IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This patch fixes a bug in precise_store_data_hsw() whereby
it would set the data source memory level to the wrong value.
As per the the SDM Vol 3b Table 18-41 (Layout of Data Linear
Address Information in PEBS Record), when status bit 0 is set
this is a L1 hit, otherwise this is a L1 miss.
This patch encodes the memory level according to the specification.
In V2, we added the filtering on the store events.
Only the following events produce L1 information:
* MEM_UOPS_RETIRED.STLB_MISS_STORES
* MEM_UOPS_RETIRED.LOCK_STORES
* MEM_UOPS_RETIRED.SPLIT_STORES
* MEM_UOPS_RETIRED.ALL_STORES
Cc: mingo@elte.hu
Cc: acme@ghostprotocols.net
Cc: jolsa@redhat.com
Cc: jmario@redhat.com
Cc: ak@linux.intel.com
Tested-and-Reviewed-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140515155644.GA3884@quad
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the probed insn triggers a trap, ->si_addr = regs->ip is technically
correct, but this is not what the signal handler wants; we need to pass
the address of the probed insn, not the address of xol slot.
Add the new arch-agnostic helper, uprobe_get_trap_addr(), and change
fill_trap_info() and math_error() to use it. !CONFIG_UPROBES case in
uprobes.h uses a macro to avoid include hell and ensure that it can be
compiled even if an architecture doesn't define instruction_pointer().
Test-case:
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
extern void probe_div(void);
void sigh(int sig, siginfo_t *info, void *c)
{
int passed = (info->si_addr == probe_div);
printf(passed ? "PASS\n" : "FAIL\n");
_exit(!passed);
}
int main(void)
{
struct sigaction sa = {
.sa_sigaction = sigh,
.sa_flags = SA_SIGINFO,
};
sigaction(SIGFPE, &sa, NULL);
asm (
"xor %ecx,%ecx\n"
".globl probe_div; probe_div:\n"
"idiv %ecx\n"
);
return 0;
}
it fails if probe_div() is probed.
Note: show_unhandled_signals users should probably use this helper too,
but we need to cleanup them first.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Move the callsite of fill_trap_info() into do_error_trap() and remove
the "siginfo_t *info" argument.
This obviously breaks DO_ERROR() which passed info == NULL, we simply
change fill_trap_info() to return "siginfo_t *" and add the "default"
case which returns SEND_SIG_PRIV.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Extract the fill-siginfo code from DO_ERROR_INFO() into the new helper,
fill_trap_info().
It can calculate si_code and si_addr looking at trapnr, so we can remove
these arguments from DO_ERROR_INFO() and simplify the source code. The
generated code is the same, __builtin_constant_p(trapnr) == T.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Move the common code from DO_ERROR() and DO_ERROR_INFO() into the new
helper, do_error_trap(). This simplifies define's and shaves 527 bytes
from traps.o.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
force_sig() is just force_sig_info(SEND_SIG_PRIV). Imho it should die,
we have too many ugly "send signal" helpers.
And do_trap() looks just ugly because it uses force_sig_info() or
force_sig() depending on info != NULL.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Before this patch, instructions such as div, mul, shifts with count
in CL, cmpxchg are mishandled.
This patch adds vex prefix handling. In particular, it avoids colliding
with register operand encoded in vex.vvvv field.
Since we need to avoid two possible register operands, the selection of
scratch register needs to be from at least three registers.
After looking through a lot of CPU docs, it looks like the safest choice
is SI,DI,BX. Selecting BX needs care to not collide with implicit use of
BX by cmpxchg8b.
Test-case:
#include <stdio.h>
static const char *const pass[] = { "FAIL", "pass" };
long two = 2;
void test1(void)
{
long ax = 0, dx = 0;
asm volatile("\n"
" xor %%edx,%%edx\n"
" lea 2(%%edx),%%eax\n"
// We divide 2 by 2. Result (in eax) should be 1:
" probe1: .globl probe1\n"
" divl two(%%rip)\n"
// If we have a bug (eax mangled on entry) the result will be 2,
// because eax gets restored by probe machinery.
