IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
External parties don't need to use ItLpQueue_getNextLpEvent() or
ItLpQueue_clearValid(), they're internal to ItLpQueue.c
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Move the code that displays xItLpQueue values in /proc into
ItLpQueue.c.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The xItLpQueue is initalised manually in iSeries_setup_arch(). Move
this code into ItLpQueue.c for a cleaner separation.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Because there's only one ItLpQueue and we know where it is, ie. xItLpQueue,
there's no point passing pointers to it it around all over the place.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch updates the macros that initialise the paca to remove the lpq
parameter. It also rearranges them a bit with the hope of making them a
bit clearer.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The only code outside ItLpQueue.c that refers to spread_lpevents is in
set_apread_lpevents(), so move it inside ItLpQueue.c and make spread_lpevents
static.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
With the previous patch in place, spreading lpevents by default becomes
a one liner.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The iSeries code keeps a pointer to the ItLpQueue in its paca struct. But
all these pointers end up pointing to the one place, ie. xItLpQueue.
So remove the pointer from the paca struct and just refer to xItLpQueue
directly where needed.
The only complication is that the spread_lpevents logic was implemented by
having a NULL lpqueue pointer in the paca on CPUs that weren't supposed to
process events. Instead we just compare the spread_lpevents value to the
processor id to get the same behaviour.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
initrd size is printed as hex, add a missing 0x
remove a duplicate printf when initrd is used.
remove use of kernel type to access the first bytes of the initrd memarea.
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
remove the printk usage in the zImage. we are not there, yet.
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
On partitioned systems we can wind up creating spurious symlinks in
/sys/devices/system/node/node0 to non-present cpus. The symlinks are
not broken; the problem is that we're potentially misinforming
userspace that there is a relationship between node0 and cpus which
are to be added later. There's no guarantee at all that a cpu which
is added later will belong to node 0.
Signed-off-by: Nathan Lynch <ntl@pobox.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Convert nvram_create_os_partition to use list_for_each_entry
instead of list_for_each, as this reduces the code size by
two lines.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The following is a patch provided by Ananth Mavinakayanahalli that implements
the new PPC64 specific parts of the new function return probe design.
NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler()
to consume each of the outstanding return probem instances (feedback
on my original RFC after Ananth cut a patch), and also added the
arch_init() function (adding arch specific initialization.) I have
cross compiled but have not testing this on a PPC64 machine.
Changes include:
* Addition of kretprobe_trampoline to act as a dummy function for instrumented
functions to return to, and for the return probe infrastructure to place
a kprobe on on, gaining control so that the return probe handler
can be called, and so that the instruction pointer can be moved back
to the original return address.
* Addition of arch_init(), allowing a kprobe to be registered on
kretprobe_trampoline
* Addition of trampoline_probe_handler() which is used as the pre_handler
for the kprobe inserted on kretprobe_implementation. This is the function
that handles the details for calling the return probe handler function
and returning control back at the original return address
* Addition of arch_prepare_kretprobe() which is setup as the pre_handler
for a kprobe registered at the beginning of the target function by
kernel/kprobes.c so that a return probe instance can be setup when
a caller enters the target function. (A return probe instance contains
all the needed information for trampoline_probe_handler to do it's job.)
* Hooks added to the exit path of a task so that we can cleanup any left-over
return probe instances (i.e. if a task dies while inside a targeted function
then the return probe instance was reserved at the beginning of the function
but the function never returns so we need to mark the instance as unused.)
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Now that PPC64 has no-execute support, here is a second try to fix the
single step out of line during kprobe execution. Kprobes on x86_64 already
solved this problem by allocating an executable page and using it as the
scratch area for stepping out of line. Reuse that.
Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds a couple of missing symbol exports. flush_dcache_page is
used by the AGP driver and rtc_lock by the RTC driver.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
o Following patch provides purely cosmetic changes and corrects CodingStyle
guide lines related certain issues like below in kexec related files
o braces for one line "if" statements, "for" loops,
o more than 80 column wide lines,
o No space after "while", "for" and "switch" key words
o Changes:
o take-2: Removed the extra tab before "case" key words.
o take-3: Put operator at the end of line and space before "*/"
Signed-off-by: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Makes kexec_crashdump() take a pt_regs * as an argument. This allows to
get exact register state at the point of the crash. If we come from direct
panic assertion NULL will be passed and the current registers saved before
crashdump.
This hooks into two places:
die(): check the conditions under which we will panic when calling
do_exit and go there directly with the pt_regs that caused the fatal
fault.
die_nmi(): If we receive an NMI lockup while in the kernel use the
pt_regs and go directly to crash_kexec(). We're probably nested up badly
at this point so this might be the only chance to escape with proper
information.
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements the kexec support for ppc64 platforms.
A couple of notes:
1) We copy the pages in virtual mode, using the full base kernel
and a statically allocated stack. At kexec_prepare time we
scan the pages and if any overlap our (0, _end[]) range we
return -ETXTBSY.
On PowerPC 64 systems running in LPAR (logical partitioning)
mode, only a small region of memory, referred to as the RMO,
can be accessed in real mode. Since Linux runs with only one
zone of memory in the memory allocator, and it can be orders of
magnitude more memory than the RMO, looping until we allocate
pages in the source region is not feasible. Copying in virtual
means we don't have to write a hash table generation and call
hypervisor to insert translations, instead we rely on the pinned
kernel linear mapping. The kernel already has move to linked
location built in, so there is no requirement to load it at 0.
If we want to load something other than a kernel, then a stub
can be written to copy a linear chunk in real mode.
2) The start entry point gets passed parameters from the kernel.
Slaves are started at a fixed address after copying code from
the entry point.
All CPUs get passed their firmware assigned physical id in r3
(most calling conventions use this register for the first
argument).
This is used to distinguish each CPU from all other CPUs.
Since firmware is not around, there is no other way to obtain
this information other than to pass it somewhere.
A single CPU, referred to here as the master and the one executing
the kexec call, branches to start with the address of start in r4.
While this can be calculated, we have to load it through a gpr to
branch to this point so defining the register this is contained
in is free. A stack of unspecified size is available at r1
(also common calling convention).
All remaining running CPUs are sent to start at absolute address
0x60 after copying the first 0x100 bytes from start to address 0.
This convention was chosen because it matches what the kernel
has been doing itself. (only gpr3 is defined).
Note: This is not quite the convention of the kexec bootblock v2
in the kernel. A stub has been written to convert between them,
and we may adjust the kernel in the future to allow this directly
without any stub.
3) Destination pages can be placed anywhere, even where they
would not be accessible in real mode. This will allow us to
place ram disks above the RMO if we choose.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add code to clear the hash table and invalidate the tlb for native (SMP,
non-LPAR) mode. Supports 16M and 4k pages.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch consolidates the CONFIG_PREEMPT and CONFIG_PREEMPT_BKL
preemption options into kernel/Kconfig.preempt. This, besides reducing
source-code, also enables more centralized tweaking of preemption related
options.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(The i386 CPU hotplug patch provides infrastructure for some work which Pavel
is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua
<shaohua.li@intel.com> is doing)
The following provides i386 architecture support for safely unregistering and
registering processors during runtime, updated for the current -mm tree. In
order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the
cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being
that on cpu offline, fixup_irqs() is called before we clear the cpu from
cpu_online_map and a long delay in order to ensure that we never have any
queued external interrupts on the APICs. There are additional changes to s390
and ppc64 to account for this change.
1) Add CONFIG_HOTPLUG_CPU
2) disable local APIC timer on dead cpus.
3) Disable preempt around irq balancing to prevent CPUs going down.
4) Print irq stats for all possible cpus.
5) Debugging check for interrupts on offline cpus.
6) Hacky fixup_irqs() to redirect irqs when cpus go off/online.
7) play_dead() for offline cpus to spin inside.
8) Handle offline cpus set in flush_tlb_others().
9) Grab lock earlier in smp_call_function() to prevent CPUs going down.
