IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Currently, AVIC is inhibited when booting a VM w/ x2APIC support.
because AVIC cannot virtualize x2APIC MSR register accesses.
However, the AVIC doorbell can be used to accelerate interrupt
injection into a running vCPU, while all guest accesses to x2APIC MSRs
will be intercepted and emulated by KVM.
With hybrid-AVIC support, the APICV_INHIBIT_REASON_X2APIC is
no longer enforced.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-14-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce logic to (de)activate AVIC, which also allows
switching between AVIC to x2AVIC mode at runtime.
When an AVIC-enabled guest switches from APIC to x2APIC mode,
the SVM driver needs to perform the following steps:
1. Set the x2APIC mode bit for AVIC in VMCB along with the maximum
APIC ID support for each mode accodingly.
2. Disable x2APIC MSRs interception in order to allow the hardware
to virtualize x2APIC MSRs accesses.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-12-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
xAVIC and x2AVIC modes can support diffferent number of vcpus.
Update existing logics to support each mode accordingly.
Also, modify the maximum physical APIC ID for AVIC to 255 to reflect
the actual value supported by the architecture.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-5-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add CPUID check for the x2APIC virtualization (x2AVIC) feature.
If available, the SVM driver can support both AVIC and x2AVIC modes
when load the kvm_amd driver with avic=1. The operating mode will be
determined at runtime depending on the guest APIC mode.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-4-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a new feature bit for virtualized x2APIC (x2AVIC) in
CPUID_Fn8000000A_EDX [SVM Revision and Feature Identification].
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220519102709.24125-2-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the emulation of IA32_MCi_CTL2 registers to KVM. A
separate mci_ctl2_banks array is used to keep the existing mce_banks
register layout intact.
In Machine Check Architecture, in addition to MCG_CMCI_P, bit 30 of
the per-bank register IA32_MCi_CTL2 controls whether Corrected Machine
Check error reporting is enabled.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-7-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.
Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.
Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:
(1) The shadow MMU has a limit on the number of shadow pages that are
allowed to be allocated. So, as a policy, Eager Page Splitting
refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
pages available.
(2) Splitting a huge page may end up re-using an existing lower level
shadow page tables. This is unlike the TDP MMU which always allocates
new shadow page tables when splitting.
(3) When installing the lower level SPTEs, they must be added to the
rmap which may require allocating additional pte_list_desc structs.
Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush. As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.
This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits. However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).
[ This commit is based off of the original implementation of Eager Page
Splitting from Peter in Google's kernel from 2016. ]
Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.
In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU. Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page. The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.
Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.
While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.
In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.
Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions. But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a quirk for KVM's behavior of emulating intercepted MONITOR/MWAIT
instructions a NOPs regardless of whether or not they are supported in
guest CPUID. KVM's current behavior was likely motiviated by a certain
fruity operating system that expects MONITOR/MWAIT to be supported
unconditionally and blindly executes MONITOR/MWAIT without first checking
CPUID. And because KVM does NOT advertise MONITOR/MWAIT to userspace,
that's effectively the default setup for any VMM that regurgitates
KVM_GET_SUPPORTED_CPUID to KVM_SET_CPUID2.
Note, this quirk interacts with KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT. The
behavior is actually desirable, as userspace VMMs that want to
unconditionally hide MONITOR/MWAIT from the guest can leave the
MISC_ENABLE quirk enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220608224516.3788274-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the unused @vcpu parameter from hwapic_isr_update(). AMD/AVIC is
unlikely to implement the helper, and VMX/APICv doesn't need the vCPU as
it operates on the current VMCS. The result is somewhat odd, but allows
for a decent amount of (future) cleanup in the APIC code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to show tests
x86:
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Rewrite gfn-pfn cache refresh
* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit
Neither of these settings should be changed by the guest and it is
a burden to support it in the acceleration code, so just inhibit
this code instead.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These days there are too many AVIC/APICv inhibit
reasons, and it doesn't hurt to have some documentation
for them.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the state of the speaker port (0x61) data bit (bit 1) is not
saved in the exported state (kvm_pit_state2) and hence is lost when
re-constructing guest state.
This patch removes the 'speaker_data_port' field from kvm_kpit_state and
instead tracks the state using a new KVM_PIT_FLAGS_SPEAKER_DATA_ON flag
defined in the API.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20220531124421.1427-1-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.
Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.
Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All gp or fixed counters have been reprogrammed using PERF_TYPE_RAW,
which means that the table that maps perf_hw_id to event select values is
no longer useful, at least for AMD.
For Intel, the logic to check if the pmu event reported by Intel cpuid is
not available is still required, in which case pmc_perf_hw_id() could be
renamed to hw_event_is_unavail() and a bool value is returned to replace
the semantics of "PERF_COUNT_HW_MAX+1".
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, we have [intel|knc|p4|p6]_perfmon_event_map on the Intel
platforms and amd_[f17h]_perfmon_event_map on the AMD platforms.
Early clumsy KVM code or other potential perf_event users may have
hard-coded these perfmon_maps (e.g., arch/x86/kvm/svm/pmu.c), so
it would not make sense to program a common hardware event based
on the generic "enum perf_hw_id" once the two tables do not match.
Let's provide an interface for callers outside the perf subsystem to get
the counter config based on the perfmon_event_map currently in use,
and it also helps to save bytes.
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Like Xu <likexu@tencent.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220518132512.37864-10-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest PEBS will be disabled when some users try to perf KVM and
its user-space through the same PEBS facility OR when the host perf
doesn't schedule the guest PEBS counter in a one-to-one mapping manner
(neither of these are typical scenarios).