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[ax == 1]
);
}
long val2 = 0;
void test2(void)
{
long old_val = val2;
long ax = 0, dx = 0;
asm volatile("\n"
" mov val2,%%eax\n" // eax := val2
" lea 1(%%eax),%%edx\n" // edx := eax+1
// eax is equal to val2. cmpxchg should store edx to val2:
" probe2: .globl probe2\n"
" cmpxchg %%edx,val2(%%rip)\n"
// If we have a bug (eax mangled on entry), val2 will stay unchanged
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[val2 == old_val + 1]
);
}
long val3[2] = {0,0};
void test3(void)
{
long old_val = val3[0];
long ax = 0, dx = 0;
asm volatile("\n"
" mov val3,%%eax\n" // edx:eax := val3
" mov val3+4,%%edx\n"
" mov %%eax,%%ebx\n" // ecx:ebx := edx:eax + 1
" mov %%edx,%%ecx\n"
" add $1,%%ebx\n"
" adc $0,%%ecx\n"
// edx:eax is equal to val3. cmpxchg8b should store ecx:ebx to val3:
" probe3: .globl probe3\n"
" cmpxchg8b val3(%%rip)\n"
// If we have a bug (edx:eax mangled on entry), val3 will stay unchanged.
// If ecx:edx in mangled, val3 will get wrong value.
: "=a" (ax), "=d" (dx) /*out*/
: "0" (ax), "1" (dx) /*in*/
: "cx", "bx", "memory" /*clobber*/
);
dprintf(2, "%s: %s\n", __func__,
pass[val3[0] == old_val + 1 && val3[1] == 0]
);
}
int main(int argc, char **argv)
{
test1();
test2();
test3();
return 0;
}
Before this change all tests fail if probe{1,2,3} are probed.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
It is possible to replace rip-relative addressing mode with addressing
mode of the same length: (reg+disp32). This eliminates the need to fix
up immediate and correct for changing instruction length.
And we can kill arch_uprobe->def.riprel_target.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Event 0x013c is not the same as fixed counter2, remove it from
Silvermont's event constraints.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1398755081-12471-1-git-send-email-zheng.z.yan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull irq fixes from Thomas Gleixner:
"This udpate delivers:
- A fix for dynamic interrupt allocation on x86 which is required to
exclude the GSI interrupts from the dynamic allocatable range.
This was detected with the newfangled tablet SoCs which have GPIOs
and therefor allocate a range of interrupts. The MSI allocations
already excluded the GSI range, so we never noticed before.
- The last missing set_irq_affinity() repair, which was delayed due
to testing issues
- A few bug fixes for the armada SoC interrupt controller
- A memory allocation fix for the TI crossbar interrupt controller
- A trivial kernel-doc warning fix"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip: irq-crossbar: Not allocating enough memory
irqchip: armanda: Sanitize set_irq_affinity()
genirq: x86: Ensure that dynamic irq allocation does not conflict
linux/interrupt.h: fix new kernel-doc warnings
irqchip: armada-370-xp: Fix releasing of MSIs
irqchip: armada-370-xp: implement the ->check_device() msi_chip operation
irqchip: armada-370-xp: fix invalid cast of signed value into unsigned variable
Pull x86 fixes from Peter Anvin:
"Two very small changes: one fix for the vSMP Foundation platform, and
one to help LLVM not choke on options it doesn't understand (although
it probably should)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vsmp: Fix irq routing
x86: LLVMLinux: Wrap -mno-80387 with cc-option
the merge window.
- A fix from Oleg to async page faults.
- A bunch of small ARM changes.
- A trivial patch to use the new MSI-X API introduced during the merge
window.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJTY5anAAoJEBvWZb6bTYby6EQQAIWbOJCrLO3NQxwE9M7d8YvN
oviaLFv7vJh1vaXVo7SNjBRXTq4pzWrhg9rwWlHBg1KnxJ0/sc9Tn07Fe+0bxWDh
1XIFXNEkO9+Bpl43VnKGC7sbkYE9m3+jpGCWjF01vBCh+BY73wUOsPD0Zw9YQojN
TKBtiQEjb8avuoTUR0JSOTwLZw4DlDRmRLHkNwlqqvbPdvuIWI/LG2wFUvY7/eq8
dWxIPBjLKaIv2aUs9wGNNiz4Kb92uyH5L6bI6SK8VxphRA+51BOjMcBbzdY+Q1XL
c4CTaL9ybAyUi4SRv41qWnM09YbI1FayUW93k9xz/vEplXOHp5R/lyUdZETd/d83
GxaooTLcy9nOYeZ75buiH/0EG5HxI7On/QfUBEE3qIf8KfGgxb479HbRw6RnX4bf
EhQzf7eyZvvk43Xk3OYwq8Ux1SOiXQEo+8TpCSaM/KN57cJbjGB4GCUK6JX8qJCx
7MfXBdrhkAdw5V4lEBQMYKp4pdUdgYKRXavhLevm0qFjX1Swl6LIHxLtjFTKyX9S
Xfxi09J7EUs7SsI35pdlMtPQkklEUXE96S/W3RCEpR+OfgbVMkYkcQI8TGb7ib3l
xLNJrSgFDSlP5F3rN5SYIItAqboXb7iLp7SiF2ByXV43yexIrzTH0bwdwPwpZHhk
2ziVieX5WXEX4tgzZkRj
=+bLo
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- Fix for a Haswell regression in nested virtualization, introduced
during the merge window.
