IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For consistency of output, emit "name <anon>" for BTFs without the name. This
keeps output more consistent and obvious.
Suggested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201202065244.530571-2-andrii@kernel.org
STATX_ATTR_MOUNT_ROOT and STATX_ATTR_DAX got merged with the same value,
so one of them needs fixing. Move STATX_ATTR_DAX.
While we're in here, clarify the value-matching scheme for some of the
attributes, and explain why the value for DAX does not match.
Fixes: 80340fe3605c ("statx: add mount_root")
Fixes: 712b2698e4c0 ("fs/stat: Define DAX statx attribute")
Link: https://lore.kernel.org/linux-fsdevel/7027520f-7c79-087e-1d00-743bdefa1a1e@redhat.com/
Link: https://lore.kernel.org/lkml/20201202214629.1563760-1-ira.weiny@intel.com/
Reported-by: David Howells <dhowells@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: <stable@vger.kernel.org> # 5.8
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently .get_state() and .apply() use dev_get_drvdata() on the struct
device related to the pwm chip. This only works after .probe() called
platform_set_drvdata() which in this driver happens only after
pwmchip_add() and so comes possibly too late.
Instead of setting the driver data earlier use the traditional
container_of approach as this way the driver data is conceptually and
computational nearer.
Fixes: 9db33d221efc ("pwm: Add support for sl28cpld PWM controller")
Tested-by: Michael Walle <michael@walle.cc>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lilith >_> and Claudio Bozzato of Cisco Talos security team reported
that collect_syscall() improperly casts the syscall registers to 64-bit
values leaking the uninitialized last 24 bytes on 32-bit platforms, that
are visible in /proc/self/syscall.
The cause is that info->data.args are u64 while syscall_get_arguments()
uses longs, as hinted by the bogus pointer cast in the function.
Let's just proceed like the other call places, by retrieving the
registers into an array of longs before assigning them to the caller's
array. This was successfully tested on x86_64, i386 and ppc32.
Reference: CVE-2020-28588, TALOS-2020-1211
Fixes: 631b7abacd02 ("ptrace: Remove maxargs from task_current_syscall()")
Cc: Greg KH <greg@kroah.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Michael Ellerman <mpe@ellerman.id.au> (ppc32)
Signed-off-by: Willy Tarreau <w@1wt.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Background:
Broadcast and multicast packages are enqueued for later processing.
This queue was previously hardcoded to 1000.
This proved insufficient for handling very high packet rates.
This resulted in packet drops for multicast.
While at the same time unicast worked fine.
The change:
This patch make the queue length adjustable to accommodate
for environments with very high multicast packet rate.
But still keeps the default value of 1000 unless specified.
The queue length is specified as a request per macvlan
using the IFLA_MACVLAN_BC_QUEUE_LEN parameter.
The actual used queue length will then be the maximum of
any macvlan connected to the same port. The actual used
queue length for the port can be retrieved (read only)
by the IFLA_MACVLAN_BC_QUEUE_LEN_USED parameter for verification.
This will be followed up by a patch to iproute2
in order to adjust the parameter from userspace.
Signed-off-by: Thomas Karlsson <thomas.karlsson@paneda.se>
Link: https://lore.kernel.org/r/dd4673b2-7eab-edda-6815-85c67ce87f63@paneda.se
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This code does not ensure that the whole buffer is initialized and none
of the callers check for errors so potentially none of the buffer is
initialized. Add a memset to eliminate this bug.
Fixes: e3037485c68e ("rtw88: new Realtek 802.11ac driver")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Link: https://lore.kernel.org/r/X8ilOfVz3pf0T5ec@mwanda
Roman Gushchin says:
====================
Currently bpf is using the memlock rlimit for the memory accounting.
This approach has its downsides and over time has created a significant
amount of problems:
1) The limit is per-user, but because most bpf operations are performed
as root, the limit has a little value.
2) It's hard to come up with a specific maximum value. Especially because
the counter is shared with non-bpf use cases (e.g. memlock()).
Any specific value is either too low and creates false failures
or is too high and useless.
3) Charging is not connected to the actual memory allocation. Bpf code
should manually calculate the estimated cost and charge the counter,
and then take care of uncharging, including all fail paths.
It adds to the code complexity and makes it easy to leak a charge.
4) There is no simple way of getting the current value of the counter.
We've used drgn for it, but it's far from being convenient.
5) Cryptic -EPERM is returned on exceeding the limit. Libbpf even had
a function to "explain" this case for users.