10) Implement __cpu_disable() and __cpu_die().
11) Enable local interrupts in cpu_enable() after fixup_irqs()
12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus.
13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline.
Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Stephen's patch to remove LparData.h missed an include in lparcfg.c This
fixes a few compile warnings.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The seccomp check has to happen when entering the syscall and not when
exiting it or regs->gpr[0] contains garabge during signal handling in
ppc64_rt_sigreturn (this actually might be a bug too, but an orthogonal
one, since we really have to run the check before invoking the syscall and
not after it).
Signed-off-by: Andrea Arcangeli <andrea@cpushare.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch includes ppc64 architecture specific changes to support temporary
disarming on reentrancy of probes.
Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The architecture independent code of the current kprobes implementation is
arming and disarming kprobes at registration time. The problem is that the
code is assuming that arming and disarming is a just done by a simple write
of some magic value to an address. This is problematic for ia64 where our
instructions look more like structures, and we can not insert break points
by just doing something like:
*p->addr = BREAKPOINT_INSTRUCTION;
The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent
functions:
* void arch_arm_kprobe(struct kprobe *p)
* void arch_disarm_kprobe(struct kprobe *p)
and then adds the new functions for each of the architectures that already
implement kprobes (spar64/ppc64/i386/x86_64).
I thought arch_[dis]arm_kprobe was the most descriptive of what was really
happening, but each of the architectures already had a disarm_kprobe()
function that was really a "disarm and do some other clean-up items as
needed when you stumble across a recursive kprobe." So... I took the
liberty of changing the code that was calling disarm_kprobe() to call
arch_disarm_kprobe(), and then do the cleanup in the block of code dealing
with the recursive kprobe case.
So far this patch as been tested on i386, x86_64, and ppc64, but still
needs to be tested in sparc64.
Signed-off-by: Rusty Lynch <rusty.lynch@intel.com>
Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch causes the various arch specific install.sh scripts to
look for ${CROSS_COMPILE}installkernel rather than just installkernel (in
both /sbin/ and ~/bin/ where the script already did this). This allows you
to have e.g. arm-linux-installkernel as a handy way to install on your
cross target. It also prevents the script picking up on the host
/sbin/installkernel which causes the script to fall through and do the
install itself (which is what I actually use myself, with $INSTALL_PATH
set).
I don't believe it causes back-compatibility problems since calling the
host installkernel was never likely to work or be what you wanted when
cross compiling anyway. If $CROSS_COMPILE isn't set then nothing changes.
I only use ARM and i386 myself but I figured it couldn't hurt to do the
whole lot. I've cc'd those who I hope are the arch maintainers for files
that I've touched.
Signed-off-by: Ian Campbell <icampbell@arcom.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide the architecture specific implementation for SPARSEMEM for PPC64
systems.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> (in part)
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide hooks for PPC64 to allow memory models to be informed of installed
memory areas. This allows SPARSEMEM to instantiate mem_map for the populated
areas.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide an implementation of early_pfn_to_nid for PPC64. This is used by
memory models to determine the node from which to take allocations before the
memory allocators are fully initialised.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The part of the sparsemem patch which modifies memmap_init_zone() has recently
become a problem. It changes behavior so that there is a call to
pfn_to_page() for each individual page inside of a node's range:
node_start_pfn through node_end_pfn. It used to simply do this once, at the
beginning of the node, but having sparsemem's non-contiguous mem_map[]s inside
of a node made it necessary to change.
Mike Kravetz recently wrote a patch which made the NUMA code accept some new
kinds of layouts. The system's memory was laid out like this, with node 0's
memory in two pieces: one before and one after node 1's memory:
Node 0: +++++ +++++
Node 1: +++++
Previous behavior before Mike's patch was to assign nodes like this:
Node 0: 00000 XXXXX
Node 1: 11111
Where the 'X' areas were simply thrown away. The new behavior was to make the
pg_data_t span node 0 across all of its areas, including areas that are really
node 1's: Node 0: 000000000000000 Node 1: 11111
This wastes a little bit of mem_map space, but ends up being OK, and more
fully utilizes the system's memory. memmap_init_zone() initializes all of the
"struct page"s for node 0, even for the "hole", but those never get used,
because there is no pfn_to_page() that resolves to those pages. However, only
calling pfn_to_page() once, memmap_init_zone() always uses the pages that were
allocated for node0->node_mem_map because:
struct page *start = pfn_to_page(start_pfn);
// effectively start = &node->node_mem_map[0]
for (page = start; page < (start + size); page++) {
init_page_here();...
page++;
}
Slow, and wasteful, but generally harmless.