- A fix from Oleg to async page faults.
- A bunch of small ARM changes.
- A trivial patch to use the new MSI-X API introduced during the merge
window.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ARM: vgic: Fix the overlap check action about setting the GICD & GICC base address.
KVM: arm/arm64: vgic: fix GICD_ICFGR register accesses
KVM: async_pf: mm->mm_users can not pin apf->mm
KVM: ARM: vgic: Fix sgi dispatch problem
MAINTAINERS: co-maintainance of KVM/{arm,arm64}
arm: KVM: fix possible misalignment of PGDs and bounce page
KVM: x86: Check for host supported fields in shadow vmcs
kvm: Use pci_enable_msix_exact() instead of pci_enable_msix()
ARM: KVM: disable KVM in Kconfig on big-endian systems
Ignoring the "correction" logic riprel_pre_xol() and riprel_post_xol()
are very similar but look quite differently.
1. Add the "UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX" check at the start
of riprel_pre_xol(), like the same check in riprel_post_xol().
2. Add the trivial scratch_reg() helper which returns the address of
scratch register pre_xol/post_xol need to change.
3. Change these functions to use the new helper and avoid copy-and-paste
under if/else branches.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
default_pre_xol_op() passes ¤t->utask->autask to riprel_pre_xol()
and this is just ugly because it still needs to load current->utask to
read ->vaddr.
Remove this argument, change riprel_pre_xol() to use current->utask.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
handle_riprel_insn(), pre_xol_rip_insn() and handle_riprel_post_xol()
look confusing and inconsistent. Rename them into riprel_analyze(),
riprel_pre_xol(), and riprel_post_xol() respectively.
No changes in compiled code.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Now that UPROBE_FIX_IP/UPROBE_FIX_CALL are mutually exclusive we can
use a single "fix_ip_or_call" enum instead of 2 fix_* booleans. This
way the logic looks more understandable and clean to me.
While at it, join "case 0xea" with other "ip is correct" ret/lret cases.
Also change default_post_xol_op() to use "else if" for the same reason.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
The only insn which could have both UPROBE_FIX_IP and UPROBE_FIX_CALL
was 0xe8 "call relative", and now it is handled by branch_xol_ops.
So we can change default_post_xol_op(UPROBE_FIX_CALL) to simply push
the address of next insn == utask->vaddr + insn.length, just we need
to record insn.length into the new auprobe->def.ilen member.
Note: if/when we teach branch_xol_ops to support jcxz/loopz we can
remove the "correction" logic, UPROBE_FIX_IP can use the same address.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Extract the "push return address" code from branch_emulate_op() into
the new simple helper, push_ret_address(). It will have more users.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
handle_riprel_insn() assumes that nobody else could modify ->fixups
before. This is correct but fragile, change it to use "|=".
Also make ->fixups u8, we are going to add the new members into the
union. It is not clear why UPROBE_FIX_RIP_.X lived in the upper byte,
redefine them so that they can fit into u8.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Finally we can move arch_uprobe->fixups/rip_rela_target_address
into the new "def" struct and place this struct in the union, they
are only used by default_xol_ops paths.
The patch also renames rip_rela_target_address to riprel_target just
to make this name shorter.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
UPROBE_FIX_SETF is only needed to handle "popf" correctly but it is
processed by the generic arch_uprobe_post_xol() code. This doesn't
allows us to make ->fixups private for default_xol_ops.
