IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If the device does not support Sanitize or Secure Erase commands,
hide the respective sysfs interfaces such that the operation can
never be attempted.
In order to be generic, keep track of the enabled security commands
found in the CEL - the driver does not support Security Passthrough.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230726051940.3570-4-dave@stgolabs.net
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
... as is the case with all members of struct cxl_memdev_state.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230726051940.3570-3-dave@stgolabs.net
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Driver initialization returned success (return 0) even if the
initialization (cxl_decoder_add() or acpi_table_parse_cedt()) failed.
Return the error instead of swallowing it.
Fixes: f4ce1f766f1e ("cxl/acpi: Convert CFMWS parsing to ACPI sub-table helpers")
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20230714093146.2253438-2-leitao@debian.org
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
KASAN and KFENCE detected an user-after-free in the CXL driver. This
happens in the cxl_decoder_add() fail path. KASAN prints the following
error:
BUG: KASAN: slab-use-after-free in cxl_parse_cfmws (drivers/cxl/acpi.c:299)
This happens in cxl_parse_cfmws(), where put_device() is called,
releasing cxld, which is accessed later.
Use the local variables in the dev_err() instead of pointing to the
released memory. Since the dev_err() is printing a resource, change the open
coded print format to use the %pr format specifier.
Fixes: e50fe01e1f2a ("cxl/core: Drop ->platform_res attribute for root decoders")
Signed-off-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/r/20230714093146.2253438-1-leitao@debian.org
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
The CXL_FW_CANCEL macro is used with set/test_bit() so it should be a
bit number and not the shifted value. The original code is the
equivalent of using BIT(BIT(0)) so it's 0x2 instead of 0x1. This has
no effect on runtime because it's done consistently and nothing else
was using the 0x2 bit.
Fixes: 9521875bbe00 ("cxl: add a firmware update mechanism using the sysfs firmware loader")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://lore.kernel.org/r/a11b0c78-4717-4f4e-90be-f47f300d607c@moroto.mountain
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
When FW_LOADER is disabled, cxl fails to link:
arm-linux-gnueabi-ld: drivers/cxl/core/memdev.o: in function `cxl_memdev_setup_fw_upload':
memdev.c:(.text+0x90e): undefined reference to `firmware_upload_register'
memdev.c:(.text+0x93c): undefined reference to `firmware_upload_unregister'
In order to use the firmware_upload_register() function, both FW_LOADER
and FW_UPLOAD have to be enabled, which is a bit confusing. In addition,
the dependency is on the wrong symbol, as the caller is part of the
cxl_core.ko module, not the cxl_mem.ko module.
Fixes: 9521875bbe005 ("cxl: add a firmware update mechanism using the sysfs firmware loader")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230703112928.332321-1-arnd@kernel.org
Reviewed-by: Xiao Yang <yangx.jy@fujitsu.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Fix a merge error that updated the argument to cxl_mem_get_fw_info() but
not the kernel-doc.
drivers/cxl/core/memdev.c:678: warning: Function parameter or member
'mds' not described in 'cxl_mem_get_fw_info'
drivers/cxl/core/memdev.c:678: warning: Excess function parameter
'cxlds' description in 'cxl_mem_get_fw_info'
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230629021118.102744-1-yang.lee@linux.alibaba.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the first half of the RCH error handling series. The back half
needs some fixups for test regressions. Small conflicts with the PMU
work around register enumeration and setup helpers.
Pick up initial support for the CXL 3.0 performance monitoring
definition. Small conflicts with the firmware update work as they both
placed their init code in the same location.
CXL rev 3.0 introduces a standard performance monitoring hardware
block to CXL. Instances are discovered using CXL Register Locator DVSEC
entries. Each CXL component may have multiple PMUs.
This initial driver supports a subset of types of counter.
It supports counters that are either fixed or configurable, but requires
that they support the ability to freeze and write value whilst frozen.
Development done with QEMU model which will be posted shortly.