The PEBS records in the guest DS buffer are still accurate and the
above two restrictions will be checked before each vm-entry only if
guest PEBS is deemed to be enabled.
Suggested-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-15-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.
Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.
When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.
According to Intel SDM, software is recommended to PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.
When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Splitting the logic for determining the guest values is unnecessarily
confusing, and potentially fragile. Perf should have full knowledge and
control of what values are loaded for the guest.
If we change .guest_get_msrs() to take a struct kvm_pmu pointer, then it
can generate the full set of guest values by grabbing guest ds_area and
pebs_data_cfg. Alternatively, .guest_get_msrs() could take the desired
guest MSR values directly (ds_area and pebs_data_cfg), but kvm_pmu is
vendor agnostic, so we don't see any reason to not just pass the pointer.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for EPT-Friendly PEBS, a new CPU feature that enlightens PEBS
to translate guest linear address through EPT, and facilitates handling
VM-Exits that occur when accessing PEBS records. More information can
be found in the December 2021 release of Intel's SDM, Volume 3,
18.9.5 "EPT-Friendly PEBS". This new hardware facility makes sure the
guest PEBS records will not be lost, which is available on Intel Ice Lake
Server platforms (and later).
KVM will check this field through perf_get_x86_pmu_capability() instead
of hard coding the CPU models in the KVM code. If it is supported, the
guest PEBS capability will be exposed to the guest. Guest PEBS can be
enabled when and only when "EPT-Friendly PEBS" is supported and
EPT is enabled.
Cc: linux-perf-users@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().
This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.
By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check VMX features on tertiary execution control in VMCS config setup.
Sub-features in tertiary execution control to be enabled are adjusted
according to hardware capabilities although no sub-feature is enabled
in this patch.
EVMCSv1 doesn't support tertiary VM-execution control, so disable it
when EVMCSv1 is in use. And define the auxiliary functions for Tertiary
control field here, using the new BUILD_CONTROLS_SHADOW().
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153400.11642-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A new 64-bit control field "tertiary processor-based VM-execution
controls", is defined [1]. It's controlled by bit 17 of the primary
processor-based VM-execution controls.
Different from its brother VM-execution fields, this tertiary VM-
execution controls field is 64 bit. So it occupies 2 vmx_feature_leafs,
TERTIARY_CTLS_LOW and TERTIARY_CTLS_HIGH.
Its companion VMX capability reporting MSR,MSR_IA32_VMX_PROCBASED_CTLS3
(0x492), is also semantically different from its brothers, whose 64 bits
consist of all allow-1, rather than 32-bit allow-0 and 32-bit allow-1 [1][2].
Therefore, its init_vmx_capabilities() is a little different from others.
[1] ISE 6.2 "VMCS Changes"
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
[2] SDM Vol3. Appendix A.3
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419153240.11549-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction. Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM. Though rare in practice, a
hard IRQ can be reinjected.
Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As noted (and fixed) a couple of times in the past, "=@cc<cond>" outputs
and clobbering of "cc" don't work well together. The compiler appears to
mean to reject such, but doesn't - in its upstream form - quite manage
to yet for "cc". Furthermore two similar macros don't clobber "cc", and
clobbering "cc" is pointless in asm()-s for x86 anyway - the compiler
always assumes status flags to be clobbered there.
Fixes: 989b5db215a2 ("x86/uaccess: Implement macros for CMPXCHG on user addresses")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Message-Id: <485c0c0b-a3a7-0b7c-5264-7d00c01de032@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Handle __ubsan_handle_builtin_unreachable() correctly and treat it as
noreturn.
- Allow architectures to select uaccess validation
- Use the non-instrumented bit test for test_cpu_has() to prevent escape
from non-instrumentable regions.
- Use arch_ prefixed atomics for JUMP_LABEL=n builds to prevent escape
from non-instrumentable regions.
- Mark a few tiny inline as __always_inline to prevent GCC from bringing
them out of line and instrumenting them.
- Mark the empty stub context_tracking_enabled() as always inline as GCC
brings them out of line and instruments the empty shell.
