197 Commits

Author SHA1 Message Date
Joel Granados
c899710fe7 networking: Update to register_net_sysctl_sz
Move from register_net_sysctl to register_net_sysctl_sz for all the
networking related files. Do this while making sure to mirror the NULL
assignments with a table_size of zero for the unprivileged users.

We need to move to the new function in preparation for when we change
SIZE_MAX to ARRAY_SIZE() in the register_net_sysctl macro. Failing to do
so would erroneously allow ARRAY_SIZE() to be called on a pointer. We
hold off the SIZE_MAX to ARRAY_SIZE change until we have migrated all
the relevant net sysctl registering functions to register_net_sysctl_sz
in subsequent commits.

An additional size function was added to the following files in order to
calculate the size of an array that is defined in another file:
    include/net/ipv6.h
    net/ipv6/icmp.c
    net/ipv6/route.c
    net/ipv6/sysctl_net_ipv6.c

Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-08-15 15:26:18 -07:00
Eric Dumazet
4ecbb1c27c net: dropreason: add SKB_DROP_REASON_DUP_FRAG
This is used to track when a duplicate segment received by various
reassembly units is dropped.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-10-31 20:14:26 -07:00
Martin KaFai Lau
335c8cf3b5 net: ipv6: Handle delivery_time in ipv6 defrag
A latter patch will postpone the delivery_time clearing until the stack
knows the skb is being delivered locally (i.e. calling
skb_clear_delivery_time() at ip_local_deliver_finish() for IPv4
and at ip6_input_finish() for IPv6).  That will allow other kernel
forwarding path (e.g. ip[6]_forward) to keep the delivery_time also.

A very similar IPv6 defrag codes have been duplicated in
multiple places: regular IPv6, nf_conntrack, and 6lowpan.

Unlike the IPv4 defrag which is done before ip_local_deliver_finish(),
the regular IPv6 defrag is done after ip6_input_finish().
Thus, no change should be needed in the regular IPv6 defrag
logic because skb_clear_delivery_time() should have been called.

6lowpan also does not need special handling on delivery_time
because it is a non-inet packet_type.

However, cf_conntrack has a case in NF_INET_PRE_ROUTING that needs
to do the IPv6 defrag earlier.  Thus, it needs to save the
mono_delivery_time bit in the inet_frag_queue which is similar
to how it is handled in the previous patch for the IPv4 defrag.

This patch chooses to do it consistently and stores the mono_delivery_time
in the inet_frag_queue for all cases such that it will be easier
for the future refactoring effort on the IPv6 reasm code.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-03 14:38:48 +00:00
Francesco Ruggeri
e29f011e8f ipv6: record frag_max_size in atomic fragments in input path
Commit dbd1759e6a9c ("ipv6: on reassembly, record frag_max_size")
filled the frag_max_size field in IP6CB in the input path.
The field should also be filled in case of atomic fragments.

Fixes: dbd1759e6a9c ('ipv6: on reassembly, record frag_max_size')
Signed-off-by: Francesco Ruggeri <fruggeri@arista.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-05-21 15:02:25 -07:00
Georg Kohmann
2d8f6481c1 ipv6: Remove dependency of ipv6_frag_thdr_truncated on ipv6 module
IPV6=m
NF_DEFRAG_IPV6=y

ld: net/ipv6/netfilter/nf_conntrack_reasm.o: in function
`nf_ct_frag6_gather':
net/ipv6/netfilter/nf_conntrack_reasm.c:462: undefined reference to
`ipv6_frag_thdr_truncated'

Netfilter is depending on ipv6 symbol ipv6_frag_thdr_truncated. This
dependency is forcing IPV6=y.

Remove this dependency by moving ipv6_frag_thdr_truncated out of ipv6. This
is the same solution as used with a similar issues: Referring to
commit 70b095c843266 ("ipv6: remove dependency of nf_defrag_ipv6 on ipv6
module")

Fixes: 9d9e937b1c8b ("ipv6/netfilter: Discard first fragment not including all headers")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Georg Kohmann <geokohma@cisco.com>
Acked-by: Pablo Neira Ayuso <pablo@netfilter.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Link: https://lore.kernel.org/r/20201119095833.8409-1-geokohma@cisco.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-19 10:49:50 -08:00
Georg Kohmann
9d9e937b1c ipv6/netfilter: Discard first fragment not including all headers
Packets are processed even though the first fragment don't include all
headers through the upper layer header. This breaks TAHI IPv6 Core
Conformance Test v6LC.1.3.6.

Referring to RFC8200 SECTION 4.5: "If the first fragment does not include
all headers through an Upper-Layer header, then that fragment should be
discarded and an ICMP Parameter Problem, Code 3, message should be sent to
the source of the fragment, with the Pointer field set to zero."

