IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add a verify_patch() function which tries to sanity-check many aspects
of a microcode patch supplied by an outside container before attempting
a load.
Prepend all sub-functions' names which verify an aspect of a microcode
patch with "__".
Call it in verify_and_add_patch() *before* looking at the microcode
header.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-7-bp@alien8.de
Rename the variable which contains the patch size read out from the
section header to sh_psize for better differentiation of all the "sizes"
in that function.
Also, improve the comment above it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-6-bp@alien8.de
Starting with family 0x15, the patch size verification is not needed
anymore. Thus get rid of the need to update this checking function with
each new family.
Keep the check for older families.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20181107170218.7596-5-bp@alien8.de
Add container and patch verification functions to the AMD microcode
update driver.
These functions check whether a passed buffer contains the relevant
structure, whether it isn't truncated and (for actual microcode patches)
whether the size of a patch is not too large for a particular CPU family.
By adding these checks as separate functions the actual microcode loading
code won't get interspersed with a lot of checks and so will be more
readable.
[ bp: Make all pr_err() calls into pr_debug() and drop the
verify_patch() bits. ]
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/3014e96c82cd90761b4601bd2cfe59c4119e46a7.1529424596.git.mail@maciej.szmigiero.name
verify_patch_size() verifies whether the remaining size of the microcode
container file is large enough to contain a patch of the indicated size.
However, the section header length is not included in this indicated
size but it is present in the leftover file length so it should be
subtracted from the leftover file length before passing this value to
verify_patch_size().
[ bp: Split comment. ]
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/6df43f4f6a28186a13a66e8d7e61143c5e1a2324.1529424596.git.mail@maciej.szmigiero.name
Add the proper includes and make smca_get_name() static.
Fix an actual bug too which the warning triggered:
arch/x86/kernel/cpu/mcheck/therm_throt.c:395:39: error: conflicting \
types for ‘smp_thermal_interrupt’
asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r)
^~~~~~~~~~~~~~~~~~~~~
In file included from arch/x86/kernel/cpu/mcheck/therm_throt.c:29:
./arch/x86/include/asm/traps.h:107:17: note: previous declaration of \
‘smp_thermal_interrupt’ was here
asmlinkage void smp_thermal_interrupt(void);
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Michael Matz <matz@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811081633160.1549@nanos.tec.linutronix.de
When running function tracing on a Linux guest running on VMware
Workstation, the guest would crash. This is due to tracing of the
sched_clock internal call of the VMware vmware_sched_clock(), which
causes an infinite recursion within the tracing code (clock calls must
not be traced).
Make vmware_sched_clock() not traced by ftrace.
Fixes: 80e9a4f21fd7c ("x86/vmware: Add paravirt sched clock")
Reported-by: GwanYeong Kim <gy741.kim@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: Alok Kataria <akataria@vmware.com>
CC: GwanYeong Kim <gy741.kim@gmail.com>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
CC: Thomas Gleixner <tglx@linutronix.de>
CC: virtualization@lists.linux-foundation.org
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181109152207.4d3e7d70@gandalf.local.home
The NFIT machine check handler uses the physical address from the mce
structure, and compares it against information in the ACPI NFIT table
to determine whether that location lies on an NVDIMM. The mce->addr
field however may not always be valid, and this is indicated by the
MCI_STATUS_ADDRV bit in the status field.
Export mce_usable_address() which already performs validation for the
address, and use it in the NFIT handler.
Fixes: 6839a6d96f4e ("nfit: do an ARS scrub on hitting a latent media error")
Reported-by: Robert Elliott <elliott@hpe.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Williams <dan.j.williams@intel.com>
CC: Dave Jiang <dave.jiang@intel.com>
CC: elliott@hpe.com
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Len Brown <lenb@kernel.org>
CC: linux-acpi@vger.kernel.org
CC: linux-edac <linux-edac@vger.kernel.org>
CC: linux-nvdimm@lists.01.org
CC: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
CC: "Rafael J. Wysocki" <rjw@rjwysocki.net>
CC: Ross Zwisler <zwisler@kernel.org>
CC: stable <stable@vger.kernel.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Tony Luck <tony.luck@intel.com>
CC: x86-ml <x86@kernel.org>
CC: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20181026003729.8420-2-vishal.l.verma@intel.com
The MCE handler for nfit devices is called for memory errors on a
Non-Volatile DIMM and adds the error location to a 'badblocks' list.
This list is used by the various NVDIMM drivers to avoid consuming known
poison locations during IO.