- Annotate ex_handler_msr_mce() as dead end
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKccvMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoW39EAC1w/mSwn3b1lYkzOUcoe4EOMXzao2U
my0ThnPNpa5k14Xfp6tOIpWRGTuW6mcVi4g+x4+LJo9V5tt5BxmMO1VFrTCQKn7H
iJ1sWZNGq503aXldIT+pC0Zz67CIVnbGiz0D67aEYQ7w4ACdkubx8kcx5Of7BNbm
KyQllP8XFXy7b+wgc8MrX1h/wPXNV9PBJwRAFrBw52c4s5euYui7iUNUm4RtKRem
OpI3RFholAITLzvV8j+Xs9EmfUDjvmU3e1NEEas2n3MHm7tkYo5aSOSYX/Z7C5YD
MvpMS3UAgwRGdaXvRVJK7eWcwayjODGGYrW9x9w9RMKM492uB4vAzfr4PE3Lru5G
mnOxDjEP4QRK7Jl8bC0Idc5G6bxmw4DnQl7vkoaNYn3EyxKaEvREUokFKy5eWp3U
klFQZXgQreUGSEkVA8VW7yT6knzVNsBk2WSFDUPdQZ0PV7JAVLyGZX8gEbhDyyim
czkmI21A3hmGR97FKxyQ0I1N6q8eKSodZWbquPdOW52Jdt6pkpzUqPok9r74PK/p
83ip/bNthbaR8FccNCHbnCLd8kvp6lsjqLqnMQHhMtUju6uRPRTzW1rxKik3Cbfh
8VmqP6ltNGD7MkQW/jW+Vq7GIM+9onnEHbA/aEntH/ZKDHEefYtE66T0BjSrS6YK
5dMr/vz4Jx1bwg==
=eNVp
-----END PGP SIGNATURE-----
Merge tag 'objtool-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fixes from Thomas Gleixner:
- Handle __ubsan_handle_builtin_unreachable() correctly and treat it as
noreturn
- Allow architectures to select uaccess validation
- Use the non-instrumented bit test for test_cpu_has() to prevent
escape from non-instrumentable regions
- Use arch_ prefixed atomics for JUMP_LABEL=n builds to prevent escape
from non-instrumentable regions
- Mark a few tiny inline as __always_inline to prevent GCC from
bringing them out of line and instrumenting them
- Mark the empty stub context_tracking_enabled() as always inline as
GCC brings them out of line and instruments the empty shell
- Annotate ex_handler_msr_mce() as dead end
* tag 'objtool-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/extable: Annotate ex_handler_msr_mce() as a dead end
context_tracking: Always inline empty stubs
x86: Always inline on_thread_stack() and current_top_of_stack()
jump_label,noinstr: Avoid instrumentation for JUMP_LABEL=n builds
x86/cpu: Elide KCSAN for cpu_has() and friends
objtool: Mark __ubsan_handle_builtin_unreachable() as noreturn
objtool: Add CONFIG_HAVE_UACCESS_VALIDATION
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCYprzPAAKCRCAXGG7T9hj
vuTzAQC4GiDXcD/cfLVcEqdyw1diCWZjuOfuznUqy5ZUBAZjvAD/draFHTeO96+k
qyZyzFggPIziaAOIUZ2DkJ/NqSAmbA8=
=dl1E
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.19-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull more xen updates from Juergen Gross:
"Two cleanup patches for Xen related code and (more important) an
update of MAINTAINERS for Xen, as Boris Ostrovsky decided to step
down"
* tag 'for-linus-5.19-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: replace xen_remap() with memremap()
MAINTAINERS: Update Xen maintainership
xen: switch gnttab_end_foreign_access() to take a struct page pointer
ordinary user mode tasks.
In commit 40966e316f86 ("kthread: Ensure struct kthread is present for
all kthreads") caused init and the user mode helper threads that call
kernel_execve to have struct kthread allocated for them. This struct
kthread going away during execve in turned made a use after free of
struct kthread possible.
The commit 343f4c49f243 ("kthread: Don't allocate kthread_struct for
init and umh") is enough to fix the use after free and is simple enough
to be backportable.
The rest of the changes pass struct kernel_clone_args to clean things
up and cause the code to make sense.
In making init and the user mode helpers tasks purely user mode tasks
I ran into two complications. The function task_tick_numa was
detecting tasks without an mm by testing for the presence of
PF_KTHREAD. The initramfs code in populate_initrd_image was using
flush_delayed_fput to ensuere the closing of all it's file descriptors
was complete, and flush_delayed_fput does not work in a userspace thread.
I have looked and looked and more complications and in my code review
I have not found any, and neither has anyone else with the code sitting
in linux-next.
Link: https://lkml.kernel.org/r/87mtfu4up3.fsf@email.froward.int.ebiederm.org
Eric W. Biederman (8):
kthread: Don't allocate kthread_struct for init and umh
fork: Pass struct kernel_clone_args into copy_thread
fork: Explicity test for idle tasks in copy_thread
fork: Generalize PF_IO_WORKER handling
init: Deal with the init process being a user mode process
fork: Explicitly set PF_KTHREAD
fork: Stop allowing kthreads to call execve
sched: Update task_tick_numa to ignore tasks without an mm
arch/alpha/kernel/process.c | 13 ++++++------
arch/arc/kernel/process.c | 13 ++++++------
arch/arm/kernel/process.c | 12 ++++++-----
arch/arm64/kernel/process.c | 12 ++++++-----
arch/csky/kernel/process.c | 15 ++++++-------
arch/h8300/kernel/process.c | 10 ++++-----
arch/hexagon/kernel/process.c | 12 ++++++-----
arch/ia64/kernel/process.c | 15 +++++++------
arch/m68k/kernel/process.c | 12 ++++++-----
arch/microblaze/kernel/process.c | 12 ++++++-----
arch/mips/kernel/process.c | 13 ++++++------
arch/nios2/kernel/process.c | 12 ++++++-----