The fragment needs to be validated the same way it is done in
commit 2efdaaaf883a ("IPv6: reply ICMP error if the first fragment don't
include all headers") for ipv6. Wrap the validation into a common function,
ipv6_frag_thdr_truncated() to check for truncation in the upper layer
header. This validation does not fullfill all aspects of RFC 8200,
section 4.5, but is at the moment sufficient to pass mentioned TAHI test.

In netfilter, utilize the fragment offset returned by find_prev_fhdr() to
let ipv6_frag_thdr_truncated() start it's traverse from the fragment
header.

Return 0 to drop the fragment in the netfilter. This is the same behaviour
as used on other protocol errors in this function, e.g. when
nf_ct_frag6_queue() returns -EPROTO. The Fragment will later be picked up
by ipv6_frag_rcv() in reassembly.c. ipv6_frag_rcv() will then send an
appropriate ICMP Parameter Problem message back to the source.

References commit 2efdaaaf883a ("IPv6: reply ICMP error if the first
fragment don't include all headers")

Signed-off-by: Georg Kohmann <geokohma@cisco.com>
Acked-by: Pablo Neira Ayuso <pablo@netfilter.org>
Link: https://lore.kernel.org/r/20201111115025.28879-1-geokohma@cisco.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-16 10:15:11 -08:00
Hangbin Liu
2efdaaaf88 IPv6: reply ICMP error if the first fragment don't include all headers
Based on RFC 8200, Section 4.5 Fragment Header:

  -  If the first fragment does not include all headers through an
     Upper-Layer header, then that fragment should be discarded and
     an ICMP Parameter Problem, Code 3, message should be sent to
     the source of the fragment, with the Pointer field set to zero.

Checking each packet header in IPv6 fast path will have performance impact,
so I put the checking in ipv6_frag_rcv().

As the packet may be any kind of L4 protocol, I only checked some common
protocols' header length and handle others by (offset + 1) > skb->len.
Also use !(frag_off & htons(IP6_OFFSET)) to catch atomic fragments
(fragmented packet with only one fragment).

When send ICMP error message, if the 1st truncated fragment is ICMP message,
icmp6_send() will break as is_ineligible() return true. So I added a check
in is_ineligible() to let fragment packet with nexthdr ICMP but no ICMP header
return false.

Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-31 13:16:02 -07:00
Guillaume Nault
891584f48a inet: frags: re-introduce skb coalescing for local delivery
Before commit d4289fcc9b16 ("net: IP6 defrag: use rbtrees for IPv6
defrag"), a netperf UDP_STREAM test[0] using big IPv6 datagrams (thus
generating many fragments) and running over an IPsec tunnel, reported
more than 6Gbps throughput. After that patch, the same test gets only
9Mbps when receiving on a be2net nic (driver can make a big difference
here, for example, ixgbe doesn't seem to be affected).

By reusing the IPv4 defragmentation code, IPv6 lost fragment coalescing
(IPv4 fragment coalescing was dropped by commit 14fe22e33462 ("Revert
"ipv4: use skb coalescing in defragmentation"")).

Without fragment coalescing, be2net runs out of Rx ring entries and
starts to drop frames (ethtool reports rx_drops_no_frags errors). Since
the netperf traffic is only composed of UDP fragments, any lost packet
prevents reassembly of the full datagram. Therefore, fragments which
have no possibility to ever get reassembled pile up in the reassembly
queue, until the memory accounting exeeds the threshold. At that point
no fragment is accepted anymore, which effectively discards all
netperf traffic.

When reassembly timeout expires, some stale fragments are removed from
the reassembly queue, so a few packets can be received, reassembled
and delivered to the netperf receiver. But the nic still drops frames
and soon the reassembly queue gets filled again with stale fragments.
These long time frames where no datagram can be received explain why
the performance drop is so significant.

Re-introducing fragment coalescing is enough to get the initial
performances again (6.6Gbps with be2net): driver doesn't drop frames
anymore (no more rx_drops_no_frags errors) and the reassembly engine
works at full speed.

This patch is quite conservative and only coalesces skbs for local
IPv4 and IPv6 delivery (in order to avoid changing skb geometry when
forwarding). Coalescing could be extended in the future if need be, as
more scenarios would probably benefit from it.