The MCE handler gets called for both corrected and uncorrectable errors.
Until now, both kinds of errors have been added to the badblocks list.
However, corrected memory errors indicate that the problem has already
been fixed by hardware, and the resulting interrupt is merely a
notification to Linux.
As far as future accesses to that location are concerned, it is
perfectly fine to use, and thus doesn't need to be included in the above
badblocks list.
Add a check in the nfit MCE handler to filter out corrected mce events,
and only process uncorrectable errors.
Fixes: 6839a6d96f4e ("nfit: do an ARS scrub on hitting a latent media error")
Reported-by: Omar Avelar <omar.avelar@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: Arnd Bergmann <arnd@arndb.de>
CC: Dan Williams <dan.j.williams@intel.com>
CC: Dave Jiang <dave.jiang@intel.com>
CC: elliott@hpe.com
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Len Brown <lenb@kernel.org>
CC: linux-acpi@vger.kernel.org
CC: linux-edac <linux-edac@vger.kernel.org>
CC: linux-nvdimm@lists.01.org
CC: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
CC: "Rafael J. Wysocki" <rjw@rjwysocki.net>
CC: Ross Zwisler <zwisler@kernel.org>
CC: stable <stable@vger.kernel.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Tony Luck <tony.luck@intel.com>
CC: x86-ml <x86@kernel.org>
CC: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20181026003729.8420-1-vishal.l.verma@intel.com
get_scattered_cpuid_leaf() was added[1] to help KVM rebuild hardware-
defined leafs that are rearranged by Linux to avoid bloating the
x86_capability array. Eventually, the last consumer of the function was
removed[2], but the function itself was kept, perhaps even intentionally
as a form of documentation.
Remove get_scattered_cpuid_leaf() as it is currently not used by KVM.
Furthermore, simply rebuilding the "real" leaf does not resolve all of
KVM's woes when it comes to exposing a scattered CPUID feature, i.e.
keeping the function as documentation may be counter-productive in some
scenarios, e.g. when KVM needs to do more than simply expose the leaf.
[1] 47bdf3378d62 ("x86/cpuid: Provide get_scattered_cpuid_leaf()")
[2] b7b27aa011a1 ("KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181105185725.18679-1-sean.j.christopherson@intel.com
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.
(Also do some whitespace cleanups in a few places while at it.)
[ mingo: Rewrote the changelog. ]
Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
based on the AMD Zen architecture, and are built and sold in China,
for domestic datacenter use. The code is pretty close to AMD
support, mostly with a few quirks and enumeration differences. (Pu
Wen)
- Enable CPUID support on Cyrix 6x86/6x86L processors"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/cpupower: Add Hygon Dhyana support
cpufreq: Add Hygon Dhyana support
ACPI: Add Hygon Dhyana support
x86/xen: Add Hygon Dhyana support to Xen
x86/kvm: Add Hygon Dhyana support to KVM
x86/mce: Add Hygon Dhyana support to the MCA infrastructure
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
x86/apic: Add Hygon Dhyana support
x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
x86/amd_nb: Check vendor in AMD-only functions
x86/alternative: Init ideal_nops for Hygon Dhyana
x86/events: Add Hygon Dhyana support to PMU infrastructure
x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
x86/cpu: Create Hygon Dhyana architecture support file
x86/CPU: Change query logic so CPUID is enabled before testing
x86/CPU: Use correct macros for Cyrix calls
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were the fsgsbase related preparatory
patches from Chang S. Bae - but there's also an optimized
memcpy_flushcache() and a cleanup for the __cmpxchg_double() assembly
glue"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fsgsbase/64: Clean up various details
x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick
x86/vdso: Initialize the CPU/node NR segment descriptor earlier
x86/vdso: Introduce helper functions for CPU and node number
x86/segments/64: Rename the GDT PER_CPU entry to CPU_NUMBER
x86/fsgsbase/64: Factor out FS/GS segment loading from __switch_to()
x86/fsgsbase/64: Convert the ELF core dump code to the new FSGSBASE helpers
x86/fsgsbase/64: Make ptrace use the new FS/GS base helpers
x86/fsgsbase/64: Introduce FS/GS base helper functions
x86/fsgsbase/64: Fix ptrace() to read the FS/GS base accurately
x86/asm: Use CC_SET()/CC_OUT() in __cmpxchg_double()
x86/asm: Optimize memcpy_flushcache()
Pull RAS updates from Ingo Molnar:
"Misc smaller fixes and cleanups"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mcelog: Remove one mce_helper definition
x86/mce: Add macros for the corrected error count bit field
x86/mce: Use BIT_ULL(x) for bit mask definitions
x86/mce-inject: Reset injection struct after injection
Pull perf updates from Ingo Molnar:
"The main updates in this cycle were:
- Lots of perf tooling changes too voluminous to list (big perf trace
and perf stat improvements, lots of libtraceevent reorganization,
etc.), so I'll list the authors and refer to the changelog for
details:
Benjamin Peterson, Jérémie Galarneau, Kim Phillips, Peter
Zijlstra, Ravi Bangoria, Sangwon Hong, Sean V Kelley, Steven
Rostedt, Thomas Gleixner, Ding Xiang, Eduardo Habkost, Thomas
Richter, Andi Kleen, Sanskriti Sharma, Adrian Hunter, Tzvetomir
Stoyanov, Arnaldo Carvalho de Melo, Jiri Olsa.
