bit 9] indicates that the SMM_CTL MSR (0xc0010116) is
not supported. This defeature can be advertised by KVM_GET_SUPPORTED_CPUID
regardless of whether or not the host enumerates it; currently it will be
included only if the host enumerates at least leaf 8000001DH, due to a
preexisting bug in QEMU that KVM has to work around (commit f751d8eac1,
"KVM: x86: work around QEMU issue with synthetic CPUID leaves", 2022-04-29).
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20221007221644.138355-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Latest Intel platform Granite Rapids has introduced a new instruction -
PREFETCHIT0/1, which moves code to memory (cache) closer to the
processor depending on specific hints.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 14]
PREFETCHIT0/1 is on a KVM-only subleaf. Plus an x86_FEATURE definition
for this feature bit to direct it to the KVM entry.
Advertise PREFETCHIT0/1 to KVM userspace. This is safe because there are
no new VMX controls or additional host enabling required for guests to
use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-9-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>