Example:
$ perf stat -a -e cxl_pmu_mem0.0/h2d_req_snpcur/ -e cxl_pmu_mem0.0/h2d_req_snpdata/ -e cxl_pmu_mem0.0/clock_ticks/ sleep 1
Performance counter stats for 'system wide':
96,757,023,244,321 cxl_pmu_mem0.0/h2d_req_snpcur/
96,757,023,244,365 cxl_pmu_mem0.0/h2d_req_snpdata/
193,514,046,488,653 cxl_pmu_mem0.0/clock_ticks/
1.090539600 seconds time elapsed
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230526095824.16336-5-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the recent fixes to how CPU caches are managed relative to
region setup / teardown, and make sure that all decoders transition
successfully before updating the region state from COMMIT => ACTIVE.
Pick up the driver cleanups identified in preparation for CXL "type-2"
(accelerator) device support. The major change here from a conflict
generation perspective is the split of 'struct cxl_memdev_state' from
the core 'struct cxl_dev_state'. Since an accelerator may not care about
all the optional features that are standard on a CXL "type-3" (host-only
memory expander) device.
A silent conflict also occurs with the move of the endpoint port to be a
formal property of a 'struct cxl_memdev' rather than drvdata.
Add the first typical (non-sanitization) consumer of the new background
command infrastructure, firmware update. Given both firmware-update and
sanitization were developed in parallel from the common
background-command baseline, resolve some minor context conflicts.
Pick up the sanitization work and the infrastructure for other
background commands for 6.5. Sanitization has a different completion
path than typical background commands so it was important to have both
thought out and implemented before either went upstream.
The sysfs based firmware loader mechanism was created to easily allow
userspace to upload firmware images to FPGA cards. This also happens to
be pretty suitable to create a user-initiated but kernel-controlled
firmware update mechanism for CXL devices, using the CXL specified
mailbox commands.
Since firmware update commands can be long-running, and can be processed
in the background by the endpoint device, it is desirable to have the
ability to chunk the firmware transfer down to smaller pieces, so that
one operation does not monopolize the mailbox, locking out any other
long running background commands entirely - e.g. security commands like
'sanitize' or poison scanning operations.
The firmware loader mechanism allows a natural way to perform this
chunking, as after each mailbox command, that is restricted to the
maximum mailbox payload size, the cxl memdev driver relinquishes control
back to the fw_loader system and awaits the next chunk of data to
transfer. This opens opportunities for other background commands to
access the mailbox and send their own slices of background commands.
Add the necessary helpers and state tracking to be able to perform the
'Get FW Info', 'Transfer FW', and 'Activate FW' mailbox commands as
described in the CXL spec. Wire these up to the firmware loader
callbacks, and register with that system to create the memX/firmware/
sysfs ABI.
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Russ Weight <russell.h.weight@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20230602-vv-fw_update-v4-1-c6265bd7343b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement support for the non-pmem exclusive secure erase, per
CXL specs. Create a write-only 'security/erase' sysfs file to
perform the requested operation.
As with the sanitation this requires the device being offline
and thus no active HPA-DPA decoding.
The expectation is that userspace can use it such as:
cxl disable-memdev memX
echo 1 > /sys/bus/cxl/devices/memX/security/erase
cxl enable-memdev memX
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230612181038.14421-7-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement support for CXL 3.0 8.2.9.8.5.1 Sanitize. This is done by
adding a security/sanitize' memdev sysfs file to trigger the operation
and extend the status file to make it poll(2)-capable for completion.
Unlike all other background commands, this is the only operation that
is special and monopolizes the device for long periods of time.
In addition to the traditional pmem security requirements, all regions
must also be offline in order to perform the operation. This permits
avoiding explicit global CPU cache management, relying instead on the
implict cache management when a region transitions between
CXL_CONFIG_ACTIVE and CXL_CONFIG_COMMIT.
The expectation is that userspace can use it such as:
cxl disable-memdev memX
echo 1 > /sys/bus/cxl/devices/memX/security/sanitize
cxl wait-sanitize memX
cxl enable-memdev memX
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230612181038.14421-5-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Sanitization is by definition a device-monopolizing operation, and thus
the timeslicing rules for other background commands do not apply.
As such handle this special case asynchronously and return immediately.
Subsequent changes will allow completion to be pollable from userspace
via a sysfs file interface.