... with the bulk of the changes written by Jiri Olsa, Tzvetomir
Stoyanov and Arnaldo Carvalho de Melo.
- Continued intel_rdt work with a focus on playing well with perf
events. This also imported some non-perf RDT work due to
dependencies. (Reinette Chatre)
- Implement counter freezing for Arch Perfmon v4 (Skylake and newer).
This allows to speed up the PMI handler by avoiding unnecessary MSR
writes and make it more accurate. (Andi Kleen)
- kprobes cleanups and simplification (Masami Hiramatsu)
- Intel Goldmont PMU updates (Kan Liang)
- ... plus misc other fixes and updates"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (155 commits)
kprobes/x86: Use preempt_enable() in optimized_callback()
x86/intel_rdt: Prevent pseudo-locking from using stale pointers
kprobes, x86/ptrace.h: Make regs_get_kernel_stack_nth() not fault on bad stack
perf/x86/intel: Export mem events only if there's PEBS support
x86/cpu: Drop pointless static qualifier in punit_dev_state_show()
x86/intel_rdt: Fix initial allocation to consider CDP
x86/intel_rdt: CBM overlap should also check for overlap with CDP peer
x86/intel_rdt: Introduce utility to obtain CDP peer
tools lib traceevent, perf tools: Move struct tep_handler definition in a local header file
tools lib traceevent: Separate out tep_strerror() for strerror_r() issues
perf python: More portable way to make CFLAGS work with clang
perf python: Make clang_has_option() work on Python 3
perf tools: Free temporary 'sys' string in read_event_files()
perf tools: Avoid double free in read_event_file()
perf tools: Free 'printk' string in parse_ftrace_printk()
perf tools: Cleanup trace-event-info 'tdata' leak
perf strbuf: Match va_{add,copy} with va_end
perf test: S390 does not support watchpoints in test 22
perf auxtrace: Include missing asm/bitsperlong.h to get BITS_PER_LONG
tools include: Adopt linux/bits.h
...
Pull locking and misc x86 updates from Ingo Molnar:
"Lots of changes in this cycle - in part because locking/core attracted
a number of related x86 low level work which was easier to handle in a
single tree:
- Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
McKenney, Andrea Parri)
- lockdep scalability improvements and micro-optimizations (Waiman
Long)
- rwsem improvements (Waiman Long)
- spinlock micro-optimization (Matthew Wilcox)
- qspinlocks: Provide a liveness guarantee (more fairness) on x86.
(Peter Zijlstra)
- Add support for relative references in jump tables on arm64, x86
and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)
- Be a lot less permissive on weird (kernel address) uaccess faults
on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
Horn)
- macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
Amit)
- ... and a handful of other smaller changes as well"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
locking/lockdep: Make global debug_locks* variables read-mostly
locking/lockdep: Fix debug_locks off performance problem
locking/pvqspinlock: Extend node size when pvqspinlock is configured
locking/qspinlock_stat: Count instances of nested lock slowpaths
locking/qspinlock, x86: Provide liveness guarantee
x86/asm: 'Simplify' GEN_*_RMWcc() macros
locking/qspinlock: Rework some comments
locking/qspinlock: Re-order code
locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
futex: Replace spin_is_locked() with lockdep
locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
x86/refcount: Work around GCC inlining bug
x86/objtool: Use asm macros to work around GCC inlining bugs
...
When the last CPU in an rdt_domain goes offline, its rdt_domain struct gets
freed. Current pseudo-locking code is unaware of this scenario and tries to
dereference the freed structure in a few places.
Add checks to prevent pseudo-locking code from doing this.
