IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Currently, we don't use bucket data type for tracking whether buckets
are part of a stripe; parity buckets are BCH_DATA_parity, but data
buckets in a stripe are BCH_DATA_user. There's a separate counter,
buckets_ec, outside the BCH_DATA_TYPES system for tracking number of
buckets on a device that are part of a stripe.
The trouble with this approach is that it's too coarse grained, and we
need better information on fragmentation for debugging copygc.
With this patch, data buckets in a stripe are now tracked as
BCH_DATA_stripe buckets.
This doesn't yet differentiate between erasure coded and non-erasure
coded data in a stripe bucket, nor do we yet track empty data buckets in
stripes.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Now that we have much more efficient updates to the LRU btree, this
patch adds a new LRU that indexes buckets by fragmentation.
This means copygc no longer has to scan every bucket to find buckets
that need to be evacuated.
Changes:
- A new field in bch_alloc_v4, fragmentation_lru - this corresponds to
the bucket's position in the fragmentation LRU. We add a new field
for this instead of calculating it as needed because we may make the
fragmentation LRU optional; this field indicates whether a bucket is
on the fragmentation LRU.
Also, zoned devices will introduce variable bucket sizes; explicitly
recording the LRU position will be safer for them.
- A new copygc path for using the fragmentation LRU instead of
scanning every bucket and building up an in-memory heap.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Previously, copygc needed to walk the entire extents & reflink btrees to
find extents that needed to be moved.
Now that we have backpointers, this patch implements
bch2_evacuate_bucket() in the move code, which copygc now uses for
evacuating mostly empty buckets.
Also, thanks to the new backpointers code, copygc can now move btree
nodes.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This separates out the slowpath into a separate function, and inlines
bch2_alloc_v4_mut into bch2_trans_start_alloc_update(), the main place
it's called.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This isn't actually an error condition, this just indicates a normal
shutdown - no reason for these to be in the log.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
- Marking a non-static function as inline doesn't actually work and is
now causing problems - drop that
- Introduce BCACHEFS_LOG_PREFIX for when we want to prefix log messages
with bcachefs (filesystem name)
- Userspace doesn't have real percpu variables (maybe we can get this
fixed someday), put an #ifdef around bch2_disk_reservation_add()
fastpath
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Also, do some reorganizing/renaming, convert atomic counters in bch_fs
to persistent counters, and add a few missing counters.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
- add bch2_moving_ctxt_(init|exit)
- split out __bch2_evacutae_bucket() which takes an existing
moving_ctxt, this will be used for improving copygc performance by
pipelining across multiple buckets
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
move_ratelimit() now has a bool that specifies whether we want to
wait for copygc to finish.
When copygc is running, we're probably low on free buckets instead
of consuming the remaining buckets, we want to wait for copygc to
finish.
This should help with performance, and run away bucket fragmentation.
Signed-off-by: Daniel Hill <daniel@gluo.nz>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This patch significantly cleans up and simplifies the data_update
interface. Instead of only being able to specify a single pointer by
device to rewrite, we're now able to specify any or all of the pointers
in the original extent to be rewrited, as a bitmask.
data_cmd is no more: the various pred functions now just return true if
the extent should be moved/updated. All the data_update path does is
rewrite existing replicas, or add new ones.
This fixes a bug where with background compression on replicated
filesystems, where rebalance -> data_update would incorrectly drop the
wrong old replica, and keep trying to recompress an extent pointer and
each time failing to drop the right replica. Oops.
Now, the data update path doesn't look at the io options to decide which
pointers to keep and which to drop - it only goes off of the
data_update_options passed to it.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
This improves the "copygc requested to run but no buckets found" to show
the device that requires copygc to be run on - we'll definitely need to
improve this more.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Previously, we were missing accounting for buckets in need_gc_gens and
need_discard states. This matters because buckets in those states need
other btree operations done before they can be used, so they can't be
conuted when checking current number of free buckets against the
allocation watermark.
Also, we weren't directly counting free buckets at all. Now, data type 0
== BCH_DATA_free, and free buckets are counted; this means we can get
rid of the separate (poorly defined) count of unavailable buckets.
This is a new on disk format version, with upgrade and fsck required for
the accounting changes.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Now that we have new persistent data structures for the allocator, this
patch converts the allocator to use them.
Now, foreground bucket allocation uses the freespace btree to find
buckets to allocate, instead of popping buckets off the freelist.
The background allocator threads are no longer needed and are deleted,
as well as the allocator freelists. Now we only need background tasks
for invalidating buckets containing cached data (when we are low on
empty buckets), and for issuing discards.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This introduces a new alloc key which doesn't use varints. Soon we'll be
adding backpointers and storing them in alloc keys, which means our
pack/unpack workflow for alloc keys won't really work - we'll need to be
mutating alloc keys in place.