[0]: Test configuration
Sender:
ip xfrm policy flush
ip xfrm state flush
ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1
ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir in tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow
ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1
ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir out tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow
netserver -D -L fc00:2::1

Receiver:
ip xfrm policy flush
ip xfrm state flush
ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1
ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir in tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow
ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1
ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir out tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow
netperf -H fc00:2::1 -f k -P 0 -L fc00:1::1 -l 60 -t UDP_STREAM -I 99,5 -i 5,5 -T5,5 -6

Signed-off-by: Guillaume Nault <gnault@redhat.com>
Acked-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-08 15:55:10 -07:00
Eric Dumazet
d5dd88794a inet: fix various use-after-free in defrags units
syzbot reported another issue caused by my recent patches. [1]

The issue here is that fqdir_exit() is initiating a work queue
and immediately returns. A bit later cleanup_net() was able
to free the MIB (percpu data) and the whole struct net was freed,
but we had active frag timers that fired and triggered use-after-free.

We need to make sure that timers can catch fqdir->dead being set,
to bailout.

Since RCU is used for the reader side, this means
we want to respect an RCU grace period between these operations :

1) qfdir->dead = 1;

2) netns dismantle (freeing of various data structure)

This patch uses new new (struct pernet_operations)->pre_exit
infrastructure to ensures a full RCU grace period
happens between fqdir_pre_exit() and fqdir_exit()

This also means we can use a regular work queue, we no
longer need rcu_work.

Tested:

$ time for i in {1..1000}; do unshare -n /bin/false;done

real	0m2.585s
user	0m0.160s
sys	0m2.214s

[1]

BUG: KASAN: use-after-free in ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152
Read of size 8 at addr ffff88808b9fe330 by task syz-executor.4/11860

CPU: 1 PID: 11860 Comm: syz-executor.4 Not tainted 5.2.0-rc2+ #22
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 <IRQ>
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x172/0x1f0 lib/dump_stack.c:113
 print_address_description.cold+0x7c/0x20d mm/kasan/report.c:188
 __kasan_report.cold+0x1b/0x40 mm/kasan/report.c:317
 kasan_report+0x12/0x20 mm/kasan/common.c:614
 __asan_report_load8_noabort+0x14/0x20 mm/kasan/generic_report.c:132
 ip_expire+0x73e/0x800 net/ipv4/ip_fragment.c:152
 call_timer_fn+0x193/0x720 kernel/time/timer.c:1322
 expire_timers kernel/time/timer.c:1366 [inline]
 __run_timers kernel/time/timer.c:1685 [inline]
 __run_timers kernel/time/timer.c:1653 [inline]
 run_timer_softirq+0x66f/0x1740 kernel/time/timer.c:1698
 __do_softirq+0x25c/0x94c kernel/softirq.c:293
 invoke_softirq kernel/softirq.c:374 [inline]
 irq_exit+0x180/0x1d0 kernel/softirq.c:414
 exiting_irq arch/x86/include/asm/apic.h:536 [inline]
 smp_apic_timer_interrupt+0x13b/0x550 arch/x86/kernel/apic/apic.c:1068
 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:806
 </IRQ>
RIP: 0010:tomoyo_domain_quota_is_ok+0x131/0x540 security/tomoyo/util.c:1035
Code: 24 4c 3b 65 d0 0f 84 9c 00 00 00 e8 19 1d 73 fe 49 8d 7c 24 18 48 ba 00 00 00 00 00 fc ff df 48 89 f8 48 c1 e8 03 0f b6 04 10 <48> 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 69 03 00 00 41 0f b6 5c
RSP: 0018:ffff88806ae079c0 EFLAGS: 00000a02 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000000 RBX: 0000000000000010 RCX: ffffc9000e655000
RDX: dffffc0000000000 RSI: ffffffff82fd88a7 RDI: ffff888086202398
RBP: ffff88806ae07a00 R08: ffff88808b6c8700 R09: ffffed100d5c0f4d
R10: ffffed100d5c0f4c R11: 0000000000000000 R12: ffff888086202380
R13: 0000000000000030 R14: 00000000000000d3 R15: 0000000000000000
 tomoyo_supervisor+0x2e8/0xef0 security/tomoyo/common.c:2087
 tomoyo_audit_path_number_log security/tomoyo/file.c:235 [inline]
 tomoyo_path_number_perm+0x42f/0x520 security/tomoyo/file.c:734
 tomoyo_file_ioctl+0x23/0x30 security/tomoyo/tomoyo.c:335
 security_file_ioctl+0x77/0xc0 security/security.c:1370
 ksys_ioctl+0x57/0xd0 fs/ioctl.c:711
 __do_sys_ioctl fs/ioctl.c:720 [inline]
 __se_sys_ioctl fs/ioctl.c:718 [inline]
 __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x4592c9
Code: fd b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007f8db5e44c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00000000004592c9
RDX: 0000000020000080 RSI: 00000000000089f1 RDI: 0000000000000006
RBP: 000000000075bf20 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f8db5e456d4
R13: 00000000004cc770 R14: 00000000004d5cd8 R15: 00000000ffffffff