While further work is needed to seamlessly restore resource groups (not
just pseudo-locking) to their configuration when the domain is brought back
online, the immediate issue of invalid pointers is addressed here.
Fixes: f4e80d67a5274 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 443810fe61605 ("x86/intel_rdt: Create debugfs files for pseudo-locking testing")
Fixes: 746e08590b864 ("x86/intel_rdt: Create character device exposing pseudo-locked region")
Fixes: 33dc3e410a0d9 ("x86/intel_rdt: Make CPU information accessible for pseudo-locked regions")
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/231f742dbb7b00a31cc104416860e27dba6b072d.1539384145.git.reinette.chatre@intel.com
Commit
5de97c9f6d85f ("x86/mce: Factor out and deprecate the /dev/mcelog driver")
moved the old interface into one file including mce_helper definition as
static and "extern". Remove one.
Fixes: 5de97c9f6d85f ("x86/mce: Factor out and deprecate the /dev/mcelog driver")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Tony Luck <tony.luck@intel.com>
CC: linux-edac <linux-edac@vger.kernel.org>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181017170554.18841-3-bigeasy@linutronix.de
Implement the required wait and kick callbacks to support PV spinlocks in
Hyper-V guests.
[ tglx: Document the requirement for disabling interrupts in the wait()
callback. Remove goto and unnecessary includes. Add prototype
for hv_vcpu_is_preempted(). Adapted to pending paravirt changes. ]
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Michael Kelley (EOSG) <Michael.H.Kelley@microsoft.com>
Cc: chao.p.peng@intel.com
Cc: chao.gao@intel.com
Cc: isaku.yamahata@intel.com
Cc: tianyu.lan@microsoft.com
Link: https://lkml.kernel.org/r/1538987374-51217-3-git-send-email-yi.y.sun@linux.intel.com
When a new resource group is created it is initialized with a default
allocation that considers which portions of cache are currently
available for sharing across all resource groups or which portions of
cache are currently unused.
If a CDP allocation forms part of a resource group that is in exclusive
mode then it should be ensured that no new allocation overlaps with any
resource that shares the underlying hardware. The current initial
allocation does not take this sharing of hardware into account and
a new allocation in a resource that shares the same
hardware would affect the exclusive resource group.
Fix this by considering the allocation of a peer RDT domain - a RDT
domain sharing the same hardware - as part of the test to determine
which portion of cache is in use and available for use.
Fixes: 95f0b77efa57 ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: jithu.joseph@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b1f7ec08b1695be067de416a4128466d49684317.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CBM overlap test is used to manage the allocations of RDT resources
where overlap is possible between resource groups. When a resource group
is in exclusive mode then there should be no overlap between resource
groups.
The current overlap test only considers overlap between the same
resources, for example, that usage of a RDT_RESOURCE_L2DATA resource
in one resource group does not overlap with usage of a RDT_RESOURCE_L2DATA
resource in another resource group. The problem with this is that it
allows overlap between a RDT_RESOURCE_L2DATA resource in one resource
group with a RDT_RESOURCE_L2CODE resource in another resource group -
even if both resource groups are in exclusive mode. This is a problem
because even though these appear to be different resources they end up
sharing the same underlying hardware and thus does not fulfill the
user's request for exclusive use of hardware resources.
Fix this by including the CDP peer (if there is one) in every CBM
overlap test. This does not impact the overlap between resources
within the same exclusive resource group that is allowed.
Fixes: 49f7b4efa110 ("x86/intel_rdt: Enable setting of exclusive mode")
Reported-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/e538b7f56f7ca15963dce2e00ac3be8edb8a68e1.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a utility that, when provided with a RDT resource and an
instance of this RDT resource (a RDT domain), would return pointers to
the RDT resource and RDT domain that share the same hardware. This is
specific to the CDP resources that share the same hardware.
For example, if a pointer to the RDT_RESOURCE_L2DATA resource (struct
rdt_resource) and a pointer to an instance of this resource (struct
rdt_domain) is provided, then it will return a pointer to the
RDT_RESOURCE_L2CODE resource as well as the specific instance that
shares the same hardware as the provided rdt_domain.
This utility is created in support of the "exclusive" resource group
mode where overlap of resource allocation between resource groups need
to be avoided. The overlap test need to consider not just the matching
resources, but also the resources that share the same hardware.
Temporarily mark it as unused in support of patch testing to avoid
compile warnings until it is used.
