IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
The current placement of posix_acl_release() in ovl_set_or_remove_acl()
means it can be called on an error pointer instead of actual acls.
Fix this by moving the posix_acl_release() call after the error handling.
Fixes: 0e641857322f ("ovl: implement set acl method") # mainline only
Reported-by: syzbot+3f6ef1c4586bb6fd1f61@syzkaller.appspotmail.com
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Now that posix acls have a proper api us it to copy them.
All filesystems that can serve as lower or upper layers for overlayfs
have gained support for the new posix acl api in previous patches.
So switch all internal overlayfs codepaths for copying posix acls to the
new posix acl api.
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
In order to build a type safe posix api around get and set acl we need
all filesystem to implement get and set acl.
Now that we have added get and set acl inode operations that allow easy
access to the dentry we give overlayfs it's own get and set acl inode
operations.
The set acl inode operation is duplicates most of the ovl posix acl
xattr handler. The main difference being that the set acl inode
operation relies on the new posix acl api. Once the vfs has been
switched over the custom posix acl xattr handler will be removed
completely.
Note, until the vfs has been switched to the new posix acl api this
patch is a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
In order to build a type safe posix api around get and set acl we need
all filesystem to implement get and set acl.
Now that we have added get and set acl inode operations that allow easy
access to the dentry we give overlayfs it's own get and set acl inode
operations.
Since overlayfs is a stacking filesystem it will use the newly added
posix acl api when retrieving posix acls from the relevant layer.
Since overlayfs can also be mounted on top of idmapped layers. If
idmapped layers are used overlayfs must take the layer's idmapping into
account after it retrieved the posix acls from the relevant layer.
Note, until the vfs has been switched to the new posix acl api this
patch is a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
The current inode operation for getting posix acls takes an inode
argument but various filesystems (e.g., 9p, cifs, overlayfs) need access
to the dentry. In contrast to the ->set_acl() inode operation we cannot
simply extend ->get_acl() to take a dentry argument. The ->get_acl()
inode operation is called from:
acl_permission_check()
-> check_acl()
-> get_acl()
which is part of generic_permission() which in turn is part of
inode_permission(). Both generic_permission() and inode_permission() are
called in the ->permission() handler of various filesystems (e.g.,
overlayfs). So simply passing a dentry argument to ->get_acl() would
amount to also having to pass a dentry argument to ->permission(). We
should avoid this unnecessary change.
So instead of extending the existing inode operation rename it from
->get_acl() to ->get_inode_acl() and add a ->get_acl() method later that
passes a dentry argument and which filesystems that need access to the
dentry can implement instead of ->get_inode_acl(). Filesystems like cifs
which allow setting and getting posix acls but not using them for
permission checking during lookup can simply not implement
->get_inode_acl().
This is intended to be a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Suggested-by/Inspired-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Ensure that POSIX ACLs checking, getting, and setting works correctly
for filesystems mountable with a filesystem idmapping ("fs_idmapping")
that want to support idmapped mounts ("mnt_idmapping").
Note that no filesystems mountable with an fs_idmapping do yet support
idmapped mounts. This is required infrastructure work to unblock this.
As we explained in detail in [1] the fs_idmapping is irrelevant for
getxattr() and setxattr() when mapping the ACL_{GROUP,USER} {g,u}ids
stored in the uapi struct posix_acl_xattr_entry in
posix_acl_fix_xattr_{from,to}_user().
But for acl_permission_check() and posix_acl_{g,s}etxattr_idmapped_mnt()
the fs_idmapping matters.
acl_permission_check():
During lookup POSIX ACLs are retrieved directly via i_op->get_acl() and
are returned via the kernel internal struct posix_acl which contains
e_{g,u}id members of type k{g,u}id_t that already take the
fs_idmapping into acccount.
For example, a POSIX ACL stored with u4 on the backing store is mapped
to k10000004 in the fs_idmapping. The mnt_idmapping remaps the POSIX ACL
to k20000004. In order to do that the fs_idmapping needs to be taken
into account but that doesn't happen yet (Again, this is a
counterfactual currently as fuse doesn't support idmapped mounts
currently. It's just used as a convenient example.):
fs_idmapping: u0:k10000000:r65536
mnt_idmapping: u0:v20000000:r65536
ACL_USER: k10000004
acl_permission_check()
-> check_acl()
-> get_acl()
-> i_op->get_acl() == fuse_get_acl()
-> posix_acl_from_xattr(u0:k10000000:r65536 /* fs_idmapping */, ...)