arch/openrisc/kernel/process.c | 12 ++++++-----
arch/parisc/kernel/process.c | 18 +++++++++-------
arch/powerpc/kernel/process.c | 15 +++++++------
arch/riscv/kernel/process.c | 12 ++++++-----
arch/s390/kernel/process.c | 12 ++++++-----
arch/sh/kernel/process_32.c | 12 ++++++-----
arch/sparc/kernel/process_32.c | 12 ++++++-----
arch/sparc/kernel/process_64.c | 12 ++++++-----
arch/um/kernel/process.c | 15 +++++++------
arch/x86/include/asm/fpu/sched.h | 2 +-
arch/x86/include/asm/switch_to.h | 8 +++----
arch/x86/kernel/fpu/core.c | 4 ++--
arch/x86/kernel/process.c | 18 +++++++++-------
arch/xtensa/kernel/process.c | 17 ++++++++-------
fs/exec.c | 8 ++++---
include/linux/sched/task.h | 8 +++++--
init/initramfs.c | 2 ++
init/main.c | 2 +-
kernel/fork.c | 46 +++++++++++++++++++++++++++++++++-------
kernel/sched/fair.c | 2 +-
kernel/umh.c | 6 +++---
33 files changed, 234 insertions(+), 160 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaR/MACgkQC/v6Eiaj
j0Aayg/7Bx66872d9c6igkJ+MPCTuh+v9QKCGwiYEmiU4Q5sVAFB0HPJO27qC14u
630X0RFNZTkPzNNEJNIW4kw6Dj8s8YRKf+FgQAVt4SzdRwT7eIPDjk1nGraopPJ3
O04pjvuTmUyidyViRyFcf2ptx/pnkrwP8jUSc+bGTgfASAKAgAokqKE5ecjewbBc
Y/EAkQ6QW7KxPjeSmpAHwI+t3BpBev9WEC4PbhRhsBCQFO2+PJiklvqdhVNBnIjv
qUezll/1xv9UYgniB15Q4Nb722SmnWSU3r8as1eFPugzTHizKhufrrpyP+KMK1A0
tdtEJNs5t2DZF7ZbGTFSPqJWmyTYLrghZdO+lOmnaSjHxK4Nda1d4NzbefJ0u+FE
tutewowvHtBX6AFIbx+H3O+DOJM2IgNMf+ReQDU/TyNyVf3wBrTbsr9cLxypIJIp
zze8npoLMlB7B4yxVo5ES5e63EXfi3iHl0L3/1EhoGwriRz1kWgVLUX/VZOUpscL
RkJHsW6bT8sqxPWAA5kyWjEN+wNR2PxbXi8OE4arT0uJrEBMUgDCzydzOv5tJB00
mSQdytxH9LVdsmxBKAOBp5X6WOLGA4yb1cZ6E/mEhlqXMpBDF1DaMfwbWqxSYi4q
sp5zU3SBAW0qceiZSsWZXInfbjrcQXNV/DkDRDO9OmzEZP4m1j0=
=x6fy
-----END PGP SIGNATURE-----
Merge tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull kthread updates from Eric Biederman:
"This updates init and user mode helper tasks to be ordinary user mode
tasks.
Commit 40966e316f86 ("kthread: Ensure struct kthread is present for
all kthreads") caused init and the user mode helper threads that call
kernel_execve to have struct kthread allocated for them. This struct
kthread going away during execve in turned made a use after free of
struct kthread possible.
Here, commit 343f4c49f243 ("kthread: Don't allocate kthread_struct for
init and umh") is enough to fix the use after free and is simple
enough to be backportable.
The rest of the changes pass struct kernel_clone_args to clean things
up and cause the code to make sense.
In making init and the user mode helpers tasks purely user mode tasks
I ran into two complications. The function task_tick_numa was
detecting tasks without an mm by testing for the presence of
PF_KTHREAD. The initramfs code in populate_initrd_image was using
flush_delayed_fput to ensuere the closing of all it's file descriptors
was complete, and flush_delayed_fput does not work in a userspace
thread.
I have looked and looked and more complications and in my code review
I have not found any, and neither has anyone else with the code
sitting in linux-next"
* tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched: Update task_tick_numa to ignore tasks without an mm
fork: Stop allowing kthreads to call execve
fork: Explicitly set PF_KTHREAD
init: Deal with the init process being a user mode process
fork: Generalize PF_IO_WORKER handling
fork: Explicity test for idle tasks in copy_thread
fork: Pass struct kernel_clone_args into copy_thread
kthread: Don't allocate kthread_struct for init and umh
- fix new DXE service invocations for mixed mode
- use correct Kconfig symbol when setting PE header flag
- clean up the drivers/firmware/efi Kconfig dependencies so that
features that depend on CONFIG_EFI are hidden from the UI when the
symbol is not enabled.
Also included is a RISC-V bugfix from Heinrich to avoid read-write
mappings of read-only firmware regions in the EFI page tables.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmKXk5YACgkQw08iOZLZ
jyQQ0wv/cB9Z9kJur3wJqj75HFEly7bwSk5oxJ+txRytApSaRYnqm7l4WeP3QQ8c
o9GzZZNwoRQSx1mCBJefaO4s8fA24QkIeD8Oy4MeucKaPX1UbNc6Z84srOynjpSj
mOyIYB+kurxsCBKmzQQBy8txIWld4EkrMhEoc1h2L4d2+OVRvIlsu1PMv03eCiww
4Sop0yO5CydEpjxJDCfwol0L/PBiXc2PfRs2FdHFwOSQaisQLxhNruCnovyS9Zwk
zLkhYC5dS+OZctknl6XMzOAi3x7sNYzVwNf4+yhFeU2cTuj3kJWnEAqs3CU/tiPO
DOobLg/r/j7H44Nsc/8aJGT4GPNrbUrb6aOcfrBAkxvsu1Sp/k/UfSMZLS9fU1gC
XUUl46NXG1yFpCntruQm5SMytVKdtlyUu7pPa+Ijmr+vc6UWl1XJq26J3UpiiFYT
mjrer5gvzrnhuvUjIb4ulKoNMdoOQQMtofLxUGuc1u/53jWHxbiKt7/QvyFepJVe
zi/ikD/v
=7wiT
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v5.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull more EFI updates from Ard Biesheuvel:
"Follow-up tweaks for EFI changes - they mostly address issues
introduced this merge window, except for Heinrich's patch:
- fix new DXE service invocations for mixed mode
- use correct Kconfig symbol when setting PE header flag
- clean up the drivers/firmware/efi Kconfig dependencies so that
features that depend on CONFIG_EFI are hidden from the UI when the
symbol is not enabled.
