Commit Graph

5 Commits

Author SHA1 Message Date
Mickaël Salaün
b4007fd272
landlock: Add support for KUnit tests
Add the SECURITY_LANDLOCK_KUNIT_TEST option to enable KUnit tests for
Landlock.  The minimal required configuration is listed in the
security/landlock/.kunitconfig file.

Add an initial landlock_fs KUnit test suite with 7 test cases for
filesystem helpers.  These are related to the LANDLOCK_ACCESS_FS_REFER
right.

There is one KUnit test case per:
* mutated state (e.g. test_scope_to_request_*) or,
* shared state between tests (e.g. test_is_eaccess_*).

Add macros to improve readability of tests (i.e. one per line).  Test
cases are collocated with the tested functions to help maintenance and
improve documentation.  This is why SECURITY_LANDLOCK_KUNIT_TEST cannot
be set as module.

This is a nice complement to Landlock's user space kselftests.  We
expect new Landlock features to come with KUnit tests as well.

Thanks to UML support, we can run all KUnit tests for Landlock with:
./tools/testing/kunit/kunit.py run --kunitconfig security/landlock

[00:00:00] ======================= landlock_fs  =======================
[00:00:00] [PASSED] test_no_more_access
[00:00:00] [PASSED] test_scope_to_request_with_exec_none
[00:00:00] [PASSED] test_scope_to_request_with_exec_some
[00:00:00] [PASSED] test_scope_to_request_without_access
[00:00:00] [PASSED] test_is_eacces_with_none
[00:00:00] [PASSED] test_is_eacces_with_refer
[00:00:00] [PASSED] test_is_eacces_with_write
[00:00:00] =================== [PASSED] landlock_fs ===================
[00:00:00] ============================================================
[00:00:00] Testing complete. Ran 7 tests: passed: 7

Cc: Konstantin Meskhidze <konstantin.meskhidze@huawei.com>
Reviewed-by: Günther Noack <gnoack@google.com>
Link: https://lore.kernel.org/r/20240118113632.1948478-1-mic@digikod.net
Signed-off-by: Mickaël Salaün <mic@digikod.net>
2024-02-27 11:21:45 +01:00
Konstantin Meskhidze
fff69fb03d
landlock: Support network rules with TCP bind and connect
Add network rules support in the ruleset management helpers and the
landlock_create_ruleset() syscall. Extend user space API to support
network actions:
* Add new network access rights: LANDLOCK_ACCESS_NET_BIND_TCP and
  LANDLOCK_ACCESS_NET_CONNECT_TCP.
* Add a new network rule type: LANDLOCK_RULE_NET_PORT tied to struct
  landlock_net_port_attr. The allowed_access field contains the network
  access rights, and the port field contains the port value according to
  the controlled protocol. This field can take up to a 64-bit value
  but the maximum value depends on the related protocol (e.g. 16-bit
  value for TCP). Network port is in host endianness [1].
* Add a new handled_access_net field to struct landlock_ruleset_attr
  that contains network access rights.
* Increment the Landlock ABI version to 4.

Implement socket_bind() and socket_connect() LSM hooks, which enable
to control TCP socket binding and connection to specific ports.

Expand access_masks_t from u16 to u32 to be able to store network access
rights alongside filesystem access rights for rulesets' handled access
rights.

Access rights are not tied to socket file descriptors but checked at
bind() or connect() call time against the caller's Landlock domain. For
the filesystem, a file descriptor is a direct access to a file/data.
However, for network sockets, we cannot identify for which data or peer
a newly created socket will give access to. Indeed, we need to wait for
a connect or bind request to identify the use case for this socket.
Likewise a directory file descriptor may enable to open another file
(i.e. a new data item), but this opening is also restricted by the
caller's domain, not the file descriptor's access rights [2].

[1] https://lore.kernel.org/r/278ab07f-7583-a4e0-3d37-1bacd091531d@digikod.net
[2] https://lore.kernel.org/r/263c1eb3-602f-57fe-8450-3f138581bee7@digikod.net

Signed-off-by: Konstantin Meskhidze <konstantin.meskhidze@huawei.com>
Link: https://lore.kernel.org/r/20231026014751.414649-9-konstantin.meskhidze@huawei.com
[mic: Extend commit message, fix typo in comments, and specify
endianness in the documentation]
Co-developed-by: Mickaël Salaün <mic@digikod.net>
Signed-off-by: Mickaël Salaün <mic@digikod.net>
2023-10-26 21:07:15 +02:00
Mickaël Salaün
74ce793bcb
hostfs: Fix ephemeral inodes
hostfs creates a new inode for each opened or created file, which
created useless inode allocations and forbade identifying a host file
with a kernel inode.