{
k10000004 = make_kuid(u0:k10000000:r65536 /* fs_idmapping */,
u4 /* ACL_USER */);
}
-> posix_acl_permission()
{
-1 = make_vfsuid(u0:v20000000:r65536 /* mnt_idmapping */,
&init_user_ns,
k10000004);
vfsuid_eq_kuid(-1, k10000004 /* caller_fsuid */)
}
In order to correctly map from the fs_idmapping into mnt_idmapping we
require the relevant fs_idmaping to be passed:
acl_permission_check()
-> check_acl()
-> get_acl()
-> i_op->get_acl() == fuse_get_acl()
-> posix_acl_from_xattr(u0:k10000000:r65536 /* fs_idmapping */, ...)
{
k10000004 = make_kuid(u0:k10000000:r65536 /* fs_idmapping */,
u4 /* ACL_USER */);
}
-> posix_acl_permission()
{
v20000004 = make_vfsuid(u0:v20000000:r65536 /* mnt_idmapping */,
u0:k10000000:r65536 /* fs_idmapping */,
k10000004);
vfsuid_eq_kuid(v20000004, k10000004 /* caller_fsuid */)
}
The initial_idmapping is only correct for the current situation because
all filesystems that currently support idmapped mounts do not support
being mounted with an fs_idmapping.
Note that ovl_get_acl() is used to retrieve the POSIX ACLs from the
relevant lower layer and the lower layer's mnt_idmapping needs to be
taken into account and so does the fs_idmapping. See 0c5fd887d2bb ("acl:
move idmapped mount fixup into vfs_{g,s}etxattr()") for more details.
For posix_acl_{g,s}etxattr_idmapped_mnt() it is not as obvious why the
fs_idmapping matters as it is for acl_permission_check(). Especially
because it doesn't matter for posix_acl_fix_xattr_{from,to}_user() (See
[1] for more context.).
Because posix_acl_{g,s}etxattr_idmapped_mnt() operate on the uapi
struct posix_acl_xattr_entry which contains {g,u}id_t values and thus
give the impression that the fs_idmapping is irrelevant as at this point
appropriate {g,u}id_t values have seemlingly been generated.
As we've stated multiple times this assumption is wrong and in fact the
uapi struct posix_acl_xattr_entry is taking idmappings into account
depending at what place it is operated on.
posix_acl_getxattr_idmapped_mnt()
When posix_acl_getxattr_idmapped_mnt() is called the values stored in
the uapi struct posix_acl_xattr_entry are mapped according to the
fs_idmapping. This happened when they were read from the backing store
and then translated from struct posix_acl into the uapi
struct posix_acl_xattr_entry during posix_acl_to_xattr().
In other words, the fs_idmapping matters as the values stored as
{g,u}id_t in the uapi struct posix_acl_xattr_entry have been generated
by it.
So we need to take the fs_idmapping into account during make_vfsuid()
in posix_acl_getxattr_idmapped_mnt().
posix_acl_setxattr_idmapped_mnt()
When posix_acl_setxattr_idmapped_mnt() is called the values stored as
{g,u}id_t in uapi struct posix_acl_xattr_entry are intended to be the
values that ultimately get turned back into a k{g,u}id_t in
posix_acl_from_xattr() (which turns the uapi
struct posix_acl_xattr_entry into the kernel internal struct posix_acl).
In other words, the fs_idmapping matters as the values stored as
{g,u}id_t in the uapi struct posix_acl_xattr_entry are intended to be
the values that will be undone in the fs_idmapping when writing to the
backing store.
So we need to take the fs_idmapping into account during from_vfsuid()
in posix_acl_setxattr_idmapped_mnt().
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Fixes: 0c5fd887d2bb ("acl: move idmapped mount fixup into vfs_{g,s}etxattr()")
Cc: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Link: https://lore.kernel.org/r/20220816113514.43304-1-brauner@kernel.org
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCYvDeCAAKCRDh3BK/laaZ
PGjCAP9TVuId3X7Akroc9W+qswPzwlW3fwtE6+9F6ABeNJNPZAEAgU2bp95vqZRh
OWP+ptnskceBcX/cRkfxkmgtiNE21wk=
=sucY
-----END PGP SIGNATURE-----
Merge tag 'ovl-update-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs update from Miklos Szeredi:
"Just a small update"
* tag 'ovl-update-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: fix spelling mistakes
ovl: drop WARN_ON() dentry is NULL in ovl_encode_fh()
ovl: improve ovl_get_acl() if POSIX ACL support is off
ovl: fix some kernel-doc comments
ovl: warn if trusted xattr creation fails
Provide a proper stub for the !CONFIG_FS_POSIX_ACL case.