Also included is a RISC-V bugfix from Heinrich to avoid read-write
mappings of read-only firmware regions in the EFI page tables"
* tag 'efi-next-for-v5.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi: clean up Kconfig dependencies on CONFIG_EFI
efi/x86: libstub: Make DXE calls mixed mode safe
efi: x86: Fix config name for setting the NX-compatibility flag in the PE header
riscv: read-only pages should not be writable
The newly added DXE calls use 64-bit quantities, which means we need to
marshall them explicitly when running in mixed mode. Currently, we get
away without it because we just bail when GetMemorySpaceDescriptor()
fails, which is guaranteed to happen due to the function argument mixup.
Let's fix this properly, though, by defining the macros that describe
how to marshall the arguments. While at it, drop an incorrect cast on a
status variable.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
xen_remap() is used to establish mappings for frames not under direct
control of the kernel: for Xenstore and console ring pages, and for
grant pages of non-PV guests.
Today xen_remap() is defined to use ioremap() on x86 (doing uncached
mappings), and ioremap_cache() on Arm (doing cached mappings).
Uncached mappings for those use cases are bad for performance, so they
should be avoided if possible. As all use cases of xen_remap() don't
require uncached mappings (the mapped area is always physical RAM),
a mapping using the standard WB cache mode is fine.
As sparse is flagging some of the xen_remap() use cases to be not
appropriate for iomem(), as the result is not annotated with the
__iomem modifier, eliminate xen_remap() completely and replace all
use cases with memremap() specifying the MEMREMAP_WB caching mode.
xen_unmap() can be replaced with memunmap().
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Stefano Stabellini <sstabellini@kernel.org>
Link: https://lore.kernel.org/r/20220530082634.6339-1-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
* Support for the Svpbmt extension, which allows memory attributes to be
encoded in pages.
* Support for the Allwinner D1's implementation of page-based memory
attributes.
* Support for running rv32 binaries on rv64 systems, via the compat
subsystem.
* Support for kexec_file().
* Support for the new generic ticket-based spinlocks, which allows us to
also move to qrwlock. These should have already gone in through the
asm-geneic tree as well.
* A handful of cleanups and fixes, include some larger ones around
atomics and XIP.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmKWOx8THHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYieAiEADAUdP7ctoaSQwk5skd/fdA3b4KJuKn
1Zjl+Br32WP0DlbirYBYWRUQZnCCsvABbTiwSJMcG7NBpU5pyQ5XDtB3OA5kJswO
Fdp8Nd53//+GK1M5zdEM9OdgvT9fbfTZ3qTu8bKsROOQhGwnYL+Csc9KjFRqEmzN
oQii0jlb3n5PM4FL3GsbV4uMn9zzkP9mnVAPQktcock2EKFEK/Fy3uNYMQiO2KPi
n8O6bIDaeRdQ6SurzWOuOkt0cro0tEF85ilzT04mynQsOU0el5oGqCxnOhNH3VWg
ndqPT6Yafw12hZOtbKJeP+nF8IIR6aJLP3jOtRwEVgcfbXYAw4QwbAV8kQZISefN
ipn8JGY7GX9Y9TYU692OUGkcmAb3/dxb6c0WihBdvJ0M6YyLD5X+YKHNuG2onLgK
ss43C5Mxsu629rsjdu/PV91B1+pve3rG9siVmF+g4eo0x9rjMq6/JB0Kal/8SLI1
Je5T55d5ujV1a2XxhZLQOSD5owrK7J1M9owb0bloTnr9nVwFTWDrfEQEU82o3kP+
Xm+FfXktnz9ai55NjkMbbEur5D++dKJhBavwCTnBcTrJmMtEH0R45GTK9ZehP+WC
rNVrRXjIsS18wsTfJxnkZeFQA38as6VBKTzvwHvOgzTrrZU1/xk3lpkouYtAO6BG
gKacHshVilmUuA==
=Loi6
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-5.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for the Svpbmt extension, which allows memory attributes to
be encoded in pages
- Support for the Allwinner D1's implementation of page-based memory
attributes
- Support for running rv32 binaries on rv64 systems, via the compat
subsystem
- Support for kexec_file()
- Support for the new generic ticket-based spinlocks, which allows us
to also move to qrwlock. These should have already gone in through
the asm-geneic tree as well
- A handful of cleanups and fixes, include some larger ones around
atomics and XIP
* tag 'riscv-for-linus-5.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (51 commits)
RISC-V: Prepare dropping week attribute from arch_kexec_apply_relocations[_add]
riscv: compat: Using seperated vdso_maps for compat_vdso_info
RISC-V: Fix the XIP build
RISC-V: Split out the XIP fixups into their own file
RISC-V: ignore xipImage
RISC-V: Avoid empty create_*_mapping definitions
riscv: Don't output a bogus mmu-type on a no MMU kernel
riscv: atomic: Add custom conditional atomic operation implementation
riscv: atomic: Optimize dec_if_positive functions
riscv: atomic: Cleanup unnecessary definition
RISC-V: Load purgatory in kexec_file
RISC-V: Add purgatory
RISC-V: Support for kexec_file on panic
RISC-V: Add kexec_file support
RISC-V: use memcpy for kexec_file mode
kexec_file: Fix kexec_file.c build error for riscv platform
riscv: compat: Add COMPAT Kbuild skeletal support
riscv: compat: ptrace: Add compat_arch_ptrace implement
riscv: compat: signal: Add rt_frame implementation
riscv: add memory-type errata for T-Head
...
