IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
kthread_create_on_cpu doesn't exist so update a comment in
kthread.c to reflect this.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100209040740.GB3702@kryten>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since kthread_bind() lost its dependencies on sched.c, move it
back where it came from.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
LKML-Reference: <20091216170518.039524041@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Eric Paris reported that commit
f685ceacab causes boot time
PREEMPT_DEBUG complaints.
[ 4.590699] BUG: using smp_processor_id() in preemptible [00000000] code: rmmod/1314
[ 4.593043] caller is task_hot+0x86/0xd0
Since kthread_bind() messes with scheduler internals, move the
body to sched.c, and lock the runqueue.
Reported-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Tested-by: Eric Paris <eparis@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1256813310.7574.3.camel@marge.simson.net>
[ v2: fix !SMP build and clean up ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 63706172f3 ("kthreads: rework
kthread_stop()") removed the limitation that the thread function mysr
not call do_exit() itself, but forgot to update the comment.
Since that commit it is OK to use kthread_stop() even if kthread can
exit itself.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on Eric's patch which in turn was based on my patch.
kthread_stop() has the nasty problems:
- it runs unpredictably long with the global semaphore held.
- it deadlocks if kthread itself does kthread_stop() before it obeys
the kthread_should_stop() request.
- it is not useable if kthread exits on its own, see for example the
ugly "wait_to_die:" hack in migration_thread()
- it is not possible to just tell kthread it should stop, we must always
wait for its exit.
With this patch kthread() allocates all neccesary data (struct kthread) on
its own stack, globals kthread_stop_xxx are deleted. ->vfork_done is used
as a pointer into "struct kthread", this means kthread_stop() can easily
wait for kthread's exit.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Vitaliy Gusev <vgusev@openvz.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use two completions two create the kernel thread, this is a bit ugly.
kthread() wakes up create_kthread() via ->started, then create_kthread()
wakes up the caller kthread_create() via ->done. But kthread() does not
need to wait for kthread(), it can just return. Instead kthread() itself
can wake up the caller of kthread_create().
Kill kthread_create_info->started, ->done is enough. This improves the
scalability a bit and sijmplifies the code.
The only problem if kernel_thread() fails, in that case create_kthread()
must do complete(&create->done).
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Vitaliy Gusev <vgusev@openvz.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix allocating page cache/slab object on the unallowed node when memory
spread is set by updating tasks' mems_allowed after its cpuset's mems is
changed.
In order to update tasks' mems_allowed in time, we must modify the code of
memory policy. Because the memory policy is applied in the process's
context originally. After applying this patch, one task directly
manipulates anothers mems_allowed, and we use alloc_lock in the
task_struct to protect mems_allowed and memory policy of the task.
But in the fast path, we didn't use lock to protect them, because adding a
lock may lead to performance regression. But if we don't add a lock,the
task might see no nodes when changing cpuset's mems_allowed to some
non-overlapping set. In order to avoid it, we set all new allowed nodes,
then clear newly disallowed ones.
[lee.schermerhorn@hp.com:
The rework of mpol_new() to extract the adjusting of the node mask to
apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind()
with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local
allocation. Fix this by adding the check for MPOL_PREFERRED and empty
node mask to mpol_new_mpolicy().
Remove the now unneeded 'nodes = NULL' from mpol_new().
Note that mpol_new_mempolicy() is always called with a non-NULL
'nodes' parameter now that it has been removed from mpol_new().
Therefore, we don't need to test nodes for NULL before testing it for
'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to
verify this assumption.]
[lee.schermerhorn@hp.com:
I don't think the function name 'mpol_new_mempolicy' is descriptive
enough to differentiate it from mpol_new().
This function applies cpuset set context, usually constraining nodes
to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag
is set, it also translates the nodes. So I settled on
'mpol_set_nodemask()', because the comment block for mpol_new() mentions
that we need to call this function to "set nodes".
Some additional minor line length, whitespace and typo cleanup.]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Paul Menage <menage@google.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: clean up
Create a sub directory in include/trace called events to keep the
trace point headers in their own separate directory. Only headers that
declare trace points should be defined in this directory.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch lowers the number of places a developer must modify to add
new tracepoints. The current method to add a new tracepoint
into an existing system is to write the trace point macro in the
trace header with one of the macros TRACE_EVENT, TRACE_FORMAT or
DECLARE_TRACE, then they must add the same named item into the C file
with the macro DEFINE_TRACE(name) and then add the trace point.
This change cuts out the needing to add the DEFINE_TRACE(name).
Every file that uses the tracepoint must still include the trace/<type>.h
file, but the one C file must also add a define before the including
of that file.
#define CREATE_TRACE_POINTS
#include <trace/mytrace.h>
This will cause the trace/mytrace.h file to also produce the C code
necessary to implement the trace point.