Fixes: 49f7b4efa110 ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/9b4bc4d59ba2e903b6a3eb17e16ef41a8e7b7c3e.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While the DOC at the beginning of lib/bitmap.c explicitly states that
"The number of valid bits in a given bitmap does _not_ need to be an
exact multiple of BITS_PER_LONG.", some of the bitmap operations do
indeed access BITS_PER_LONG portions of the provided bitmap no matter
the size of the provided bitmap. For example, if bitmap_intersects()
is provided with an 8 bit bitmap the operation will access
BITS_PER_LONG bits from the provided bitmap. While the operation
ensures that these extra bits do not affect the result, the memory
is still accessed.
The capacity bitmasks (CBMs) are typically stored in u32 since they
can never exceed 32 bits. A few instances exist where a bitmap_*
operation is performed on a CBM by simply pointing the bitmap operation
to the stored u32 value.
The consequence of this pattern is that some bitmap_* operations will
access out-of-bounds memory when interacting with the provided CBM. This
is confirmed with a KASAN test that reports:
BUG: KASAN: stack-out-of-bounds in __bitmap_intersects+0xa2/0x100
and
BUG: KASAN: stack-out-of-bounds in __bitmap_weight+0x58/0x90
Fix this by moving any CBM provided to a bitmap operation needing
BITS_PER_LONG to an 'unsigned long' variable.
[ tglx: Changed related function arguments to unsigned long and got rid
of the _cbm extra step ]
Fixes: 72d505056604 ("x86/intel_rdt: Add utilities to test pseudo-locked region possibility")
Fixes: 49f7b4efa110 ("x86/intel_rdt: Enable setting of exclusive mode")
Fixes: d9b48c86eb38 ("x86/intel_rdt: Display resource groups' allocations' size in bytes")
Fixes: 95f0b77efa57 ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/69a428613a53f10e80594679ac726246020ff94f.1538686926.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have a special segment descriptor entry in the GDT, whose sole purpose is to
encode the CPU and node numbers in its limit (size) field. There are user-space
instructions that allow the reading of the limit field, which gives us a really
fast way to read the CPU and node IDs from the vDSO for example.
But the naming of related functionality does not make this clear, at all:
VDSO_CPU_SIZE
VDSO_CPU_MASK
__CPU_NUMBER_SEG
GDT_ENTRY_CPU_NUMBER
vdso_encode_cpu_node
vdso_read_cpu_node
There's a number of problems:
- The 'VDSO_CPU_SIZE' doesn't really make it clear that these are number
of bits, nor does it make it clear which 'CPU' this refers to, i.e.
that this is about a GDT entry whose limit encodes the CPU and node number.
- Furthermore, the 'CPU_NUMBER' naming is actively misleading as well,
because the segment limit encodes not just the CPU number but the
node ID as well ...
So use a better nomenclature all around: name everything related to this trick
as 'CPUNODE', to make it clear that this is something special, and add
_BITS to make it clear that these are number of bits, and propagate this to
every affected name:
VDSO_CPU_SIZE => VDSO_CPUNODE_BITS
VDSO_CPU_MASK => VDSO_CPUNODE_MASK
__CPU_NUMBER_SEG => __CPUNODE_SEG
GDT_ENTRY_CPU_NUMBER => GDT_ENTRY_CPUNODE
vdso_encode_cpu_node => vdso_encode_cpunode
vdso_read_cpu_node => vdso_read_cpunode
This, beyond being less confusing, also makes it easier to grep for all related
functionality:
$ git grep -i cpunode arch/x86
Also, while at it, fix "return is not a function" style sloppiness in vdso_encode_cpunode().
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the CPU/node NR segment descriptor (GDT_ENTRY_CPU_NUMBER) is
initialized relatively late during CPU init, from the vCPU code, which
has a number of disadvantages, such as hotplug CPU notifiers and SMP
cross-calls.
Instead just initialize it much earlier, directly in cpu_init().
This reduces complexity and increases robustness.
[ mingo: Wrote new changelog. ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537312139-5580-9-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In resctrl filesystem, mount options exist to enable L3/L2 CDP and MBA
Software Controller features if the platform supports them:
mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
But currently only "cdp" option is displayed in /proc/mounts. "cdpl2" and
"mba_MBps" options are not shown even when they are active.