Allocated by task 9047:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_kmalloc mm/kasan/common.c:489 [inline]
 __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:462
 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:497
 slab_post_alloc_hook mm/slab.h:437 [inline]
 slab_alloc mm/slab.c:3326 [inline]
 kmem_cache_alloc+0x11a/0x6f0 mm/slab.c:3488
 kmem_cache_zalloc include/linux/slab.h:732 [inline]
 net_alloc net/core/net_namespace.c:386 [inline]
 copy_net_ns+0xed/0x340 net/core/net_namespace.c:426
 create_new_namespaces+0x400/0x7b0 kernel/nsproxy.c:107
 unshare_nsproxy_namespaces+0xc2/0x200 kernel/nsproxy.c:206
 ksys_unshare+0x440/0x980 kernel/fork.c:2692
 __do_sys_unshare kernel/fork.c:2760 [inline]
 __se_sys_unshare kernel/fork.c:2758 [inline]
 __x64_sys_unshare+0x31/0x40 kernel/fork.c:2758
 do_syscall_64+0xfd/0x680 arch/x86/entry/common.c:301
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Freed by task 2541:
 save_stack+0x23/0x90 mm/kasan/common.c:71
 set_track mm/kasan/common.c:79 [inline]
 __kasan_slab_free+0x102/0x150 mm/kasan/common.c:451
 kasan_slab_free+0xe/0x10 mm/kasan/common.c:459
 __cache_free mm/slab.c:3432 [inline]
 kmem_cache_free+0x86/0x260 mm/slab.c:3698
 net_free net/core/net_namespace.c:402 [inline]
 net_drop_ns.part.0+0x70/0x90 net/core/net_namespace.c:409
 net_drop_ns net/core/net_namespace.c:408 [inline]
 cleanup_net+0x538/0x960 net/core/net_namespace.c:571
 process_one_work+0x989/0x1790 kernel/workqueue.c:2269
 worker_thread+0x98/0xe40 kernel/workqueue.c:2415
 kthread+0x354/0x420 kernel/kthread.c:255
 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352

The buggy address belongs to the object at ffff88808b9fe100
 which belongs to the cache net_namespace of size 6784
The buggy address is located 560 bytes inside of
 6784-byte region [ffff88808b9fe100, ffff88808b9ffb80)
The buggy address belongs to the page:
page:ffffea00022e7f80 refcount:1 mapcount:0 mapping:ffff88821b6f60c0 index:0x0 compound_mapcount: 0
flags: 0x1fffc0000010200(slab|head)
raw: 01fffc0000010200 ffffea000256f288 ffffea0001bbef08 ffff88821b6f60c0
raw: 0000000000000000 ffff88808b9fe100 0000000100000001 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88808b9fe200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88808b9fe280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff88808b9fe300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                     ^
 ffff88808b9fe380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88808b9fe400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Fixes: 3c8fc8782044 ("inet: frags: rework rhashtable dismantle")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-19 11:37:47 -04:00
David S. Miller
13091aa305 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Honestly all the conflicts were simple overlapping changes,
nothing really interesting to report.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-17 20:20:36 -07:00
Stephen Suryaputra
e1ae5c2ea4 vrf: Increment Icmp6InMsgs on the original netdev
Get the ingress interface and increment ICMP counters based on that
instead of skb->dev when the the dev is a VRF device.

This is a follow up on the following message:
https://www.spinics.net/lists/netdev/msg560268.html

v2: Avoid changing skb->dev since it has unintended effect for local
    delivery (David Ahern).
Signed-off-by: Stephen Suryaputra <ssuryaextr@gmail.com>
Reviewed-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-12 11:00:11 -07:00
David S. Miller
a6cdeeb16b Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Some ISDN files that got removed in net-next had some changes
done in mainline, take the removals.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-07 11:00:14 -07:00
Thomas Gleixner
2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00
Eric Dumazet
ae7352d384 inet: frags: call inet_frags_fini() after unregister_pernet_subsys()
Both IPv6 and 6lowpan are calling inet_frags_fini() too soon.

inet_frags_fini() is dismantling a kmem_cache, that might be needed
later when unregister_pernet_subsys() eventually has to remove
frags queues from hash tables and free them.

This fixes potential use-after-free, and is a prereq for the following patch.

Fixes: d4ad4d22e7ac ("inet: frags: use kmem_cache for inet_frag_queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-28 17:22:15 -07:00
Eric Dumazet
4907abc605 net: dynamically allocate fqdir structures
Following patch will add rcu grace period before fqdir
rhashtable destruction, so we need to dynamically allocate
fqdir structures to not force expensive synchronize_rcu() calls
in netns dismantle path.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
a39aca678a net: add a net pointer to struct fqdir
fqdir will soon be dynamically allocated.