For devices that don't support interrupts for notifying background
command completion, self-poll with the caveat that the poller can
be out of sync with the ready hardware, and therefore care must be
taken to not allow any new commands to go through until the poller
sees the hw completion. The poller takes the mbox_mutex to stabilize
the flagging, minimizing any runtime overhead in the send path to
check for 'sanitize_tmo' for uncommon poll scenarios.
The irq case is much simpler as hardware will serialize/error
appropriately.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-4-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a read-only sysfs file to display the security state
of a device (currently only pmem):
/sys/bus/cxl/devices/memX/security/state
This introduces a cxl_security_state structure that is
to be the placeholder for common CXL security features.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230612181038.14421-3-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For cases when the mailbox background operation is not complete,
do not "handle" the interrupt, as it was not from this device.
And furthermore there are no racy scenarios such as the hw being
out of sync with the driver and starting a new background op
behind its back.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Fixes: ccadf1310fb (cxl/mbox: Add background cmd handling machinery)
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-2-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit eb0764b822b9 ("cxl/port: Enable the HDM decoder capability for switch ports")
...was added on the observation of CXL memory not being accessible after
setting up a region on a "cold-plugged" device. A "cold-plugged" CXL
device is one that was not present at boot, so platform-firmware/BIOS
has no chance to set it up.
While it is true that the debug found the enable bit clear in the
host-bridge's instance of the global control register (CXL 3.0
8.2.4.19.2 CXL HDM Decoder Global Control Register), that bit is
described as:
"This bit is only applicable to CXL.mem devices and shall
return 0 on CXL Host Bridges and Upstream Switch Ports."
So it is meant to be zero, and further testing confirmed that this "fix"
had no effect on the failure. Revert it, and be more vigilant about
proposed fixes in the future. Since the original copied stable@, flag
this revert for stable@ as well.
Cc: <stable@vger.kernel.org>
Fixes: eb0764b822b9 ("cxl/port: Enable the HDM decoder capability for switch ports")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168685882012.3475336.16733084892658264991.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move the endpoint port that the cxl_mem driver establishes from drvdata
to a first class attribute. This is in preparation for device-memory
drivers reusing the CXL core for memory region management. Those drivers
need a type-safe method to retrieve their CXL port linkage. Leave
drvdata for private usage of the cxl_mem driver not external consumers
of a 'struct cxl_memdev' object.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679264292.3436160.3901392135863405807.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The current check for 256B Flit mode is incomplete and unnecessary. It
is incomplete because it fails to consider the link speed, or check for
CXL link capabilities. It is unnecessary because unconditionally
unmasking 256B Flit errors is a nop when 256B Flit operation is not
available.
Remove this check in preparation for creating a cxl_probe_link() helper
to centralize this detection.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679263124.3436160.6228910132469454346.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Switch-level (mid-level) decoders between the platform root and an
endpoint can dynamically switch modes between HDM-H and HDM-D[B]
depending on which region they target. Use the region type to fixup each
decoder that gets allocated to map the given region.
Note that endpoint decoders are meant to determine the region type, so
warn if those ever need to be fixed up, but since it is possible to
continue do so.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679262543.3436160.13053831955768440312.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for device-memory region creation, arrange for decoders
of CXL_DEVTYPE_DEVMEM memdevs to default to CXL_DECODER_DEVMEM for their
target type.
Revisit this if a device ever shows up that wants to offer mixed HDM-H
(Host-Only Memory) and HDM-DB support, or an CXL_DEVTYPE_DEVMEM device
that supports HDM-H.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679261945.3436160.11673393474107374595.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for support for HDM-D and HDM-DB configuration
(device-memory, and device-memory with back-invalidate). Rename the current
type designators to use HOSTONLYMEM and DEVMEM as a suffix.
HDM-DB can be supported by devices that are not accelerators, so DEVMEM is
a more generic term for that case.