- The majority of the changes are for fixes and clean ups.
Noticeable changes:
- Rework trace event triggers code to be easier to interact with.
- Support for embedding bootconfig with the kernel (as suppose to having it
embedded in initram). This is useful for embedded boards without initram
disks.
- Speed up boot by parallelizing the creation of tracefs files.
- Allow absolute ring buffer timestamps handle timestamps that use more than
59 bits.
- Added new tracing clock "TAI" (International Atomic Time)
- Have weak functions show up in available_filter_function list as:
__ftrace_invalid_address___<invalid-offset>
instead of using the name of the function before it.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYpOgXRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qjkKAQDbpemxvpFyJlZqT8KgEIXubu+ag2/q
p0XDHaPS0zF9OQEAjTxg6GMEbnFYl6fzxZtOoEbiaQ7ppfdhRI8t6sSMVA8=
=+nDD
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The majority of the changes are for fixes and clean ups.
Notable changes:
- Rework trace event triggers code to be easier to interact with.
- Support for embedding bootconfig with the kernel (as suppose to
having it embedded in initram). This is useful for embedded boards
without initram disks.
- Speed up boot by parallelizing the creation of tracefs files.
- Allow absolute ring buffer timestamps handle timestamps that use
more than 59 bits.
- Added new tracing clock "TAI" (International Atomic Time)
- Have weak functions show up in available_filter_function list as:
__ftrace_invalid_address___<invalid-offset> instead of using the
name of the function before it"
* tag 'trace-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (52 commits)
ftrace: Add FTRACE_MCOUNT_MAX_OFFSET to avoid adding weak function
tracing: Fix comments for event_trigger_separate_filter()
x86/traceponit: Fix comment about irq vector tracepoints
x86,tracing: Remove unused headers
ftrace: Clean up hash direct_functions on register failures
tracing: Fix comments of create_filter()
tracing: Disable kcov on trace_preemptirq.c
tracing: Initialize integer variable to prevent garbage return value
ftrace: Fix typo in comment
ftrace: Remove return value of ftrace_arch_modify_*()
tracing: Cleanup code by removing init "char *name"
tracing: Change "char *" string form to "char []"
tracing/timerlat: Do not wakeup the thread if the trace stops at the IRQ
tracing/timerlat: Print stacktrace in the IRQ handler if needed
tracing/timerlat: Notify IRQ new max latency only if stop tracing is set
kprobes: Fix build errors with CONFIG_KRETPROBES=n
tracing: Fix return value of trace_pid_write()
tracing: Fix potential double free in create_var_ref()
tracing: Use strim() to remove whitespace instead of doing it manually
ftrace: Deal with error return code of the ftrace_process_locs() function
...
If an unused weak function was traced, it's call to fentry will still
exist, which gets added into the __mcount_loc table. Ftrace will use
kallsyms to retrieve the name for each location in __mcount_loc to display
it in the available_filter_functions and used to enable functions via the
name matching in set_ftrace_filter/notrace. Enabling these functions do
nothing but enable an unused call to ftrace_caller. If a traced weak
function is overridden, the symbol of the function would be used for it,
which will either created duplicate names, or if the previous function was
not traced, it would be incorrectly be listed in available_filter_functions
as a function that can be traced.
This became an issue with BPF[1] as there are tooling that enables the
direct callers via ftrace but then checks to see if the functions were
actually enabled. The case of one function that was marked notrace, but
was followed by an unused weak function that was traced. The unused
function's call to fentry was added to the __mcount_loc section, and
kallsyms retrieved the untraced function's symbol as the weak function was
overridden. Since the untraced function would not get traced, the BPF
check would detect this and fail.
The real fix would be to fix kallsyms to not show addresses of weak
functions as the function before it. But that would require adding code in
the build to add function size to kallsyms so that it can know when the
function ends instead of just using the start of the next known symbol.
In the mean time, this is a work around. Add a FTRACE_MCOUNT_MAX_OFFSET
macro that if defined, ftrace will ignore any function that has its call
to fentry/mcount that has an offset from the symbol that is greater than
FTRACE_MCOUNT_MAX_OFFSET.
If CONFIG_HAVE_FENTRY is defined for x86, define FTRACE_MCOUNT_MAX_OFFSET
to zero (unless IBT is enabled), which will have ftrace ignore all locations
that are not at the start of the function (or one after the ENDBR
instruction).
A worker thread is added at boot up to scan all the ftrace record entries,
and will mark any that fail the FTRACE_MCOUNT_MAX_OFFSET test as disabled.
They will still appear in the available_filter_functions file as:
__ftrace_invalid_address___<invalid-offset>
(showing the offset that caused it to be invalid).
This is required for tools that use libtracefs (like trace-cmd does) that
scan the available_filter_functions and enable set_ftrace_filter and
set_ftrace_notrace using indexes of the function listed in the file (this
is a speedup, as enabling thousands of files via names is an O(n^2)
operation and can take minutes to complete, where the indexing takes less
than a second).
The invalid functions cannot be removed from available_filter_functions as
the names there correspond to the ftrace records in the array that manages
them (and the indexing depends on this).