We need to reach the struct net pointer from fqdir,
so add it, and replace the various container_of() constructs
by direct access to the new field.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
9cce45f22c net: rename inet_frags_init_net() to fdir_init()
And pass an extra parameter, since we will soon
dynamically allocate fqdir structures.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
8668d0e2bf ipv6: no longer reference init_net in ip6_frags_ns_ctl_table[]
(struct net *)->ipv6.fqdir will soon be a pointer, so make
sure ip6_frags_ns_ctl_table[] does not reference init_net.

ip6_frags_ns_ctl_register() can perform the needed initialization
for all netns.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
803fdd9968 net: rename struct fqdir fields
Rename the @frags fields from structs netns_ipv4, netns_ipv6,
netns_nf_frag and netns_ieee802154_lowpan to @fqdir

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:05 -07:00
Eric Dumazet
89fb900514 net: rename inet_frags_exit_net() to fqdir_exit()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:04 -07:00
Eric Dumazet
6ce3b4dcee inet: rename netns_frags to fqdir
1) struct netns_frags is renamed to struct fqdir
  This structure is really holding many frag queues in a hash table.

2) (struct inet_frag_queue)->net field is renamed to fqdir
  since net is generally associated to a 'struct net' pointer
  in networking stack.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-26 14:08:04 -07:00
Peter Oskolkov
d8cf757fbd net: remove unused struct inet_frag_queue.fragments field
Now that all users of struct inet_frag_queue have been converted
to use 'rb_fragments', remove the unused 'fragments' field.

Build with `make allyesconfig` succeeded. ip_defrag selftest passed.

Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Stefan Schmidt <stefan@datenfreihafen.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-26 08:27:05 -08:00
Peter Oskolkov
d4289fcc9b net: IP6 defrag: use rbtrees for IPv6 defrag
Currently, IPv6 defragmentation code drops non-last fragments that
are smaller than 1280 bytes: see
commit 0ed4229b08c1 ("ipv6: defrag: drop non-last frags smaller than min mtu")

This behavior is not specified in IPv6 RFCs and appears to break
compatibility with some IPv6 implemenations, as reported here:
https://www.spinics.net/lists/netdev/msg543846.html

This patch re-uses common IP defragmentation queueing and reassembly
code in IPv6, removing the 1280 byte restriction.

Signed-off-by: Peter Oskolkov <posk@google.com>
Reported-by: Tom Herbert <tom@herbertland.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-25 21:37:11 -08:00
Su Yanjun
7f334a7e1a ipv6: fix typo in net/ipv6/reassembly.c
Signed-off-by: Su Yanjun <suyj.fnst@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-30 13:02:46 -08:00
Herbert Xu
d15f5ac8de ipv6: frags: Fix bogus skb->sk in reassembled packets
It was reported that IPsec would crash when it encounters an IPv6
reassembled packet because skb->sk is non-zero and not a valid
pointer.

This is because skb->sk is now a union with ip_defrag_offset.

This patch fixes this by resetting skb->sk when exiting from
the reassembly code.

Reported-by: Xiumei Mu <xmu@redhat.com>
Fixes: 219badfaade9 ("ipv6: frags: get rid of ip6frag_skb_cb/...")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-20 16:31:36 -08:00
Jiri Wiesner
ebaf39e603 ipv4: ipv6: netfilter: Adjust the frag mem limit when truesize changes
The *_frag_reasm() functions are susceptible to miscalculating the byte
count of packet fragments in case the truesize of a head buffer changes.
The truesize member may be changed by the call to skb_unclone(), leaving
the fragment memory limit counter unbalanced even if all fragments are
processed. This miscalculation goes unnoticed as long as the network
namespace which holds the counter is not destroyed.

Should an attempt be made to destroy a network namespace that holds an
unbalanced fragment memory limit counter the cleanup of the namespace
never finishes. The thread handling the cleanup gets stuck in
inet_frags_exit_net() waiting for the percpu counter to reach zero. The
thread is usually in running state with a stacktrace similar to:

 PID: 1073   TASK: ffff880626711440  CPU: 1   COMMAND: "kworker/u48:4"
  #5 [ffff880621563d48] _raw_spin_lock at ffffffff815f5480
  #6 [ffff880621563d48] inet_evict_bucket at ffffffff8158020b
  #7 [ffff880621563d80] inet_frags_exit_net at ffffffff8158051c
  #8 [ffff880621563db0] ops_exit_list at ffffffff814f5856
  #9 [ffff880621563dd8] cleanup_net at ffffffff814f67c0
 #10 [ffff880621563e38] process_one_work at ffffffff81096f14

It is not possible to create new network namespaces, and processes
that call unshare() end up being stuck in uninterruptible sleep state
waiting to acquire the net_mutex.