Before:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp 0 0
After:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp,mba_MBps 0 0
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1536796118-60135-1-git-send-email-fenghua.yu@intel.com
Switch to bitmap_zalloc() to show clearly what is allocated. Besides that
it returns a pointer of bitmap type instead of opaque void *.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180830115039.63430-1-andriy.shevchenko@linux.intel.com
Clang warns when multiple pairs of parentheses are used for a single
conditional statement.
arch/x86/kernel/cpu/amd.c:925:14: warning: equality comparison with
extraneous parentheses [-Wparentheses-equality]
if ((c->x86 == 6)) {
~~~~~~~^~~~
arch/x86/kernel/cpu/amd.c:925:14: note: remove extraneous parentheses
around the comparison to silence this warning
if ((c->x86 == 6)) {
~ ^ ~
arch/x86/kernel/cpu/amd.c:925:14: note: use '=' to turn this equality
comparison into an assignment
if ((c->x86 == 6)) {
^~
=
1 warning generated.
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181002224511.14929-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/187
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Going primarily by:
https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors
with additional information gleaned from other related pages; notably:
- Bonnell shrink was called Saltwell
- Moorefield is the Merriefield refresh which makes it Airmont
The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE
for i in `git grep -l FAM6_ATOM` ; do
sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \
-e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \
-e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \
-e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \
-e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \
-e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \
-e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \
-e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \
-e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \
-e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \
-e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dave.hansen@linux.intel.com
Cc: len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The success of a cache pseudo-locked region is measured using
performance monitoring events that are programmed directly at the time
the user requests a measurement.
Modifying the performance event registers directly is not appropriate
since it circumvents the in-kernel perf infrastructure that exists to
manage these resources and provide resource arbitration to the
performance monitoring hardware.
The cache pseudo-locking measurements are modified to use the in-kernel
perf infrastructure. Performance events are created and validated with
the appropriate perf API. The performance counters are still read as
directly as possible to avoid the additional cache hits. This is
done safely by first ensuring with the perf API that the counters have
been programmed correctly and only accessing the counters in an
interrupt disabled section where they are not able to be moved.
As part of the transition to the in-kernel perf infrastructure the L2
and L3 measurements are split into two separate measurements that can
be triggered independently. This separation prevents additional cache
misses incurred during the extra testing code used to decide if a
L2 and/or L3 measurement should be made.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: peterz@infradead.org
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fc24e728b446404f42c78573c506e98cd0599873.1537468643.git.reinette.chatre@intel.com
A perf event has many attributes that are maintained in a separate
structure that should be provided when a new perf_event is created.
In preparation for the transition to perf_events the required attribute
structures are created for all the events that may be used in the
measurements. Most attributes for all the events are identical. The
actual configuration, what specifies what needs to be measured, is what
will be different between the events used. This configuration needs to
be done with X86_CONFIG that cannot be used as part of the designated
initializers used here, this will be introduced later.
Although they do look identical at this time the attribute structures
needs to be maintained separately since a perf_event will maintain a
pointer to its unique attributes.
In support of patch testing the new structs are given the unused attribute
until their use in later patches.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1822f6164e221a497648d108913d056ab675d5d0.1537377064.git.reinette.chatre@intel.com
Local register variables were used in an effort to improve the
accuracy of the measurement of cache residency of a pseudo-locked
region. This was done to ensure that only the cache residency of
the memory is measured and not the cache residency of the variables
used to perform the measurement.
While local register variables do accomplish the goal they do require
significant care since different architectures have different registers
available. Local register variables also cannot be used with valuable
developer tools like KASAN.
Significant testing has shown that similar accuracy in measurement
results can be obtained by replacing local register variables with
regular local variables.
Make use of local variables in the critical code but do so with
READ_ONCE() to prevent the compiler from merging or refetching reads.
Ensure these variables are initialized before the measurement starts,
and ensure it is only the local variables that are accessed during
the measurement.
With the removal of the local register variables and using READ_ONCE()
there is no longer a motivation for using a direct wrmsr call (that
avoids the additional tracing code that may clobber the local register
variables).
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/f430f57347414e0691765d92b144758ab93d8407.1537377064.git.reinette.chatre@intel.com
The Hygon Dhyana CPU has a topology extensions bit in CPUID. With
this bit, the kernel can get the cache information. So add support in
cpuid4_cache_lookup_regs() to get the correct cache size.
The Hygon Dhyana CPU also discovers num_cache_leaves via CPUID leaf
0x8000001d, so add support to it in find_num_cache_leaves().
Also add cacheinfo_hygon_init_llc_id() and init_hygon_cacheinfo()
functions to initialize Dhyana cache info. Setup cache cpumap in the
same way as AMD does.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: bp@alien8.de
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/2a686b2ac0e2f5a1f2f5f101124d9dd44f949731.1537533369.git.puwen@hygon.cn