1 Change default_post_xol_op(UPROBE_FIX_SETF) to set ->saved_tf = T.
"popf" always reads the flags from stack, it doesn't matter if TF
was set or not before single-step. Ignoring the naming, this is
even more logical, "saved_tf" means "owned by application" and we
do not own this flag after "popf".
2. Change arch_uprobe_post_xol() to save ->saved_tf into the local
"bool send_sigtrap" before ->post_xol().
3. Change arch_uprobe_post_xol() to ignore UPROBE_FIX_SETF and just
check ->saved_tf after ->post_xol().
With this patch ->fixups and ->rip_rela_target_address are only used
by default_xol_ops hooks, we are ready to remove them from the common
part of arch_uprobe.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
014940bad8 "uprobes/x86: Send SIGILL if arch_uprobe_post_xol() fails"
changed arch_uprobe_post_xol() to use arch_uprobe_abort_xol() if ->post_xol
fails. This was correct and helped to avoid the additional complications,
we need to clear X86_EFLAGS_TF in this case.
However, now that we have uprobe_xol_ops->abort() hook it would be better
to avoid arch_uprobe_abort_xol() here. ->post_xol() should likely do what
->abort() does anyway, we should not do the same work twice. Currently only
handle_riprel_post_xol() can be called twice, this is unnecessary but safe.
Still this is not clean and can lead to the problems in future.
Change arch_uprobe_post_xol() to clear X86_EFLAGS_TF and restore ->ip by
hand and avoid arch_uprobe_abort_xol(). This temporary uglifies the usage
of autask.saved_tf, we will cleanup this later.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
arch_uprobe_abort_xol() calls handle_riprel_post_xol() even if
auprobe->ops != default_xol_ops. This is fine correctness wise, only
default_pre_xol_op() can set UPROBE_FIX_RIP_AX|UPROBE_FIX_RIP_CX and
otherwise handle_riprel_post_xol() is nop.
But this doesn't look clean and this doesn't allow us to move ->fixups
into the union in arch_uprobe. Move this handle_riprel_post_xol() call
into the new default_abort_op() hook and change arch_uprobe_abort_xol()
accordingly.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Currently this doesn't matter, the only ->pre_xol() hook can't fail,
but we need to fix arch_uprobe_pre_xol() anyway. If ->pre_xol() fails
we should not change regs->ip/flags, we should just return the error
to make restart actually possible.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
is_64bit_mm() assumes that mm->context.ia32_compat means the 32-bit
instruction set, this is not true if the task is TIF_X32.
Change set_personality_ia32() to initialize mm->context.ia32_compat
by TIF_X32 or TIF_IA32 instead of 1. This allows to fix is_64bit_mm()
without affecting other users, they all treat ia32_compat as "bool".
TIF_ in ->ia32_compat looks a bit strange, but this is grep-friendly
and avoids the new define's.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Add the suitable ifdef's around good_insns_* arrays. We do not want
to add the ugly ifdef's into their only user, uprobe_init_insn(), so
the "#else" branch simply defines them as NULL. This doesn't generate
the extra code, gcc is smart enough, although the code is fine even if
it could not detect that (without CONFIG_IA32_EMULATION) is_64bit_mm()
is __builtin_constant_p().
The patch looks more complicated because it also moves good_insns_64
up close to good_insns_32.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Change uprobe_init_insn() to make insn_complete() == T, this makes
other insn_get_*() calls unnecessary.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
1. Extract the ->ia32_compat check from 64bit validate_insn_bits()
into the new helper, is_64bit_mm(), it will have more users.
TODO: this checks is actually wrong if mm owner is X32 task,
we need another fix which changes set_personality_ia32().
TODO: even worse, the whole 64-or-32-bit logic is very broken
and the fix is not simple, we need the nontrivial changes in
the core uprobes code.
2. Kill validate_insn_bits() and change its single caller to use
uprobe_init_insn(is_64bit_mm(mm).
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
validate_insn_32bits() and validate_insn_64bits() are very similar,
turn them into the single uprobe_init_insn() which has the additional
"bool x86_64" argument which can be passed to insn_init() and used to
choose between good_insns_64/good_insns_32.
Also kill UPROBE_FIX_NONE, it has no users.