Instead of bch2_alloc_unpack(), we now have bch2_alloc_to_v4() that
converts older types of alloc keys to v4 if needed.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Since journal reclaim -> btree key cache flushing may require the
allocation of new btree nodes, it has an implicit dependency on copygc
in order to make forward progress - so we should avoid blocking copygc
unless the journal is really close to full.
This introduces watermarks to replace our single MAY_GET_UNRESERVED bit
in the journal, and adds a watermark for copygc and plumbs it through.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This converts the copygc code to use the alloc btree directly to find
buckets that need to be evacuated instead of the in-memory bucket array,
which is finally going away soon.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Previously, bucket fragmentation was considered to be bucket size -
total amount of live data, both dirty and cached.
This meant that if a bucket was full but only a small amount of data in
it was dirty - the rest cached, we'd get stuck: copygc wouldn't move the
dirty data out of the bucket and the allocator wouldn't be able to
invalidate and drop the cached data.
This changes fragmentation to exclude cached data, so that copygc will
evacuate these buckets and copygc/the allocator will always be able to
make forward progress.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
With erasure coding, copygc's count of sectors to move was off, which
matters for the debug statement it prints out when it's not able to move
all the data it tried to.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
This adds progress stats to sysfs for copygc, rebalance, recovery, and the
cmd_job ioctls.
Signed-off-by: Brett Holman <bholman.devel@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We seem to have a bug where the copygc thread ends up spinning and
making the system unusable - this will at least prevent it from locking
up the machine, and it's a good thing to have anyways.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
We're seeing a filesystem get stuck when all devices but one have no
more reclaimable buckets - because the copygc wait amount is curretly
filesystem wide.
This patch should fix that, possibly at the expensive of running too
much when only one or a few devices is full and the rebalance thread
needs to move data around.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Flushing the btree key cache needs to use allocation reserves - journal
reclaim depends on flushing the btree key cache for making forward
progress, and the allocator and copygc depend on journal reclaim making
forward progress.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
We have a separate mechanism for ratelimiting copygc now - the pd
controller has only been causing problems.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Currently debugging an issue with copygc not running when it's supposed
to, and this is an obvious first step.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Awhile back the meaning of is_available_bucket() and thus also
bch_dev_usage->buckets_unavailable changed to include buckets that are
owned by the allocator - this was so that the stat could be persisted
like other allocation information, and wouldn't have to be regenerated
by walking each bucket at mount time.
This broke copygc, which needs to consider buckets that are reclaimable
and haven't yet been grabbed by the allocator thread and moved onta
freelist. This patch fixes that by adding dev_buckets_reclaimable() for
copygc and the allocator thread, and cleans up some of the callers a bit.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This adds a new data job type to scan for btree nodes in the old extent
format, and rewrite them.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Originally, bcachefs - going back to bcache - stored, for each bucket, a
16 bit counter corresponding to how long it had been since the bucket
was read from. But, this required periodically rescaling counters on
every bucket to avoid wraparound. That wasn't an issue in bcache, where
we'd perodically rewrite the per bucket metadata all at once, but in
bcachefs we're trying to avoid having to walk every single bucket.
This patch switches to persisting 64 bit io clocks, corresponding to the
64 bit bucket timestaps introduced in the previous patch with
KEY_TYPE_alloc_v2.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This introduces a new version of KEY_TYPE_alloc, which uses the new
varint encoding introduced for inodes. This means we'll eventually be
able to support much larger bucket sizes (for SMR devices), and the
read/write time fields are expanded to 64 bits - which will be used in
the next patch to get rid of the periodic rescaling of those fields.
Also, for buckets that are members of erasure coded stripes, this adds
persistent fields for the index of the stripe they're members of and the
stripe redundancy. This is part of work to get rid of having to scan and
read into memory the alloc and stripes btrees at mount time.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This is to make it more amenable for serialization.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Previously, we were using BTREE_INSERT_RESERVE in a lot of places where
it no longer makes sense.
- we now have more open_buckets than we used to, and the reserves work
better, so we shouldn't need to use BTREE_INSERT_RESERVE just because
we're holding open_buckets pinned anymore.
- We have the btree key cache for updates to the alloc btree, meaning
we no longer need the btree reserve to ensure the allocator can make
forward progress.
This means that we should only need a reserve for btree updates to
ensure that copygc can make forward progress.
Since it's now just for copygc, we can also fold RESERVE_BTREE into
RESERVE_MOVINGGC (the allocator's freelist reserve).
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
These only come up when building in userspace, for some reason.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
When devices have different sized buckets this is more correct.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
This no longer makes any sense, since copygc is now one thread per
filesystem, not per device, with a single write point.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Per device copygc threads don't move data to different devices and they
make fragmentation works - they don't make much sense anymore.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>