Fix this uncommon filesystem behavior by tying kernel inodes to host
file's inode and device IDs.  Even if the host filesystem inodes may be
recycled, this cannot happen while a file referencing it is opened,
which is the case with hostfs.  It should be noted that hostfs inode IDs
may not be unique for the same hostfs superblock because multiple host's
(backed) superblocks may be used.

Delete inodes when dropping them to force backed host's file descriptors
closing.

This enables to entirely remove ARCH_EPHEMERAL_INODES, and then makes
Landlock fully supported by UML.  This is very useful for testing
changes.

These changes also factor out and simplify some helpers thanks to the
new hostfs_inode_update() and the hostfs_iget() revamp: read_name(),
hostfs_create(), hostfs_lookup(), hostfs_mknod(), and
hostfs_fill_sb_common().

A following commit with new Landlock tests check this new hostfs inode
consistency.

Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Richard Weinberger <richard@nod.at>
Link: https://lore.kernel.org/r/20230612191430.339153-2-mic@digikod.net
Signed-off-by: Mickaël Salaün <mic@digikod.net>
2023-06-12 21:26:19 +02:00
Mickaël Salaün
cb2c7d1a17 landlock: Support filesystem access-control
Using Landlock objects and ruleset, it is possible to tag inodes
according to a process's domain.  To enable an unprivileged process to
express a file hierarchy, it first needs to open a directory (or a file)
and pass this file descriptor to the kernel through
landlock_add_rule(2).  When checking if a file access request is
allowed, we walk from the requested dentry to the real root, following
the different mount layers.  The access to each "tagged" inodes are
collected according to their rule layer level, and ANDed to create
access to the requested file hierarchy.  This makes possible to identify
a lot of files without tagging every inodes nor modifying the
filesystem, while still following the view and understanding the user
has from the filesystem.

Add a new ARCH_EPHEMERAL_INODES for UML because it currently does not
keep the same struct inodes for the same inodes whereas these inodes are
in use.

This commit adds a minimal set of supported filesystem access-control
which doesn't enable to restrict all file-related actions.  This is the
result of multiple discussions to minimize the code of Landlock to ease
review.  Thanks to the Landlock design, extending this access-control
without breaking user space will not be a problem.  Moreover, seccomp
filters can be used to restrict the use of syscall families which may
not be currently handled by Landlock.

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jann Horn <jannh@google.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Serge E. Hallyn <serge@hallyn.com>
Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com>
Link: https://lore.kernel.org/r/20210422154123.13086-8-mic@digikod.net
Signed-off-by: James Morris <jamorris@linux.microsoft.com>
2021-04-22 12:22:11 -07:00
Mickaël Salaün
90945448e9 landlock: Add object management
A Landlock object enables to identify a kernel object (e.g. an inode).
A Landlock rule is a set of access rights allowed on an object.  Rules
are grouped in rulesets that may be tied to a set of processes (i.e.
subjects) to enforce a scoped access-control (i.e. a domain).

Because Landlock's goal is to empower any process (especially
unprivileged ones) to sandbox themselves, we cannot rely on a
system-wide object identification such as file extended attributes.
Indeed, we need innocuous, composable and modular access-controls.

The main challenge with these constraints is to identify kernel objects
while this identification is useful (i.e. when a security policy makes
use of this object).  But this identification data should be freed once
no policy is using it.  This ephemeral tagging should not and may not be
written in the filesystem.  We then need to manage the lifetime of a
rule according to the lifetime of its objects.  To avoid a global lock,
this implementation make use of RCU and counters to safely reference
objects.

A following commit uses this generic object management for inodes.

Cc: James Morris <jmorris@namei.org>
Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210422154123.13086-2-mic@digikod.net
Signed-off-by: James Morris <jamorris@linux.microsoft.com>
2021-04-22 12:22:10 -07:00