6) rlimits are generally considered as (at least partially) obsolete.
They do not provide a comprehensive system for the control of physical
resources: memory, cpu, io etc. All resource control developments
in the recent years were related to cgroups.
In order to overcome these problems let's switch to the memory cgroup-based
memory accounting of bpf objects. With the recent addition of the percpu
memory accounting, now it's possible to provide a comprehensive accounting
of the memory used by bpf programs and maps.
This approach has the following advantages:
1) The limit is per-cgroup and hierarchical. It's way more flexible and allows
a better control over memory usage by different workloads.
2) The actual memory consumption is taken into account. It happens automatically
on the allocation time if __GFP_ACCOUNT flags is passed. Uncharging is also
performed automatically on releasing the memory. So the code on the bpf side
becomes simpler and safer.
3) There is a simple way to get the current value and statistics.
Cgroup-based accounting adds new requirements:
1) The kernel config should have CONFIG_CGROUPS and CONFIG_MEMCG_KMEM enabled.
These options are usually enabled, maybe excluding tiny builds for embedded
devices.
2) The system should have a configured cgroup hierarchy, including reasonable
memory limits and/or guarantees. Modern systems usually delegate this task
to systemd or similar task managers.
Without meeting these requirements there are no limits on how much memory bpf
can use and a non-root user is able to hurt the system by allocating too much.
But because per-user rlimits do not provide a functional system to protect
and manage physical resources anyway, anyone who seriously depends on it,
should use cgroups.
When a bpf map is created, the memory cgroup of the process which creates
the map is recorded. Subsequently all memory allocation related to the bpf map
are charged to the same cgroup. It includes allocations made from interrupts
and by any processes. Bpf program memory is charged to the memory cgroup of
a process which loads the program.
The patchset consists of the following parts:
1) 4 mm patches are required on the mm side, otherwise vmallocs cannot be mapped
to userspace
2) memcg-based accounting for various bpf objects: progs and maps
3) removal of the rlimit-based accounting
4) removal of rlimit adjustments in userspace samples
v9:
- always charge the saved memory cgroup, by Daniel, Toke and Alexei
- added bpf_map_kzalloc()
- rebase and minor fixes
v8:
- extended the cover letter to be more clear on new requirements, by Daniel
- an approximate value is provided by map memlock info, by Alexei
v7:
- introduced bpf_map_kmalloc_node() and bpf_map_alloc_percpu(), by Alexei
- switched allocations made from an interrupt context to new helpers,
by Daniel
- rebase and minor fixes
v6:
- rebased to the latest version of the remote charging API
- fixed signatures, added acks
v5:
- rebased to the latest version of the remote charging API
- implemented kmem accounting from an interrupt context, by Shakeel
- rebased to latest changes in mm allowed to map vmallocs to userspace
- fixed a build issue in kselftests, by Alexei
- fixed a use-after-free bug in bpf_map_free_deferred()
- added bpf line info coverage, by Shakeel
- split bpf map charging preparations into a separate patch
v4:
- covered allocations made from an interrupt context, by Daniel
- added some clarifications to the cover letter
v3:
- droped the userspace part for further discussions/refinements,
by Andrii and Song
v2:
- fixed build issue, caused by the remaining rlimit-based accounting
for sockhash maps
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since bpf is not using rlimit memlock for the memory accounting
and control, do not change the limit in sample applications.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-35-guro@fb.com
Do not use rlimit-based memory accounting for bpf progs. It has been
replaced with memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-34-guro@fb.com
Remove rlimit-based accounting infrastructure code, which is not used
anymore.
To provide a backward compatibility, use an approximation of the
bpf map memory footprint as a "memlock" value, available to a user
via map info. The approximation is based on the maximal number of
elements and key and value sizes.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-33-guro@fb.com
Do not use rlimit-based memory accounting for bpf local storage maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-32-guro@fb.com
Do not use rlimit-based memory accounting for xskmap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-31-guro@fb.com
Do not use rlimit-based memory accounting for stackmap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-30-guro@fb.com
Do not use rlimit-based memory accounting for sockmap and sockhash maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-29-guro@fb.com
Do not use rlimit-based memory accounting for bpf ringbuffer.
It has been replaced with the memcg-based memory accounting.
bpf_ringbuf_alloc() can't return anything except ERR_PTR(-ENOMEM)
and a valid pointer, so to simplify the code make it return NULL
in the first case. This allows to drop a couple of lines in
ringbuf_map_alloc() and also makes it look similar to other memory
allocating function like kmalloc().