Fixup one location where this type value was open coded.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679261369.3436160.7042443847605280593.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of the Linux CXL core scaling for a wider set of CXL devices,
allow for the creation of memdevs with some memory device capabilities
disabled. Specifically, allow for CXL devices outside of those claiming
to be compliant with the generic CXL memory device class code, like
vendor specific Type-2/3 devices that host CXL.mem. This implies, allow
for the creation of memdevs that only support component-registers, not
necessarily memory-device-registers (like mailbox registers). A memdev
derived from a CXL endpoint that does not support generic class code
expectations is tagged "CXL_DEVTYPE_DEVMEM", while a memdev derived from a
class-code compliant endpoint is tagged "CXL_DEVTYPE_CLASSMEM".
The primary assumption of a CXL_DEVTYPE_DEVMEM memdev is that it
optionally may not host a mailbox. Disable the command passthrough ioctl
for memdevs that are not CXL_DEVTYPE_CLASSMEM, and return empty strings
from memdev attributes associated with data retrieved via the
class-device-standard IDENTIFY command. Note that empty strings were
chosen over attribute visibility to maintain compatibility with shipping
versions of cxl-cli that expect those attributes to always be present.
Once cxl-cli has dropped that requirement this workaround can be
deprecated.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679260782.3436160.7587293613945445365.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
'struct cxl_dev_state' makes too many assumptions about the capabilities
of a CXL device. In particular it assumes a CXL device has a mailbox and
all of the infrastructure and state that comes along with that.
In preparation for supporting accelerator / Type-2 devices that may not
have a mailbox and in general maintain a minimal core context structure,
make mailbox functionality a super-set of 'struct cxl_dev_state' with
'struct cxl_memdev_state'.
With this reorganization it allows for CXL devices that support HDM
decoder mapping, but not other general-expander / Type-3 capabilities,
to only enable that subset without the rest of the mailbox
infrastructure coming along for the ride.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679260240.3436160.15520641540463704524.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After Jonathan noticed [1] that 'struct cxl_dev_state' had a kernel-doc
entry without a corresponding struct attribute I ran the kernel-doc
script to see what else might be broken. Fix these warnings:
drivers/cxl/cxlmem.h:199: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Event Interrupt Policy
drivers/cxl/cxlmem.h:224: warning: Function parameter or member 'buf' not described in 'cxl_event_state'
drivers/cxl/cxlmem.h:224: warning: Function parameter or member 'log_lock' not described in 'cxl_event_state'
Note that scripts/kernel-doc only finds missing kernel-doc entries. It
does not warn on too many kernel-doc entries, i.e. it did not catch the
fact that @info refers to a not present member.
Link: http://lore.kernel.org/r/20230606121054.000069e1@Huawei.com [1]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679259170.3436160.3686460404739136336.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The @map parameter to cxl_probe_X_registers() is filled in with the
mapping parameters of the register block. The @map parameter to
cxl_map_X_registers() only reads that information to perform the
mapping. Mark @map const for cxl_map_X_registers() to clarify that it is
only an input to those helpers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679258103.3436160.4941603739448763855.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan reports that failed attempts to reset a region (teardown its
HDM decoder configuration) mistakenly advance the state of the region
to "not committed". Revert to the previous state of the region on reset
failure so that the reset can be re-attempted.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Closes: http://lore.kernel.org/r/20230316171441.0000205b@Huawei.com
Fixes: 176baefb2eb5 ("cxl/hdm: Commit decoder state to hardware")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696507968.3590522.14484000711718573626.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_region_decode_reset() walks all the decoders associated with a given
region and disables them. Due to decoder ordering rules it is possible
that a switch in the topology notices that a given decoder can not be
shutdown before another region with a higher HPA is shutdown first. That
can leave the region in a partially committed state.
Capture that state in a new CXL_REGION_F_NEEDS_RESET flag and require
that a successful cxl_region_decode_reset() attempt must be completed
before cxl_region_probe() accepts the region.
This is a corollary for the bug that Jonathan identified in "CXL/region
: commit reset of out of order region appears to succeed." [1].
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Link: http://lore.kernel.org/r/20230316171441.0000205b@Huawei.com [1]
Fixes: 176baefb2eb5 ("cxl/hdm: Commit decoder state to hardware")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696507423.3590522.16254212607926684429.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Vikram raised a concern with the theoretical case of a CPU sending
MemClnEvict to a device that is not prepared to receive. MemClnEvict is
a message that is sent after a CPU has taken ownership of a cacheline
from accelerator memory (HDM-DB). In the case of hotplug or HDM decoder
reconfiguration it is possible that the CPU is holding old contents for
a new device that has taken over the physical address range being cached
by the CPU.