Note: the current code doesn't use ifdef's consistently, good_insns_64
depends on CONFIG_X86_64 but good_insns_32 is unconditional. This patch
removes ifdef around good_insns_64, we will add it back later along with
the similar one for good_insns_32.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
All branch insns on x86 can be prefixed with the operand-size
override prefix, 0x66. It was only ever useful for performing
jumps to 32-bit offsets in 16-bit code segments.
In 32-bit code, such instructions are useless since
they cause IP truncation to 16 bits, and in case of call insns,
they save only 16 bits of return address and misalign
the stack pointer as a "bonus".
In 64-bit code, such instructions are treated differently by Intel
and AMD CPUs: Intel ignores the prefix altogether,
AMD treats them the same as in 32-bit mode.
Before this patch, the emulation code would execute
the instructions as if they have no 0x66 prefix.
With this patch, we refuse to attach uprobes to such insns.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
On x86 the allocation of irq descriptors may allocate interrupts which
are in the range of the GSI interrupts. That's wrong as those
interrupts are hardwired and we don't have the irq domain translation
like PPC. So one of these interrupts can be hooked up later to one of
the devices which are hard wired to it and the io_apic init code for
that particular interrupt line happily reuses that descriptor with a
completely different configuration so hell breaks lose.
Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs,
except for a few usage sites which have not yet blown up in our face
for whatever reason. But for drivers which need an irq range, like the
GPIO drivers, we have no limit in place and we don't want to expose
such a detail to a driver.
To cure this introduce a function which an architecture can implement
to impose a lower bound on the dynamic interrupt allocations.
Implement it for x86 and set the lower bound to nr_gsi_irqs, which is
the end of the hardwired interrupt space, so all dynamic allocations
happen above.
That not only allows the GPIO driver to work sanely, it also protects
the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and
htirq code. They need to be cleaned up as well, but that's a separate
issue.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Krogerus Heikki <heikki.krogerus@intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We track shadow vmcs fields through two static lists,
one for read only and another for r/w fields. However, with
addition of new vmcs fields, not all fields may be supported on
all hosts. If so, copy_vmcs12_to_shadow() trying to vmwrite on
unsupported hosts will result in a vmwrite error. For example, commit
36be0b9deb introduced GUEST_BNDCFGS, which is not supported
by all processors. Filter out host unsupported fields before
letting guests use shadow vmcs
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Correct IRQ routing in case a vSMP box is detected
but the Interrupt Routing Comply (IRC) value is set to
"comply", which leads to incorrect IRQ routing.
Before the patch:
When a vSMP box was detected and IRC was set to "comply",
users (and the kernel) couldn't effectively set the
destination of the IRQs. This is because the hook inside
vsmp_64.c always setup all CPUs as the IRQ destination using
cpumask_setall() as the return value for IRQ allocation mask.
Later, this "overrided" mask caused the kernel to set the IRQ
destination to the lowest online CPU in the mask (CPU0 usually).
After the patch:
When the IRC is set to "comply", users (and the kernel) can control
the destination of the IRQs as we will not be changing the
default "apic->vector_allocation_domain".
Signed-off-by: Oren Twaig <oren@scalemp.com>
Acked-by: Shai Fultheim <shai@scalemp.com>
Link: http://lkml.kernel.org/r/1398669697-2123-1-git-send-email-oren@scalemp.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use NOKPROBE_SYMBOL macro for protecting functions
from kprobes instead of __kprobes annotation under
arch/x86.
This applies nokprobe_inline annotation for some cases,
because NOKPROBE_SYMBOL() will inhibit inlining by
referring the symbol address.
This just folds a bunch of previous NOKPROBE_SYMBOL()
cleanup patches for x86 to one patch.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Lebon <jlebon@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Allow kprobes on text_poke/hw_breakpoint because
those are not related to the critical int3-debug
recursive path of kprobes at this moment.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: http://lkml.kernel.org/r/20140417081807.26341.73219.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to prohibit probing on the functions
used in preparation phase. Those are safely probed because
those are not invoked from breakpoint/fault/debug handlers,
there is no chance to cause recursive exceptions.