The bug was observed in the IPv6 netfilter code by Per Sundstrom.
I thank him for his analysis of the problem. The parts of this patch
that apply to IPv4 and IPv6 fragment reassembly are preemptive measures.

Signed-off-by: Jiri Wiesner <jwiesner@suse.com>
Reported-by: Per Sundstrom <per.sundstrom@redqube.se>
Acked-by: Peter Oskolkov <posk@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-05 20:44:46 -08:00
Peter Oskolkov
8361962392 net/ipfrag: let ip[6]frag_high_thresh in ns be higher than in init_net
Currently, ip[6]frag_high_thresh sysctl values in new namespaces are
hard-limited to those of the root/init ns.

There are at least two use cases when it would be desirable to
set the high_thresh values higher in a child namespace vs the global hard
limit:

- a security/ddos protection policy may lower the thresholds in the
  root/init ns but allow for a special exception in a child namespace
- testing: a test running in a namespace may want to set these
  thresholds higher in its namespace than what is in the root/init ns

The new behavior:

 # ip netns add testns
 # ip netns exec testns bash

 # sysctl -w net.ipv4.ipfrag_high_thresh=9000000
 net.ipv4.ipfrag_high_thresh = 9000000

 # sysctl net.ipv4.ipfrag_high_thresh
 net.ipv4.ipfrag_high_thresh = 9000000

 # sysctl -w net.ipv6.ip6frag_high_thresh=9000000
 net.ipv6.ip6frag_high_thresh = 9000000

 # sysctl net.ipv6.ip6frag_high_thresh
 net.ipv6.ip6frag_high_thresh = 9000000

The old behavior:

 # ip netns add testns
 # ip netns exec testns bash

 # sysctl -w net.ipv4.ipfrag_high_thresh=9000000
 net.ipv4.ipfrag_high_thresh = 9000000

 # sysctl net.ipv4.ipfrag_high_thresh
 net.ipv4.ipfrag_high_thresh = 4194304

 # sysctl -w net.ipv6.ip6frag_high_thresh=9000000
 net.ipv6.ip6frag_high_thresh = 9000000

 # sysctl net.ipv6.ip6frag_high_thresh
 net.ipv6.ip6frag_high_thresh = 4194304

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-21 19:45:52 -07:00
Peter Oskolkov
2475f59c61 ipv6: discard IP frag queue on more errors
This is similar to how ipv4 now behaves:
commit 0ff89efb5246 ("ip: fail fast on IP defrag errors").

Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-21 19:45:52 -07:00
David S. Miller
a8305bff68 net: Add and use skb_mark_not_on_list().
An SKB is not on a list if skb->next is NULL.

Codify this convention into a helper function and use it
where we are dequeueing an SKB and need to mark it as such.

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-09-10 10:06:54 -07:00
Florian Westphal
0ed4229b08 ipv6: defrag: drop non-last frags smaller than min mtu
don't bother with pathological cases, they only waste cycles.
IPv6 requires a minimum MTU of 1280 so we should never see fragments
smaller than this (except last frag).

v3: don't use awkward "-offset + len"
v2: drop IPv4 part, which added same check w. IPV4_MIN_MTU (68).
    There were concerns that there could be even smaller frags
    generated by intermediate nodes, e.g. on radio networks.

Cc: Peter Oskolkov <posk@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-05 17:21:14 -07:00
Peter Oskolkov
fa0f527358 ip: use rb trees for IP frag queue.
Similar to TCP OOO RX queue, it makes sense to use rb trees to store
IP fragments, so that OOO fragments are inserted faster.

Tested:

- a follow-up patch contains a rather comprehensive ip defrag
  self-test (functional)
- ran neper `udp_stream -c -H <host> -F 100 -l 300 -T 20`:
    netstat --statistics
    Ip:
        282078937 total packets received
        0 forwarded
        0 incoming packets discarded
        946760 incoming packets delivered
        18743456 requests sent out
        101 fragments dropped after timeout
        282077129 reassemblies required
        944952 packets reassembled ok
        262734239 packet reassembles failed
   (The numbers/stats above are somewhat better re:
    reassemblies vs a kernel without this patchset. More
    comprehensive performance testing TBD).

Reported-by: Jann Horn <jannh@google.com>
Reported-by: Juha-Matti Tilli <juha-matti.tilli@iki.fi>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-08-05 17:16:46 -07:00
Florian Westphal
70b095c843 ipv6: remove dependency of nf_defrag_ipv6 on ipv6 module
IPV6=m
DEFRAG_IPV6=m
CONNTRACK=y yields:

net/netfilter/nf_conntrack_proto.o: In function `nf_ct_netns_do_get':
net/netfilter/nf_conntrack_proto.c:802: undefined reference to `nf_defrag_ipv6_enable'
net/netfilter/nf_conntrack_proto.o:(.rodata+0x640): undefined reference to `nf_conntrack_l4proto_icmpv6'

Setting DEFRAG_IPV6=y causes undefined references to ip6_rhash_params
ip6_frag_init and ip6_expire_frag_queue so it would be needed to force
IPV6=y too.