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
During permission checking overlayfs will call
ovl_permission()
-> generic_permission()
-> acl_permission_check()
-> check_acl()
-> get_acl()
-> inode->i_op->get_acl() == ovl_get_acl()
-> get_acl() /* on the underlying filesystem */
-> inode->i_op->get_acl() == /*lower filesystem callback */
-> posix_acl_permission()
passing through the get_acl() request to the underlying filesystem.
Before returning these values to the VFS we need to take the idmapping of the
relevant layer into account and translate any ACL_{GROUP,USER} values according
to the idmapped mount.
We cannot alter the ACLs returned from the relevant layer directly as that
would alter the cached values filesystem wide for the lower filesystem. Instead
we can clone the ACLs and then apply the relevant idmapping of the layer.
This is obviously only relevant when idmapped layers are used.
Link: https://lore.kernel.org/r/20220708090134.385160-4-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: linux-unionfs@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
When retrieving xattrs from the upper or lower layers take the relevant
mount's idmapping into account. We rely on the previously introduced
ovl_i_path_real() helper to retrieve the relevant path. This is needed
to support idmapped base layers with overlay.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Use the previously introduced ovl_i_path_real() helper to retrieve the
relevant upper or lower path and take the mount's idmapping into account
for the lower layer permission check. This is needed to support idmapped
base layers with overlay.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When copying inode attributes from the upper or lower layer to ovl inodes
we need to take the upper or lower layer's mount's idmapping into
account. In a lot of places we call ovl_copyattr() only on upper inodes and
in some we call it on either upper or lower inodes. Split this into two
separate helpers.
The first one should only be called on upper
inodes and is thus called ovl_copy_upperattr(). The second one can be
called on upper or lower inodes. We add ovl_copy_realattr() for this
task. The new helper makes use of the previously added ovl_i_path_real()
helper. This is needed to support idmapped base layers with overlay.
When overlay copies the inode information from an upper or lower layer
to the relevant overlay inode it will apply the idmapping of the upper
or lower layer when doing so. The ovl inode ownership will thus always
correctly reflect the ownership of the idmapped upper or lower layer.
All idmapping helpers are nops when no idmapped base layers are used.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Create some ovl_i_* helpers to get real path from ovl inode. Instead of
just stashing struct inode for the lower layer we stash struct path for
the lower layer. The helpers allow to retrieve a struct path for the
relevant upper or lower layer. This will be used when retrieving
information based on struct inode when copying up inode attributes from
upper or lower inodes to ovl inodes and when checking permissions in
ovl_permission() in following patches. This is needed to support
idmapped base layers with overlay.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Take the upper mount's idmapping into account when setting fileattrs on
the upper layer. This is needed to support idmapped base layers with
overlay.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Add a helper that allows to retrieve ovl xattrs from either lower or
upper layers. To stop passing mnt and dentry separately everywhere use
struct path which more accurately reflects the tight coupling between
mount and dentry in this helper. Swich over all places to pass a path
argument that can operate on either upper or lower layers. This is
needed to support idmapped base layers with overlayfs.
Some helpers are always called with an upper dentry, which is now utilized
by these helpers to create the path. Make this usage explicit by renaming
the argument to "upperdentry" and by renaming the function as well in some
cases. Also add a check in ovl_do_getxattr() to catch misuse of these
functions.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Introduce ovl_do_notify_change() as a simple wrapper around
notify_change() to support idmapped layers. The helper mirrors other
ovl_do_*() helpers that operate on the upper layers.
When changing ownership of an upper object the intended ownership needs
to be mapped according to the upper layer's idmapping. This mapping is
the inverse to the mapping applied when copying inode information from
an upper layer to the corresponding overlay inode. So e.g., when an
upper mount maps files that are stored on-disk as owned by id 1001 to
1000 this means that calling stat on this object from an idmapped mount
will report the file as being owned by id 1000. Consequently in order to
change ownership of an object in this filesystem so it appears as being
owned by id 1000 in the upper idmapped layer it needs to store id 1001
on disk. The mnt mapping helpers take care of this.
All idmapping helpers are nops when no idmapped base layers are used.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Use helpers ovl_*xattr() to access user/trusted.overlay.* xattrs
and use helpers ovl_do_*xattr() to access generic xattrs. This is a
preparatory patch for using idmapped base layers with overlay.