Following functions are now removed from the kprobes blacklist:
can_boost
can_probe
can_optimize
is_IF_modifier
__copy_instruction
copy_optimized_instructions
arch_copy_kprobe
arch_prepare_kprobe
arch_arm_kprobe
arch_disarm_kprobe
arch_remove_kprobe
arch_trampoline_kprobe
arch_prepare_kprobe_ftrace
arch_prepare_optimized_kprobe
arch_check_optimized_kprobe
arch_within_optimized_kprobe
__arch_remove_optimized_kprobe
arch_remove_optimized_kprobe
arch_optimize_kprobes
arch_unoptimize_kprobe
I tested those functions by putting kprobes on all
instructions in the functions with the bash script
I sent to LKML. See:
https://lkml.org/lkml/2014/3/27/33
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Lebon <jlebon@redhat.com>
Link: http://lkml.kernel.org/r/20140417081747.26341.36065.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move exception_enter() call after kprobes handler
is done. Since the exception_enter() involves
many other functions (like printk), it can cause
recursive int3/break loop when kprobes probe such
functions.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/20140417081740.26341.10894.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To avoid a kernel crash by probing on lockdep code, call
kprobe_int3_handler() and kprobe_debug_handler()(which was
formerly called post_kprobe_handler()) directly from
do_int3 and do_debug.
Currently kprobes uses notify_die() to hook the int3/debug
exceptoins. Since there is a locking code in notify_die,
the lockdep code can be invoked. And because the lockdep
involves printk() related things, theoretically, we need to
prohibit probing on such code, which means much longer blacklist
we'll have. Instead, hooking the int3/debug for kprobes before
notify_die() can avoid this problem.
Anyway, most of the int3 handlers in the kernel are already
called from do_int3 directly, e.g. ftrace_int3_handler,
poke_int3_handler, kgdb_ll_trap. Actually only
kprobe_exceptions_notify is on the notifier_call_chain.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Lebon <jlebon@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/20140417081733.26341.24423.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
thunk/restore functions are also used for tracing irqoff etc.
and those are involved in kprobe's exception handling.
Prohibit probing on them to avoid kernel crash.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140417081726.26341.3872.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the kprobes uses do_debug for single stepping,
functions called from do_debug() before notify_die() must not
be probed.
And also native_load_idt() is called from paranoid_exit when
returning int3, this also must not be probed.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20140417081719.26341.65542.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prohibit probing on debug_stack_reset and debug_stack_set_zero.
Since the both functions are called from TRACE_IRQS_ON/OFF_DEBUG
macros which run in int3 ist entry, probing it may cause a soft
lockup.
This happens when the kernel built with CONFIG_DYNAMIC_FTRACE=y
and CONFIG_TRACE_IRQFLAGS=y.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/20140417081712.26341.32994.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce NOKPROBE_SYMBOL() macro which builds a kprobes
blacklist at kernel build time.
The usage of this macro is similar to EXPORT_SYMBOL(),
placed after the function definition:
NOKPROBE_SYMBOL(function);
Since this macro will inhibit inlining of static/inline
functions, this patch also introduces a nokprobe_inline macro
for static/inline functions. In this case, we must use
NOKPROBE_SYMBOL() for the inline function caller.
When CONFIG_KPROBES=y, the macro stores the given function
address in the "_kprobe_blacklist" section.
Since the data structures are not fully initialized by the
macro (because there is no "size" information), those
are re-initialized at boot time by using kallsyms.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jan-Simon Möller <dl9pf@gmx.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-sparse@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
.entry.text is a code area which is used for interrupt/syscall
entries, which includes many sensitive code.
Thus, it is better to prohibit probing on all of such code
instead of a part of that.
Since some symbols are already registered on kprobe blacklist,
this also removes them from the blacklist.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Lebon <jlebon@redhat.com>
Cc: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/20140417081658.26341.57354.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the NMI handlers(e.g. perf) can interrupt in the
single stepping (or preparing the single stepping, do_debug
etc.), we should consider a kprobe is hit in the NMI
handler. Even in that case, the kprobe is allowed to be
reentered as same as the kprobes hit in kprobe handlers
(KPROBE_HIT_ACTIVE or KPROBE_HIT_SSDONE).
The real issue will happen when a kprobe hit while another
reentered kprobe is processing (KPROBE_REENTER), because
we already consumed a saved-area for the previous kprobe.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Lebon <jlebon@redhat.com>
Link: http://lkml.kernel.org/r/20140417081651.26341.10593.stgit@ltc230.yrl.intra.hitachi.co.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>