This patch gets rid of the 'followup linker error' by removing
the dependency of ipv6.ko symbols from netfilter ipv6 defrag.

Shared code is placed into a header, then used from both.

Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-07-18 11:26:53 +02:00
Eric Dumazet
415787d779 ipv6: frags: fix a lockdep false positive
lockdep does not know that the locks used by IPv4 defrag
and IPv6 reassembly units are of different classes.

It complains because of following chains :

1) sch_direct_xmit()        (lock txq->_xmit_lock)
    dev_hard_start_xmit()
     xmit_one()
      dev_queue_xmit_nit()
       packet_rcv_fanout()
        ip_check_defrag()
         ip_defrag()
          spin_lock()     (lock frag queue spinlock)

2) ip6_input_finish()
    ipv6_frag_rcv()       (lock frag queue spinlock)
     ip6_frag_queue()
      icmpv6_param_prob() (lock txq->_xmit_lock at some point)

We could add lockdep annotations, but we also can make sure IPv6
calls icmpv6_param_prob() only after the release of the frag queue spinlock,
since this naturally makes frag queue spinlock a leaf in lock hierarchy.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-18 23:19:39 -04:00
Stephen Suryaputra
bdb7cc643f ipv6: Count interface receive statistics on the ingress netdev
The statistics such as InHdrErrors should be counted on the ingress
netdev rather than on the dev from the dst, which is the egress.

Signed-off-by: Stephen Suryaputra <ssuryaextr@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-17 13:39:51 -04:00
Eric Dumazet
3d23401283 inet: frags: fix ip6frag_low_thresh boundary
Giving an integer to proc_doulongvec_minmax() is dangerous on 64bit arches,
since linker might place next to it a non zero value preventing a change
to ip6frag_low_thresh.

ip6frag_low_thresh is not used anymore in the kernel, but we do not
want to prematuraly break user scripts wanting to change it.

Since specifying a minimal value of 0 for proc_doulongvec_minmax()
is moot, let's remove these zero values in all defrag units.

Fixes: 6e00f7dd5e4e ("ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-04 12:04:59 -04:00
Eric Dumazet
6e00f7dd5e ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh
I forgot to change ip6frag_low_thresh proc_handler
from proc_dointvec_minmax to proc_doulongvec_minmax

Fixes: 3e67f106f619 ("inet: frags: break the 2GB limit for frags storage")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-02 10:10:50 -04:00
Eric Dumazet
219badfaad ipv6: frags: get rid of ip6frag_skb_cb/FRAG6_CB
ip6_frag_queue uses skb->cb[] to store the fragment offset, meaning that
we could use two cache lines per skb when finding the insertion point,
if for some reason inet6_skb_parm size is increased in the future.

By using skb->ip_defrag_offset instead of skb->cb[], we pack all
the fields in a single cache line, matching what we did for IPv4.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:40 -04:00
Eric Dumazet
05c0b86b96 ipv6: frags: rewrite ip6_expire_frag_queue()
Make it similar to IPv4 ip_expire(), and release the lock
before calling icmp functions.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
3e67f106f6 inet: frags: break the 2GB limit for frags storage
Some users are willing to provision huge amounts of memory to be able
to perform reassembly reasonnably well under pressure.

Current memory tracking is using one atomic_t and integers.

Switch to atomic_long_t so that 64bit arches can use more than 2GB,
without any cost for 32bit arches.

Note that this patch avoids an overflow error, if high_thresh was set
to ~2GB, since this test in inet_frag_alloc() was never true :

if (... || frag_mem_limit(nf) > nf->high_thresh)

Tested:

$ echo 16000000000 >/proc/sys/net/ipv4/ipfrag_high_thresh

<frag DDOS>

$ grep FRAG /proc/net/sockstat
FRAG: inuse 14705885 memory 16000002880

$ nstat -n ; sleep 1 ; nstat | grep Reas
IpReasmReqds                    3317150            0.0
IpReasmFails                    3317112            0.0

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
2d44ed22e6 inet: frags: remove inet_frag_maybe_warn_overflow()
This function is obsolete, after rhashtable addition to inet defrag.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
399d1404be inet: frags: get rif of inet_frag_evicting()
This refactors ip_expire() since one indentation level is removed.

Note: in the future, we should try hard to avoid the skb_clone()
since this is a serious performance cost.
Under DDOS, the ICMP message wont be sent because of rate limits.