[1] https://lore.kernel.org/all/20220412094923.0abe90955e5db486b7bca279@kernel.org/
Link: https://lkml.kernel.org/r/20220526141912.794c2786@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYpFPcQAKCRDfioYZHlFs
Z9A3AQCdfoT5sY3OK+I/3oTvJ//6lw2MtXrnXFM046ICKPi9sgD8CzR9mRAHA+vj
kxOtJEU2bA9naninXGORsDUndiNkwQo=
=gVIn
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and DAX updates from Dan Williams:
"New support for clearing memory errors when a file is in DAX mode,
alongside with some other fixes and cleanups.
Previously it was only possible to clear these errors using a truncate
or hole-punch operation to trigger the filesystem to reallocate the
block, now, any page aligned write can opportunistically clear errors
as well.
This change spans x86/mm, nvdimm, and fs/dax, and has received the
appropriate sign-offs. Thanks to Jane for her work on this.
Summary:
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)"
* tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
pmem: implement pmem_recovery_write()
pmem: refactor pmem_clear_poison()
dax: add .recovery_write dax_operation
dax: introduce DAX_RECOVERY_WRITE dax access mode
mce: fix set_mce_nospec to always unmap the whole page
x86/mce: relocate set{clear}_mce_nospec() functions
acpi/nfit: rely on mce->misc to determine poison granularity
testing: nvdimm: asm/mce.h is not needed in nfit.c
testing: nvdimm: iomap: make __nfit_test_ioremap a macro
nvdimm: Allow overwrite in the presence of disabled dimms
tools/testing/nvdimm: remove unneeded flush_workqueue
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmKP/tQUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vzH0xAAojQowrSWzZ5FKTqI+L/L9ZXoAb+e
9IvQljKc9taJldmXp+EB9wkS/5B+VtQcC2qUQuWEQXUoECF8qHlcB4l+XQyd1tWO
O0vZxETH22xjLLrjG2F3l5rrfkJZAf2nEugwbDk97YEgiimeOiRcv3bx6AUCtj6I
rPJ13Fop3Jke7sQMcXYJe3gQLT1o1AKiQGghiCFNi/gzx2lXI6mmHBgLxFoiqcby
WpfXbvbJti95HRaahUR3HaDFfHj4HVkQNLlTtIykJ3Tl2/rOhWEJjI8JOIQpAA+M
WBrWw9rfgbScTiGV+dZ3h7hKiPnHKl9YETIX7L0oA2sj0jZcIs0d6mSBZx0kYuI9
eAlx+qSK9xpbQQr/fdYaUdF1q4QdtU0BYOvOWOzWsqYCECMRJ1PUHFSMbmR/+PNB
P5lHnAbggRSoxdAtwFYv1HTr+VpGH9S+5oxHCz3ohpMjYy6mkCZwHpZn3doaU3ci
KG6yIoVKftm3fZdtFvL03qHl/I8+X24ZhT/T/278PRGjkhSyr56hZo8hg0gqqTct
ngip8qNABmSbqpr73/W6Vl42zAbYtNk1BykYahbKupgW8FbT7hqaZTB05V87pVu+
Ko1aJM6VoOP9rMlKHI9ba8eYCzDrZbLZUFn7ljNPDpzutf0tAwtgwzvZBXN3za6+
Z9+D5dxmvrZEIbA=
=hEti
-----END PGP SIGNATURE-----
Merge tag 'pci-v5.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
"Resource management:
- Restrict E820 clipping to PCI host bridge windows (Bjorn Helgaas)
- Log E820 clipping better (Bjorn Helgaas)
- Add kernel cmdline options to enable/disable E820 clipping (Hans de
Goede)
- Disable E820 reserved region clipping for IdeaPads, Yoga, Yoga
Slip, Acer Spin 5, Clevo Barebone systems where clipping leaves no
usable address space for touchpads, Thunderbolt devices, etc (Hans
de Goede)
- Disable E820 clipping by default starting in 2023 (Hans de Goede)
PCI device hotplug:
- Include files to remove implicit dependencies (Christophe Leroy)
- Only put Root Ports in D3 if they can signal and wake from D3 so
AMD Yellow Carp doesn't miss hotplug events (Mario Limonciello)
Power management:
- Define pci_restore_standard_config() only for CONFIG_PM_SLEEP since
it's unused otherwise (Krzysztof Kozlowski)
- Power up devices completely, including anything platform firmware
needs to do, during runtime resume (Rafael J. Wysocki)
- Move pci_resume_bus() to PM callbacks so we observe the required
bridge power-up delays (Rafael J. Wysocki)
- Drop unneeded runtime_d3cold device flag (Rafael J. Wysocki)
- Split pci_raw_set_power_state() between pci_power_up() and a new
pci_set_low_power_state() (Rafael J. Wysocki)
- Set current_state to D3cold if config read returns ~0, indicating
the device is not accessible (Rafael J. Wysocki)
- Do not call pci_update_current_state() from pci_power_up() so BARs
and ASPM config are restored correctly (Rafael J. Wysocki)
- Write 0 to PMCSR in pci_power_up() in all cases (Rafael J. Wysocki)
- Split pci_power_up() to pci_set_full_power_state() to avoid some
redundant operations (Rafael J. Wysocki)
- Skip restoring BARs if device is not in D0 (Rafael J. Wysocki)
- Rearrange and clarify pci_set_power_state() (Rafael J. Wysocki)
- Remove redundant BAR restores from pci_pm_thaw_noirq() (Rafael J.