Note that a few of those places called vfs_*xattr() calls directly to
reduce the amount of debug output. But as Miklos pointed out since
overlayfs has been stable for quite some time the debug output isn't all
that relevant anymore and the additional debug in all locations was
actually quite helpful when developing this patch series.
Cc: <linux-unionfs@vger.kernel.org>
Tested-by: Giuseppe Scrivano <gscrivan@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This regression can be reproduced with ntfs-3g and overlayfs:
mkdir lower upper work overlay
dd if=/dev/zero of=ntfs.raw bs=1M count=2
mkntfs -F ntfs.raw
mount ntfs.raw lower
touch lower/file.txt
mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work - overlay
mv overlay/file.txt overlay/file2.txt
mv fails and (misleadingly) prints
mv: cannot move 'overlay/file.txt' to a subdirectory of itself, 'overlay/file2.txt'
The reason is that ovl_copy_fileattr() is triggered due to S_NOATIME being
set on all inodes (by fuse) regardless of fileattr.
ovl_copy_fileattr() tries to retrieve file attributes from lower file, but
that fails because filesystem does not support this ioctl (this should fail
with ENOTTY, but ntfs-3g return EINVAL instead). This failure is
propagated to origial operation (in this case rename) that triggered the
copy-up.
The fix is to ignore ENOTTY and EINVAL errors from fileattr_get() in copy
up. This also requires turning the internal ENOIOCTLCMD into ENOTTY.
As a further measure to prevent unnecessary failures, only try the
fileattr_get/set on upper if there are any flags to copy up.
Side note: a number of filesystems set S_NOATIME (and sometimes other inode
flags) irrespective of fileattr flags. This causes unnecessary calls
during copy up, which might lead to a performance issue, especially if
latency is high. To fix this, the kernel would need to differentiate
between the two cases. E.g. introduce SB_NOATIME_UPDATE, a per-sb variant
of S_NOATIME. SB_NOATIME doesn't work, because that's interpreted as
"filesystem doesn't store an atime attribute"
Reported-and-tested-by: Kevin Locke <kevin@kevinlocke.name>
Fixes: 72db82115d2b ("ovl: copy up sync/noatime fileattr flags")
Cc: <stable@vger.kernel.org> # v5.15
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Overlayfs does not cache ACL's (to avoid double caching). Instead it just
calls the underlying filesystem's i_op->get_acl(), which will return the
cached value, if possible.
In rcu path walk, however, get_cached_acl_rcu() is employed to get the
value from the cache, which will fail on overlayfs resulting in dropping
out of rcu walk mode. This can result in a big performance hit in certain
situations.
Fix by calling ->get_acl() with rcu=true in case of ACL_DONT_CACHE (which
indicates pass-through)
Reported-by: garyhuang <zjh.20052005@163.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Add a rcu argument to the ->get_acl() callback to allow
get_cached_acl_rcu() to call the ->get_acl() method in the next patch.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Currently we keep size, mode and times of overlay inode
as the same as upper inode, so should update ctime when
changing file attribution as well.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
It is possible that a directory tree is shared between multiple overlay
instances as a lower layer. In this case when one instance executes a file
residing on the lower layer, the other instance denies a truncate(2) call
on this file.
This only happens for truncate(2) and not for open(2) with the O_TRUNC
flag.
Fix this interference and inconsistency by removing the preliminary
i_writecount check before copy-up.
This means that unlike on normal filesystems truncate(argv[0]) will now
succeed. If this ever causes a regression in a real world use case this
needs to be revisited.
One way to fix this properly would be to keep a correct i_writecount in the
overlay inode, but that is difficult due to memory mapping code only
dealing with the real file/inode.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When a lower file has immutable/append-only fileattr flags, the behavior of
overlayfs post copy up is inconsistent.
Immediattely after copy up, ovl inode still has the S_IMMUTABLE/S_APPEND
inode flags copied from lower inode, so vfs code still treats the ovl inode
as immutable/append-only. After ovl inode evict or mount cycle, the ovl
inode does not have these inode flags anymore.
We cannot copy up the immutable and append-only fileattr flags, because
immutable/append-only inodes cannot be linked and because overlayfs will
not be able to set overlay.* xattr on the upper inodes.
Instead, if any of the fileattr flags of interest exist on the lower inode,
we store them in overlay.protattr xattr on the upper inode and we read the
flags from xattr on lookup and on fileattr_get().
This gives consistent behavior post copy up regardless of inode eviction
from cache.
When user sets new fileattr flags, we update or remove the overlay.protattr
xattr.
Storing immutable/append-only fileattr flags in an xattr instead of upper
fileattr also solves other non-standard behavior issues - overlayfs can now
copy up children of "ovl-immutable" directories and lower aliases of
"ovl-immutable" hardlinks.