Fact that ip6_expire_frag_queue() does not use skb_clone() is
disturbing too. Presumably IPv6 should have the same
issue than the one we fixed in commit ec4fbd64751d
("inet: frag: release spinlock before calling icmp_send()")

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
648700f76b inet: frags: use rhashtables for reassembly units
Some applications still rely on IP fragmentation, and to be fair linux
reassembly unit is not working under any serious load.

It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!)

A work queue is supposed to garbage collect items when host is under memory
pressure, and doing a hash rebuild, changing seed used in hash computations.

This work queue blocks softirqs for up to 25 ms when doing a hash rebuild,
occurring every 5 seconds if host is under fire.

Then there is the problem of sharing this hash table for all netns.

It is time to switch to rhashtables, and allocate one of them per netns
to speedup netns dismantle, since this is a critical metric these days.

Lookup is now using RCU. A followup patch will even remove
the refcount hold/release left from prior implementation and save
a couple of atomic operations.

Before this patch, 16 cpus (16 RX queue NIC) could not handle more
than 1 Mpps frags DDOS.

After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB
of storage for the fragments (exact number depends on frags being evicted
after timeout)

$ grep FRAG /proc/net/sockstat
FRAG: inuse 1966916 memory 2140004608

A followup patch will change the limits for 64bit arches.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Florian Westphal <fw@strlen.de>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:39 -04:00
Eric Dumazet
5b975bab23 inet: frags: refactor ipv6_frag_init()
We want to call inet_frags_init() earlier.

This is a prereq to "inet: frags: use rhashtables for reassembly units"

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:38 -04:00
Eric Dumazet
093ba72914 inet: frags: add a pointer to struct netns_frags
In order to simplify the API, add a pointer to struct inet_frags.
This will allow us to make things less complex.

These functions no longer have a struct inet_frags parameter :

inet_frag_destroy(struct inet_frag_queue *q  /*, struct inet_frags *f */)
inet_frag_put(struct inet_frag_queue *q /*, struct inet_frags *f */)
inet_frag_kill(struct inet_frag_queue *q /*, struct inet_frags *f */)
inet_frags_exit_net(struct netns_frags *nf /*, struct inet_frags *f */)
ip6_expire_frag_queue(struct net *net, struct frag_queue *fq)

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:38 -04:00
Eric Dumazet
787bea7748 inet: frags: change inet_frags_init_net() return value
We will soon initialize one rhashtable per struct netns_frags
in inet_frags_init_net().

This patch changes the return value to eventually propagate an
error.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-31 23:25:38 -04:00
Eric Dumazet
18dcbe12fe ipv6: export ip6 fragments sysctl to unprivileged users
IPv4 was changed in commit 52a773d645e9 ("net: Export ip fragment
sysctl to unprivileged users")

The only sysctl that is not per-netns is not used :
ip6frag_secret_interval

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-29 14:14:03 -04:00
Kirill Tkhai
2f635ceeb2 net: Drop pernet_operations::async
Synchronous pernet_operations are not allowed anymore.
All are asynchronous. So, drop the structure member.

Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-27 13:18:09 -04:00
Kirill Tkhai
5fc094f5b8 net: Convert ip6_frags_ops
Exit methods calls inet_frags_exit_net() with global ip6_frags
as argument. So, after we make the pernet_operations async,
a pair of exit methods may be called to iterate this hash table.
Since there is inet_frag_worker(), which already may work
in parallel with inet_frags_exit_net(), and it can make the same
cleanup, that inet_frags_exit_net() does, it's safe. So we may
mark these pernet_operations as async.

Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-19 14:19:11 -05:00
Kees Cook
78802011fb inet: frags: Convert timers to use timer_setup()
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.

Cc: Alexander Aring <alex.aring@gmail.com>
Cc: Stefan Schmidt <stefan@osg.samsung.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Cc: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu>
Cc: Florian Westphal <fw@strlen.de>
Cc: linux-wpan@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: netfilter-devel@vger.kernel.org
Cc: coreteam@netfilter.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Stefan Schmidt <stefan@osg.samsung.com> # for ieee802154
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 12:39:55 +01:00
Jesper Dangaard Brouer
5a63643e58 Revert "net: fix percpu memory leaks"
This reverts commit 1d6119baf0610f813eb9d9580eb4fd16de5b4ceb.

After reverting commit 6d7b857d541e ("net: use lib/percpu_counter API
for fragmentation mem accounting") then here is no need for this
fix-up patch.  As percpu_counter is no longer used, it cannot
memory leak it any-longer.

Fixes: 6d7b857d541e ("net: use lib/percpu_counter API for fragmentation mem accounting")
Fixes: 1d6119baf061 ("net: fix percpu memory leaks")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-03 11:01:05 -07:00