But, modify that to call pfn_to_page() for each loop iteration (like sparsemem
does):
for (pfn = start_pfn; pfn < < (start_pfn + size); pfn++++) {
page = pfn_to_page(pfn);
}
And you end up trying to initialize node 1's pages too early, along with bogus
data from node 0. This patch checks for those weird layouts and declines to
touch the pages, making the more frequent pfn_to_page() calls OK to do.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch changes some of the default behavior in the ppc64 Kconfig file
that was recently changed/added to 2.6.12-rc2-mm1 by Dave Hansen in
preparation for SPARSEMEM. Patch allows the display of both FLAT and
DISCONTIG models on pseries. As before, default is DISCONTIG for SMP and
PSERIES and FLAT for others.
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This will at least suppress one prompt that users would have received the
first time they compile with the new DISCONTIG arch option. They'll still
get the "Memory Model" prompt, but 99% of them will have the default work
there.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For all architectures, this just means that you'll see a "Memory Model"
choice in your architecture menu. For those that implement DISCONTIGMEM,
you may eventually want to make your ARCH_DISCONTIGMEM_ENABLE a "def_bool
y" and make your users select DISCONTIGMEM right out of the new choice
menu. The only disadvantage might be if you have some specific things that
you need in your help option to explain something about DISCONTIGMEM.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch effectively eliminates direct use of pgdat->node_mem_map outside
of the DISCONTIG code. On a flat memory system, these fields aren't
currently used, neither are they on a sparsemem system.
There was also a node_mem_map(nid) macro on many architectures. Its use
along with the use of ->node_mem_map itself was not consistent. It has
been removed in favor of two new, more explicit, arch-independent macros:
pgdat_page_nr(pgdat, pagenr)
nid_page_nr(nid, pagenr)
I called them "pgdat" and "nid" because we overload the term "node" to mean
"NUMA node", "DISCONTIG node" or "pg_data_t" in very confusing ways. I
believe the newer names are much clearer.
These macros can be overridden in the sparsemem case with a theoretically
slower operation using node_start_pfn and pfn_to_page(), instead. We could
make this the only behavior if people want, but I don't want to change too
much at once. One thing at a time.
This patch removes more code than it adds.
Compile tested on alpha, alpha discontig, arm, arm-discontig, i386, i386
generic, NUMAQ, Summit, ppc64, ppc64 discontig, and x86_64. Full list
here: http://sr71.net/patches/2.6.12/2.6.12-rc1-mhp2/configs/
Boot tested on NUMAQ, x86 SMP and ppc64 power4/5 LPARs.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Martin J. Bligh <mbligh@aracnet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently reset and powerdown are not implemented on the Maple board,
and attempting to do so will (incorrectly return). This implements
the proper communication with the service processor, allowing correct
reset and powerdown on the Maple board, by communicating with the
service processor. If somehow it's unable to communicate with the
service processor it will loop forever instead.
Note that powerdown on the Maple will power down the CPUs, but not the
fans or other board components due to hardware and firmware
limitations.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Frank Rowand <frowand@mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
For I/O DLPAR to work properly, the kernel needs to allow for dynamic
assignment of the irq field of the pci_dev structure upon dynamic bus
addition. This patch moves the assignment of that field from
pSeries_final_fixup() to pcibios_fixup_bus(), which enables dynamic
assignment for the children of a newly added bus.