Note, if more than one trace/<type>.h is used to create the C code
it is best to list them all together.
#define CREATE_TRACE_POINTS
#include <trace/foo.h>
#include <trace/bar.h>
#include <trace/fido.h>
Thanks to Mathieu Desnoyers and Christoph Hellwig for coming up with
the cleaner solution of the define above the includes over my first
design to have the C code include a "special" header.
This patch converts sched, irq and lockdep and skb to use this new
method.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
kthreadd is the single thread which implements ths "create" request, move
sched_setscheduler/etc from create_kthread() to kthread_create() to
improve the scalability.
We should be careful with sched_setscheduler(), use _nochek helper.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Vitaliy Gusev <vgusev@openvz.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Remove the unnecessary find_task_by_pid_ns(). kthread() can just
use "current" to get the same result.
Signed-off-by: Vitaliy Gusev <vgusev@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: cleanup
(Thanks to Al Viro for reminding me of this, via Ingo)
CPU_MASK_ALL is the (deprecated) "all bits set" cpumask, defined as so:
#define CPU_MASK_ALL (cpumask_t) { { ... } }
Taking the address of such a temporary is questionable at best,
unfortunately 321a8e9d (cpumask: add CPU_MASK_ALL_PTR macro) added
CPU_MASK_ALL_PTR:
#define CPU_MASK_ALL_PTR (&CPU_MASK_ALL)
Which formalizes this practice. One day gcc could bite us over this
usage (though we seem to have gotten away with it so far).
So replace everywhere which used &CPU_MASK_ALL or CPU_MASK_ALL_PTR
with the modern "cpu_all_mask" (a real const struct cpumask *).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Impact: API *CHANGE*. Must update all tracepoint users.
Add DEFINE_TRACE() to tracepoints to let them declare the tracepoint
structure in a single spot for all the kernel. It helps reducing memory
consumption, especially when declaring a lot of tracepoints, e.g. for
kmalloc tracing.
*API CHANGE WARNING*: now, DECLARE_TRACE() must be used in headers for
tracepoint declarations rather than DEFINE_TRACE(). This is the sane way
to do it. The name previously used was misleading.
Updates scheduler instrumentation to follow this API change.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that wait_task_inactive(task, state) checks task->state == state,
we can simplify the code and make this debugging check more robust.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instrument the scheduler activity (sched_switch, migration, wakeups,
wait for a task, signal delivery) and process/thread
creation/destruction (fork, exit, kthread stop). Actually, kthread
creation is not instrumented in this patch because it is architecture
dependent. It allows to connect tracers such as ftrace which detects
scheduling latencies, good/bad scheduler decisions. Tools like LTTng can
export this scheduler information along with instrumentation of the rest
of the kernel activity to perform post-mortem analysis on the scheduler
activity.
About the performance impact of tracepoints (which is comparable to
markers), even without immediate values optimizations, tests done by
Hideo Aoki on ia64 show no regression. His test case was using hackbench
on a kernel where scheduler instrumentation (about 5 events in code
scheduler code) was added. See the "Tracepoints" patch header for
performance result detail.
Changelog :
- Change instrumentation location and parameter to match ftrace
instrumentation, previously done with kernel markers.
[ mingo@elte.hu: conflict resolutions ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: 'Peter Zijlstra' <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This extends wait_task_inactive() with a new argument so it can be used in
a "soft" mode where it will check for the task changing state unexpectedly
and back off. There is no change to existing callers. This lays the
groundwork to allow robust, noninvasive tracing that can try to sample a
blocked thread but back off safely if it wakes up.
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The freezer currently attempts to distinguish kernel threads from
user space tasks by checking if their mm pointer is unset and it
does not send fake signals to kernel threads. However, there are
kernel threads, mostly related to networking, that behave like
user space tasks and may want to be sent a fake signal to be frozen.
Introduce the new process flag PF_FREEZER_NOSIG that will be set
by default for all kernel threads and make the freezer only send
fake signals to the tasks having PF_FREEZER_NOSIG unset. Provide
the set_freezable_with_signal() function to be called by the kernel
threads that want to be sent a fake signal for freezing.
This patch should not change the freezer's observable behavior.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Len Brown <len.brown@intel.com>
Kthreads that have called kthread_bind() are bound to specific cpus, so
other tasks should not be able to change their cpus_allowed from under
them. Otherwise, it is possible to move kthreads, such as the migration
or software watchdog threads, so they are not allowed access to the cpu
they work on.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are some places that are known to operate on tasks'
global pids only:
* the rest_init() call (called on boot)
* the kgdb's getthread
* the create_kthread() (since the kthread is run in init ns)
So use the find_task_by_pid_ns(..., &init_pid_ns) there
and schedule the find_task_by_pid for removal.