Reported-by: Chengguang Xu <cgxu519@mykernel.net>
Link: https://lore.kernel.org/linux-unionfs/20201226104618.239739-1-cgxu519@mykernel.net/
Link: https://lore.kernel.org/linux-unionfs/20210210190334.1212210-5-amir73il@gmail.com/
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When a lower file has sync/noatime fileattr flags, the behavior of
overlayfs post copy up is inconsistent.
Immediately after copy up, ovl inode still has the S_SYNC/S_NOATIME
inode flags copied from lower inode, so vfs code still treats the ovl
inode as sync/noatime. After ovl inode evict or mount cycle,
the ovl inode does not have these inode flags anymore.
To fix this inconsistency, try to copy the fileattr flags on copy up
if the upper fs supports the fileattr_set() method.
This gives consistent behavior post copy up regardless of inode eviction
from cache.
We cannot copy up the immutable/append-only inode flags in a similar
manner, because immutable/append-only inodes cannot be linked and because
overlayfs will not be able to set overlay.* xattr on the upper inodes.
Those flags will be addressed by a followup patch.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSQHSd0lITzzeNWNm3h3BK/laaZPAUCYIwTsgAKCRDh3BK/laaZ
PDktAP41eScbCiFzXDRjXw9S7Wfd8HEct0y1p+9BUh8m3VdHfwEA0pDlJWNaJdYW
nFixPJ5GsAfxo+1ags0vn06CUS/K4gA=
=QlbJ
-----END PGP SIGNATURE-----
Merge tag 'ovl-update-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull overlayfs update from Miklos Szeredi:
- Fix a regression introduced in 5.2 that resulted in valid overlayfs
mounts being rejected with ELOOP (Too many levels of symbolic links)
- Fix bugs found by various tools
- Miscellaneous improvements and cleanups
* tag 'ovl-update-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: add debug print to ovl_do_getxattr()
ovl: invalidate readdir cache on changes to dir with origin
ovl: allow upperdir inside lowerdir
ovl: show "userxattr" in the mount data
ovl: trivial typo fixes in the file inode.c
ovl: fix misspellings using codespell tool
ovl: do not copy attr several times
ovl: remove ovl_map_dev_ino() return value
ovl: fix error for ovl_fill_super()
ovl: fix missing revert_creds() on error path
ovl: fix leaked dentry
ovl: restrict lower null uuid for "xino=auto"
ovl: check that upperdir path is not on a read-only mount
ovl: plumb through flush method
Add stacking for the fileattr operations.
Add hack for calling security_file_ioctl() for now. Probably better to
have a pair of specific hooks for these operations.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
The vfs_getxattr() in ovl_xattr_set() is used to check whether an xattr
exist on a lower layer file that is to be removed. If the xattr does not
exist, then no need to copy up the file.
This call of vfs_getxattr() wasn't wrapped in credential override, and this
is probably okay. But for consitency wrap this instance as well.
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When interacting with extended attributes the vfs verifies that the
caller is privileged over the inode with which the extended attribute is
associated. For posix access and posix default extended attributes a uid
or gid can be stored on-disk. Let the functions handle posix extended
attributes on idmapped mounts. If the inode is accessed through an
idmapped mount we need to map it according to the mount's user
namespace. Afterwards the checks are identical to non-idmapped mounts.
This has no effect for e.g. security xattrs since they don't store uids
or gids and don't perform permission checks on them like posix acls do.
Link: https://lore.kernel.org/r/20210121131959.646623-10-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Tycho Andersen <tycho@tycho.pizza>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Optionally allow using "user.overlay." namespace instead of
"trusted.overlay."
This is necessary for overlayfs to be able to be mounted in an unprivileged
namepsace.
Make the option explicit, since it makes the filesystem format be
incompatible.
Disable redirect_dir and metacopy options, because these would allow
privilege escalation through direct manipulation of the
"user.overlay.redirect" or "user.overlay.metacopy" xattrs.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
In metacopy case, we should use ovl_inode_realdata() instead of
ovl_inode_real() to get real inode which has data, so that
we can get correct information of extentes in ->fiemap operation.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
ovl_can_list() should return false for overlay private xattrs. Since
currently these use the "trusted.overlay." prefix, they will always match
the "trusted." prefix as well, hence the test for being non-trusted will
not trigger.
Prepare for using the "user.overlay." namespace by moving the test for
private xattr before the test for non-trusted.
This patch doesn't change behavior.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>