To avoid this scenario, invalidate caches prior to tearing down an HDM
decoder configuration.
Now, this poses another problem that it is possible for something to
speculate into that space while the decode configuration is still up, so
to close that gap also invalidate prior to establish new contents behind
a given physical address range.
With this change the cache invalidation is now explicit and need not be
checked in cxl_region_probe(), and that obviates the need for
CXL_REGION_F_INCOHERENT.
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Fixes: d18bc74aced6 ("cxl/region: Manage CPU caches relative to DPA invalidation events")
Reported-by: Vikram Sethi <vsethi@nvidia.com>
Closes: http://lore.kernel.org/r/BYAPR12MB33364B5EB908BF7239BB996BBD53A@BYAPR12MB3336.namprd12.prod.outlook.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696506886.3590522.4597053660991916591.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Same as for ports, also store the downstream port's Component Register
mappings, use struct cxl_dport for that.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-16-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL capabilities are stored in the Component Registers. To use them,
the specific I/O ranges of the capabilities must be determined by
probing the registers. For this, the whole Component Register range
needs to be mapped temporarily to detect the offset and length of a
capability range.
In order to use more than one capability of a component (e.g. RAS and
HDM) the Component Register are probed and its mappings created
multiple times. This also causes overlapping I/O ranges as the whole
Component Register range must be mapped again while a capability's I/O
range is already mapped.
Different capabilities cannot be setup at the same time. E.g. the RAS
capability must be made available as soon as the PCI driver is bound,
the HDM decoder is setup later during port enumeration. Moreover,
during early setup it is still unknown if a certain capability is
needed. A central capability setup is therefore not possible,
capabilities must be individually enabled once needed during
initialization.
To avoid a duplicate register probe and overlapping I/O mappings, only
probe the Component Registers one time and store the Component
Register mapping in struct port. The stored mappings can be used later
to iomap the capability register range when enabling the capability,
which will be implemented in a follow-on patch.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-15-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL RAS capabilities must be enabled and accessible as soon as the CXL
endpoint is detected in the PCI hierarchy and bound to the cxl_pci
driver. This needs to be independent of other modules such as cxl_port
or cxl_mem.
CXL RAS capabilities reside in the Component Registers. For an RCH
this is determined by probing RCRB which is implemented very late once
the CXL Memory Device is created.
Change this by moving the RCRB probe to the cxl_pci driver. Do this by
using a new introduced function cxl_pci_find_port() similar to
cxl_mem_find_port() to determine the involved dport by the endpoint's
PCI handle. Plug this into the existing cxl_pci_setup_regs() function
to setup Component Registers. Probe the RCRB in case the Component
Registers cannot be located through the CXL Register Locator
capability.
This unifies code and early sets up the Component Registers at the
same time for both, VH and RCH mode. Only the cxl_pci driver is
involved for this. This allows an early mapping of the CXL RAS
capability registers.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-14-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In order to move the RCH dport component register setup to cxl_pci the
base address must be stored in CXL device state (cxlds) for both
modes, RCH and VH. Store it in cxlds->component_reg_phys and use it
for endpoint creation.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-13-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When probing the Component Registers in function cxl_probe_regs()
there are also checks for the existence of the HDM and RAS
capabilities. The checks may fail for components that do not implement
the HDM capability causing the Component Registers setup to fail too.
Remove the checks for a generalized use of cxl_probe_regs() and check
them directly before mapping the RAS or HDM capabilities. This allows
it to setup other Component Registers esp. of an RCH Downstream Port,
which will be implemented in a follow-on patch.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-12-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The Component Register base address @component_reg_phys is no longer
used after the rework of the Component Register setup which now uses
struct member @comp_map instead. Remove the base address.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-11-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
During a Host Bridge's downstream port enumeration the CHBS entries in
the CEDT table are parsed, its Component Register base address
extracted and then stored in struct cxl_dport. The CHBS may contain
either the RCRB (RCH mode) or the Host Bridge's Component Registers
(CHBCR, VH mode). The RCRB further contains the CXL downstream port
register base address, while in VH mode the CXL Downstream Switch
Ports are visible in the PCI hierarchy and the DP's component regs are
disovered using the CXL DVSEC register locator capability. The
Component Registers derived from the CHBS for both modes are different
and thus also must be treated differently. That is, in RCH mode, the
component regs base should be bound to the dport, but in VH mode to
the CXL host bridge's port object.