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-28-guro@fb.com
Do not use rlimit-based memory accounting for reuseport_array maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-27-guro@fb.com
Do not use rlimit-based memory accounting for queue_stack maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-26-guro@fb.com
Do not use rlimit-based memory accounting for lpm_trie maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-25-guro@fb.com
Do not use rlimit-based memory accounting for hashtab maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-24-guro@fb.com
Do not use rlimit-based memory accounting for devmap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-23-guro@fb.com
Do not use rlimit-based memory accounting for cgroup storage maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-22-guro@fb.com
Do not use rlimit-based memory accounting for cpumap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-21-guro@fb.com
Do not use rlimit-based memory accounting for bpf_struct_ops maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-20-guro@fb.com
Do not use rlimit-based memory accounting for arraymap maps.
It has been replaced with the memcg-based memory accounting.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-19-guro@fb.com
Include internal metadata into the memcg-based memory accounting.
Also include the memory allocated on updating an element.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-17-guro@fb.com
Account memory used by cgroup storage maps including metadata
structures.
Account the percpu memory for the percpu flavor of cgroup storage.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-11-guro@fb.com
This patch enables memcg-based memory accounting for memory allocated
by __bpf_map_area_alloc(), which is used by many types of bpf maps for
large initial memory allocations.
Please note, that __bpf_map_area_alloc() should not be used outside of
map creation paths without setting the active memory cgroup to the
map's memory cgroup.
Following patches in the series will refine the accounting for
some of the map types.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-8-guro@fb.com
Bpf maps can be updated from an interrupt context and in such
case there is no process which can be charged. It makes the memory
accounting of bpf maps non-trivial.
Fortunately, after commit 4127c6504f25 ("mm: kmem: enable kernel
memcg accounting from interrupt contexts") and commit b87d8cefe43c
("mm, memcg: rework remote charging API to support nesting")
it's finally possible.
To make the ownership model simple and consistent, when the map
is created, the memory cgroup of the current process is recorded.
All subsequent allocations related to the bpf map are charged to
the same memory cgroup. It includes allocations made by any processes
(even if they do belong to a different cgroup) and from interrupts.
This commit introduces 3 new helpers, which will be used by following
commits to enable the accounting of bpf maps memory:
- bpf_map_kmalloc_node()
- bpf_map_kzalloc()
- bpf_map_alloc_percpu()
They are wrapping popular memory allocation functions. They set
the active memory cgroup to the map's memory cgroup and add
__GFP_ACCOUNT to the passed gfp flags. Then they call into
the corresponding memory allocation function and restore
the original active memory cgroup.
These helpers are supposed to use everywhere except the map creation
path. During the map creation when the map structure is allocated by
itself, it cannot be passed to those helpers. In those cases default
memory allocation function will be used with the __GFP_ACCOUNT flag.
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-7-guro@fb.com
Include memory used by bpf programs into the memcg-based accounting.
This includes the memory used by programs itself, auxiliary data,
statistics and bpf line info. A memory cgroup containing the
process which loads the program is getting charged.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-6-guro@fb.com
PageKmemcg flag is currently defined as a page type (like buddy, offline,
table and guard). Semantically it means that the page was accounted as a
kernel memory by the page allocator and has to be uncharged on the
release.
As a side effect of defining the flag as a page type, the accounted page
can't be mapped to userspace (look at page_has_type() and comments above).
In particular, this blocks the accounting of vmalloc-backed memory used
by some bpf maps, because these maps do map the memory to userspace.
One option is to fix it by complicating the access to page->mapcount,
which provides some free bits for page->page_type.
But it's way better to move this flag into page->memcg_data flags.
Indeed, the flag makes no sense without enabled memory cgroups and memory
cgroup pointer set in particular.
This commit replaces PageKmemcg() and __SetPageKmemcg() with
PageMemcgKmem() and an open-coded OR operation setting the memcg pointer
with the MEMCG_DATA_KMEM bit. __ClearPageKmemcg() can be simple deleted,
as the whole memcg_data is zeroed at once.
As a bonus, on !CONFIG_MEMCG build the PageMemcgKmem() check will be
compiled out.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-5-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-5-guro@fb.com
The lowest bit in page->memcg_data is used to distinguish between struct
memory_cgroup pointer and a pointer to a objcgs array. All checks and
modifications of this bit are open-coded.
Let's formalize it using page memcg flags, defined in enum
page_memcg_data_flags.