[sukadev@us.ibm.com: Fix warning in kernel/pid.c]
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From the POV of synchronization, there should be no need to call
wake_up_process() with the 'kthread_create_lock' being held.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure that the kernel threads are created with the usual nice level
and affinity even if kthreadd's properties were changed from the
default by root.
Signed-off-by: Michal Schmidt <mschmidt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WARNING: kernel/built-in.o(.text+0x16910): Section mismatch:
reference to .init.text: (between 'kthreadd' and 'init_waitqueue_head')
comes because kernel/kthread.c:kthreadd() is not __init but calls
kthreadd_setup() which is __init. But this is ok, because kthreadd_setup()
is only ever called at init time, and then kthreadd() proceeds into its
"for (;;)" loop. We could mark kthreadd __init_refok, but kthreadd_setup()
with just one callsite and 4 lines in it (it's been that small since
10ab825bde) doesn't need to be a separate function at all -- so let's
just move those four lines at beginning of kthreadd() itself.
Signed-off-by: Satyam Sharma <ssatyam@cse.iitk.ac.in>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
.. which modpost started warning about.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kthread() sleeps in TASK_INTERRUPTIBLE state waiting for the first wakeup. In
theory, this wakeup may come from freeze_process()->signal_wake_up(), so the
task can disappear even before kthread_create() sets its ->comm.
Change kthread() to use TASK_UNINTERRUPTIBLE.
[akpm@linux-foundation.org: s/BUG_ON/WARN_ON+recover]
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently kernel threads use sigprocmask(SIG_BLOCK) to protect against
signals. This doesn't prevent the signal delivery, this only blocks
signal_wake_up(). Every "killall -33 kthreadd" means a "struct siginfo"
leak.
Change kthreadd_setup() to set all handlers to SIG_IGN instead of blocking
them (make a new helper ignore_signals() for that). If the kernel thread
needs some signal, it should use allow_signal() anyway, and in that case it
should not use CLONE_SIGHAND.
Note that we can't change daemonize() (should die!) in the same way,
because it can be used along with CLONE_SIGHAND. This means that
allow_signal() still should unblock the signal to work correctly with
daemonize()ed threads.
However, disallow_signal() doesn't block the signal any longer but ignores
it.
NOTE: with or without this patch the kernel threads are not protected from
handle_stop_signal(), this seems harmless, but not good.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there is a circular reference between work queue initialization
and kthread initialization. This prevents the kthread infrastructure from
initializing until after work queues have been initialized.
We want the properties of tasks created with kthread_create to be as close
as possible to the init_task and to not be contaminated by user processes.
The later we start our kthreadd that creates these tasks the harder it is
to avoid contamination from user processes and the more of a mess we have
to clean up because the defaults have changed on us.
So this patch modifies the kthread support to not use work queues but to
instead use a simple list of structures, and to have kthreadd start from
init_task immediately after our kernel thread that execs /sbin/init.
By being a true child of init_task we only have to change those process
settings that we want to have different from init_task, such as our process
name, the cpus that are allowed, blocking all signals and setting SIGCHLD
to SIG_IGN so that all of our children are reaped automatically.
By being a true child of init_task we also naturally get our ppid set to 0
and do not wind up as a child of PID == 1. Ensuring that tasks generated
by kthread_create will not slow down the functioning of the wait family of
functions.
[akpm@linux-foundation.org: use interruptible sleeps]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in
source files, including:
* make multi-line initial descriptions single line
* denote some function names, constants and structs as such
* change erroneous opening '/*' to '/**' in a few places
* reword some text for clarity
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.
For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.
To make this work, an extra flag is introduced into the management side of the
work_struct. This governs auto-release of the structure upon execution.
Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function. This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated.. This is a
problem if the auxiliary data is taken away (as done by the last patch).
However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems. But then the work function must itself release the
work_struct by calling work_release().
In most cases, automatic release is fine, so this is the default. Special
initiators exist for the non-auto-release case (ending in _NAR).
Signed-Off-By: David Howells <dhowells@redhat.com>
Remove the now-unneeded kthread_stop_sem().
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move kthread API kernel-doc from kthread.h to kthread.c & fix it.
Add kthread API to kernel-api DocBook.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A couple of places are forgetting to take it.
The kswapd case is probably unimportant. keventd_create_kthread() was racy.
The whole thing is a bit flakey: you start a kernel thread, get its pid from
kernel_thread() then look up its task_struct.
a) It assumes that pid recycling takes a "long" time.
b) We get a task_struct but no reference was taken on it. The owner of the
kswapd and kthread task_struct*'s must assume that the new thread won't
exit unexpectedly. Because if it does, they're left holding dead memory
and any attempt to control or stop that task will crash.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Enhance the kthread API by adding kthread_stop_sem, for use in stopping
threads that spend their idle time waiting on a semaphore.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace a number of memory barriers with smp_ variants. This means we won't
take the unnecessary hit on UP machines.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!