The current implementation stores the CHBCR in addition in struct
cxl_dport and copies it later from there to struct cxl_port. As a
result, the dport contains the wrong Component Registers base address
and, e.g. the RAS capability of a CXL Root Port cannot be detected.
To fix the CHBCR binding, attach it directly to the Host Bridge's
@cxl_port structure. Do this during port creation of the Host Bridge
in add_host_bridge_uport(). Factor out CHBS parsing code in
add_host_bridge_dport() and use it in both functions.
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-10-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Just moving code to reorder functions to later share cxl_get_chbs()
with add_host_bridge_uport().
This makes changes in the next patch visible. No other changes at all.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-9-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The endpoint implements component register setup code. Refactor it for
reuse with RCRB, downstream port, and upstream port setup.
Move PCI specifics from cxl_setup_regs() into cxl_pci_setup_regs().
Move cxl_setup_regs() into cxl/core/regs.c and export it. This also
includes supporting static functions cxl_map_registerblock(),
cxl_unmap_register_block() and cxl_probe_regs().
Co-developed-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-8-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The corresponding device of a register mapping is used for devm
operations and logging. For operations with struct cxl_register_map
the device needs to be kept track separately. To simpify the involved
function interfaces, add @dev to cxl_register_map.
While at it also reorder function arguments of cxl_map_device_regs()
and cxl_map_component_regs() to have the object @cxl_register_map
first.
As a result a bunch of functions are available to be used with a
@cxl_register_map object.
This patch is in preparation of reworking the component register setup
code.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-7-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For symmetry with the recent rename of ->dport_dev for a 'struct
cxl_dport', add the "_dev" suffix to the ->uport property of a 'struct
cxl_port'. These devices represent the downstream-port-device and
upstream-port-device respectively in the CXL/PCIe topology.
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-6-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reading code like dport->dport does not immediately suggest that this
points to the corresponding device structure of the dport. Rename
struct member @dport to @dport_dev.
While at it, also rename @new argument of add_dport() to @dport. This
better describes the variable as a dport (e.g. new->dport becomes to
dport->dport_dev).
Co-developed-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-5-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Prepare cxl_probe_rcrb() for retrieving more than just the component
register block. The RCH AER handling code wants to get back to the AER
capability that happens to be MMIO mapped rather then configuration
cycles.
Move RCRB specific downstream port data, like the RCRB base and the
AER capability offset, into its own data structure ('struct
cxl_rcrb_info') for cxl_probe_rcrb() to fill. Extend 'struct
cxl_dport' to include a 'struct cxl_rcrb_info' attribute.
This centralizes all RCRB scanning in one routine.
Co-developed-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-4-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The RCRB is extracted already during ACPI CEDT table parsing while the
data of this is needed not earlier than dport creation. This
implementation comes with drawbacks: During ACPI table scan there is
already MMIO access including mapping and unmapping, but only ACPI
data should be collected here. The collected data must be transferred
through a couple of interfaces until it is finally consumed when
creating the dport. This causes complex data structures and function
interfaces. Additionally, RCRB parsing will be extended to also
extract AER data, it would be much easier do this at a later point
during port and dport creation when the data structures are available
to hold that data.
To simplify all that, probe the RCRB at a later point during RCH
downstream port creation. Change ACPI table parser to only extract the
base address of either the component registers or the RCRB. Parse and
extract the RCRB in devm_cxl_add_rch_dport().
This is in preparation to centralize all RCRB scanning.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-2-terry.bowman@amd.com
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20230622205523.85375-3-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL PMU devices can be found from entries in the Register
Locator DVSEC.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230526095824.16336-4-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>