Additional flags might be added later.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-4-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-4-guro@fb.com
To gather all direct accesses to struct page's memcg_data field in one
place, let's introduce 3 new helpers to use in the slab accounting code:
struct obj_cgroup **page_objcgs(struct page *page);
struct obj_cgroup **page_objcgs_check(struct page *page);
bool set_page_objcgs(struct page *page, struct obj_cgroup **objcgs);
They are similar to the corresponding API for generic pages, except that
the setter can return false, indicating that the value has been already
set from a different thread.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20201027001657.3398190-3-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-3-guro@fb.com
Patch series "mm: allow mapping accounted kernel pages to userspace", v6.
Currently a non-slab kernel page which has been charged to a memory cgroup
can't be mapped to userspace. The underlying reason is simple: PageKmemcg
flag is defined as a page type (like buddy, offline, etc), so it takes a
bit from a page->mapped counter. Pages with a type set can't be mapped to
userspace.
But in general the kmemcg flag has nothing to do with mapping to
userspace. It only means that the page has been accounted by the page
allocator, so it has to be properly uncharged on release.
Some bpf maps are mapping the vmalloc-based memory to userspace, and their
memory can't be accounted because of this implementation detail.
This patchset removes this limitation by moving the PageKmemcg flag into
one of the free bits of the page->mem_cgroup pointer. Also it formalizes
accesses to the page->mem_cgroup and page->obj_cgroups using new helpers,
adds several checks and removes a couple of obsolete functions. As the
result the code became more robust with fewer open-coded bit tricks.
This patch (of 4):
Currently there are many open-coded reads of the page->mem_cgroup pointer,
as well as a couple of read helpers, which are barely used.
It creates an obstacle on a way to reuse some bits of the pointer for
storing additional bits of information. In fact, we already do this for
slab pages, where the last bit indicates that a pointer has an attached
vector of objcg pointers instead of a regular memcg pointer.
This commits uses 2 existing helpers and introduces a new helper to
converts all read sides to calls of these helpers:
struct mem_cgroup *page_memcg(struct page *page);
struct mem_cgroup *page_memcg_rcu(struct page *page);
struct mem_cgroup *page_memcg_check(struct page *page);
page_memcg_check() is intended to be used in cases when the page can be a
slab page and have a memcg pointer pointing at objcg vector. It does
check the lowest bit, and if set, returns NULL. page_memcg() contains a
VM_BUG_ON_PAGE() check for the page not being a slab page.
To make sure nobody uses a direct access, struct page's
mem_cgroup/obj_cgroups is converted to unsigned long memcg_data.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
Fix to return a negative error code from the error handling
case instead of 0, as done elsewhere in this function.
Fixes: 0ce1822c2a08 ("vxlan: add adjacent link to limit depth level")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Link: https://lore.kernel.org/r/1606903122-2098-1-git-send-email-zhangchangzhong@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Fix to return a negative error code from the error handling
case instead of 0, as done elsewhere in this function.
Fixes: 72b05b9940f0 ("pasemi_mac: RX/TX ring management cleanup")
Fixes: 8d636d8bc5ff ("pasemi_mac: jumbo frame support")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Link: https://lore.kernel.org/r/1606903035-1838-1-git-send-email-zhangchangzhong@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Fix to return a negative error code from the error handling
case instead of 0, as done elsewhere in this function.
Fixes: b1fb1f280d09 ("cxgb3 - Fix dma mapping error path")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zhang Changzhong <zhangchangzhong@huawei.com>
Acked-by: Raju Rangoju <rajur@chelsio.com>
Link: https://lore.kernel.org/r/1606902965-1646-1-git-send-email-zhangchangzhong@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Bongsu Jeon says:
====================
nfc: s3fwrn5: Support a UART interface
S3FWRN82 is the Samsung's NFC chip that supports the UART communication.
Before adding the UART driver module, I did refactoring the s3fwrn5_i2c
module to reuse the common blocks.
====================
Link: https://lore.kernel.org/r/1606909661-3814-1-git-send-email-bongsu.jeon@samsung.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since S3FWRN82 NFC Chip, The UART interface can be used.
S3FWRN82 uses NCI protocol and supports I2C and UART interface.
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Bongsu Jeon <bongsu.jeon@samsung.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Extract the common phy blocks to reuse it.
The UART module will use the common blocks.
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Bongsu Jeon <bongsu.jeon@samsung.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The delay of 20ms is enough to enable and
wake up the Samsung's nfc chip.
Acked-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Bongsu Jeon <bongsu.jeon@samsung.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>