Currently, pci_devs receive their irq numbers in one of two ways. The
irq line is either read at boot for all pci_devs, or read by the rpaphp
module at slot enable time. The latter is no longer sufficient for
DLPAR addition of slots that don't qualify as PCI-hotplug capable.
This solution handles the cases of boot and dynamic add.
Signed-off-by: John Rose <johnrose@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch corrects the printing of progress indicators to the op
panel on p/iSeries ppc64 systems. Each discrete reference code should
begin with a form feed char to clear the op panel, and the first and
second lines should be separated with a CR/LF sequence. Padding with
spaces is not necessary.
Also, capitalize the hex value printed on the first line, to be
consistent with the values printed by firmware, service processor,
etc.
It turns out that there's an ibm,form-feed property; this patch uses
it in the pSeries-specific progress routine. This patch also checks
the number of rows and the specific width of each row (the second row
on power5 systems can actually hold 80 characters). If the displayed
text is too wide for the physical display, it can be viewed in the ASM
menus, or by selecting option 14 on the op panel.
Signed-off-by: Mike Strosaker <strosake@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Implementation of software load support for the BE iommu. This is very
different from other iommu code on ppc64, since we only do a static mapping.
The mapping is currently hardcoded but should really be read from the
firmware, but they don't set up the device nodes yet. There is a single
512MB DMA window for PCI, USB and ethernet at 0x20000000 for our RAM.
The Cell processor can put the I/O page table either in memory like
the hashed page table (hardware load) or have the operating system
write the entries into memory mapped CPU registers (software load).
I use the software load mechanism because I know that all I/O page
table entries for the amount of installed physical memory fit into
the IO TLB cache. At the point when we get machines with more than
4GB of installed memory, we can either use hardware I/O page table
access like the other platforms do or dynamically update the I/O
TLB entries when a page fault occurs in the I/O subsystem.
The software load can then use the macros that I have implemented
for the static mapping in order to do the TLB cache updates.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add support for the integrated interrupt controller on BPA
CPUs. There is one of those for each SMT thread.
The mapping of interrupt numbers to HW interrupt sources
is described in arch/ppc64/kernel/bpa_iic.h.
This version hardcodes the 'Spider' chip as the secondary
interrupt controller. That is not really generic for the
architecture, but at the moment it is the only secondary
PIC that exists.
A little more work will be needed on this as soon as
we have boards with multiple external interrupt controllers.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds the basic support for running on BPA machines.
So far, this is only the IBM workstation, and it will
not run on others without a little more generalization.
It should be possible to configure a kernel for any
combination of CONFIG_PPC_BPA with any of the other
multiplatform targets.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The firmware provides the location and size of the nvram
in the device tree, so it does not really contain any
hardware specific bits and could be used on other
machines as well.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The pSeries_progress function is called from some places in the rtas code,
which may also be used by non-pSeries platforms.
Though pSeries is currently the only platform type that implements
display-character, the code is actually generic enough to be part of
the rtas subsystem.
I hit a bug here because the generic rtas code tried calling ppc_md.progress,
which points to an __init function on most platforms.
We could also clear the ppc_md.progress pointer when freeing the init memory
to make it more explicit that ppc_md.progress must not be called after
bootup.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
BPA is using rtas for PCI but should not be confused by
pSeries code. This also avoids some #ifdefs. Other
platforms that want to use rtas_pci.c could create
their own platform_pci.c with platform specific fixups.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The rtc rtas functions are not pSeries specific but can
also be used by BPA and other SLOF based platforms
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
pSeries and maple have almost the same code for calibrate_decr,
and BPA would need yet another copy. Instead, I'm moving the
code to arch/ppc64/kernel/time.c.
Some of the related declarations were missing from header
files, so I'm moving those as well.
It makes sense to merge this with the pmac function of the
same name, so we end up having just one implemetation for
iSeries and one for Open Firmware based machines.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Allow the SMT bit to be set/reset at boot, like the ALTIVEC bit. This
means we will enable SMT on unknown cpus that support it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We dont use the hardware referenced and changed bits and setting them early
avoids a store to memory. We already do this for userspace hptes but not
kernel ones. Do it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>