Wysocki)
Virtualization:
- Acquire device lock before config space access lock to avoid AB/BA
deadlock with sriov_numvfs_store() (Yicong Yang)
Error handling:
- Clear MULTI_ERR_COR/UNCOR_RCV bits, which a race could previously
leave permanently set (Kuppuswamy Sathyanarayanan)
Peer-to-peer DMA:
- Whitelist Intel Skylake-E Root Ports regardless of which devfn they
are (Shlomo Pongratz)
ASPM:
- Override L1 acceptable latency advertised by Intel DG2 so ASPM L1
can be enabled (Mika Westerberg)
Cadence PCIe controller driver:
- Set up device-specific register to allow PTM Responder to be
enabled by the normal architected bit (Christian Gmeiner)
- Override advertised FLR support since the controller doesn't
implement FLR correctly (Parshuram Thombare)
Cadence PCIe endpoint driver:
- Correct bitmap size for the ob_region_map of outbound window usage
(Dan Carpenter)
Freescale i.MX6 PCIe controller driver:
- Fix PERST# assertion/deassertion so we observe the required delays
before accessing device (Francesco Dolcini)
Freescale Layerscape PCIe controller driver:
- Add "big-endian" DT property (Hou Zhiqiang)
- Update SCFG DT property (Hou Zhiqiang)
- Add "aer", "pme", "intr" DT properties (Li Yang)
- Add DT compatible strings for ls1028a (Xiaowei Bao)
Intel VMD host bridge driver:
- Assign VMD IRQ domain before enumeration to avoid IOMMU interrupt
remapping errors when MSI-X remapping is disabled (Nirmal Patel)
- Revert VMD workaround that kept MSI-X remapping enabled when IOMMU
remapping was enabled (Nirmal Patel)
Marvell MVEBU PCIe controller driver:
- Add of_pci_get_slot_power_limit() to parse the
'slot-power-limit-milliwatt' DT property (Pali Rohár)
- Add mvebu support for sending Set_Slot_Power_Limit message (Pali
Rohár)
MediaTek PCIe controller driver:
- Fix refcount leak in mtk_pcie_subsys_powerup() (Miaoqian Lin)
MediaTek PCIe Gen3 controller driver:
- Reset PHY and MAC at probe time (AngeloGioacchino Del Regno)
Microchip PolarFlare PCIe controller driver:
- Add chained_irq_enter()/chained_irq_exit() calls to mc_handle_msi()
and mc_handle_intx() to avoid lost interrupts (Conor Dooley)
- Fix interrupt handling race (Daire McNamara)
NVIDIA Tegra194 PCIe controller driver:
- Drop tegra194 MSI register save/restore, which is unnecessary since
the DWC core does it (Jisheng Zhang)
Qualcomm PCIe controller driver:
- Add SM8150 SoC DT binding and support (Bhupesh Sharma)
- Fix pipe clock imbalance (Johan Hovold)
- Fix runtime PM imbalance on probe errors (Johan Hovold)
- Fix PHY init imbalance on probe errors (Johan Hovold)
- Convert DT binding to YAML (Dmitry Baryshkov)
- Update DT binding to show that resets aren't required for
MSM8996/APQ8096 platforms (Dmitry Baryshkov)
- Add explicit register names per chipset in DT binding (Dmitry
Baryshkov)
- Add sc7280-specific clock and reset definitions to DT binding
(Dmitry Baryshkov)
Rockchip PCIe controller driver:
- Fix bitmap size when searching for free outbound region (Dan
Carpenter)
Rockchip DesignWare PCIe controller driver:
- Remove "snps,dw-pcie" from rockchip-dwc DT "compatible" property
because it's not fully compatible with rockchip (Peter Geis)
- Reset rockchip-dwc controller at probe (Peter Geis)
- Add rockchip-dwc INTx support (Peter Geis)
Synopsys DesignWare PCIe controller driver:
- Return error instead of success if DMA mapping of MSI area fails
(Jiantao Zhang)
Miscellaneous:
- Change pci_set_dma_mask() documentation references to
dma_set_mask() (Alex Williamson)"
* tag 'pci-v5.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (64 commits)
dt-bindings: PCI: qcom: Add schema for sc7280 chipset
dt-bindings: PCI: qcom: Specify reg-names explicitly
dt-bindings: PCI: qcom: Do not require resets on msm8996 platforms
dt-bindings: PCI: qcom: Convert to YAML
PCI: qcom: Fix unbalanced PHY init on probe errors
PCI: qcom: Fix runtime PM imbalance on probe errors
PCI: qcom: Fix pipe clock imbalance
PCI: qcom: Add SM8150 SoC support
dt-bindings: pci: qcom: Document PCIe bindings for SM8150 SoC
x86/PCI: Disable E820 reserved region clipping starting in 2023
x86/PCI: Disable E820 reserved region clipping via quirks
x86/PCI: Add kernel cmdline options to use/ignore E820 reserved regions
PCI: microchip: Fix potential race in interrupt handling
PCI/AER: Clear MULTI_ERR_COR/UNCOR_RCV bits
PCI: cadence: Clear FLR in device capabilities register
PCI: cadence: Allow PTM Responder to be enabled
PCI: vmd: Revert 2565e5b69c44 ("PCI: vmd: Do not disable MSI-X remapping if interrupt remapping is enabled by IOMMU.")
PCI: vmd: Assign VMD IRQ domain before enumeration
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
PCI: rockchip-dwc: Add legacy interrupt support
...