IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull scheduler updates from Ingo Molnar:
"These were the main changes in this cycle:
- More -rt motivated separation of CONFIG_PREEMPT and
CONFIG_PREEMPTION.
- Add more low level scheduling topology sanity checks and warnings
to filter out nonsensical topologies that break scheduling.
- Extend uclamp constraints to influence wakeup CPU placement
- Make the RT scheduler more aware of asymmetric topologies and CPU
capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y
- Make idle CPU selection more consistent
- Various fixes, smaller cleanups, updates and enhancements - please
see the git log for details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched/topology: Assert non-NUMA topology masks don't (partially) overlap
idle: fix spelling mistake "iterrupts" -> "interrupts"
sched/fair: Remove redundant call to cpufreq_update_util()
sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
sched/fair: calculate delta runnable load only when it's needed
sched/cputime: move rq parameter in irqtime_account_process_tick
stop_machine: Make stop_cpus() static
sched/debug: Reset watchdog on all CPUs while processing sysrq-t
sched/core: Fix size of rq::uclamp initialization
sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
sched/fair : Improve update_sd_pick_busiest for spare capacity case
watchdog: Remove soft_lockup_hrtimer_cnt and related code
sched/rt: Make RT capacity-aware
sched/fair: Make EAS wakeup placement consider uclamp restrictions
sched/fair: Make task_fits_capacity() consider uclamp restrictions
sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
sched/uclamp: Make uclamp util helpers use and return UL values
...
When CONFIG_SYSFS is disabled, but CONFIG_HOTPLUG_SMT is enabled,
the kernel fails to link:
arch/x86/power/cpu.o: In function `hibernate_resume_nonboot_cpu_disable':
(.text+0x38d): undefined reference to `cpuhp_smt_enable'
arch/x86/power/hibernate.o: In function `arch_resume_nosmt':
hibernate.c:(.text+0x291): undefined reference to `cpuhp_smt_enable'
hibernate.c:(.text+0x29c): undefined reference to `cpuhp_smt_disable'
Move the exported functions out of the #ifdef section into its
own with the correct conditions.
The patch that caused this is marked for stable backports, so
this one may need to be backported as well.
Fixes: ec527c3180 ("x86/power: Fix 'nosmt' vs hibernation triple fault during resume")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20191210195614.786555-1-arnd@arndb.de
Paul reported a very sporadic, rcutorture induced, workqueue failure.
When the planets align, the workqueue rescuer's self-migrate fails and
then triggers a WARN for running a work on the wrong CPU.
Tejun then figured that set_cpus_allowed_ptr()'s stop_one_cpu() call
could be ignored! When stopper->enabled is false, stop_machine will
insta complete the work, without actually doing the work. Worse, it
will not WARN about this (we really should fix this).
It turns out there is a small window where a freshly online'ed CPU is
marked 'online' but doesn't yet have the stopper task running:
BP AP
bringup_cpu()
__cpu_up(cpu, idle) --> start_secondary()
...
cpu_startup_entry()
bringup_wait_for_ap()
wait_for_ap_thread() <-- cpuhp_online_idle()
while (1)
do_idle()
... available to run kthreads ...
stop_machine_unpark()
stopper->enable = true;
Close this by moving the stop_machine_unpark() into
cpuhp_online_idle(), such that the stopper thread is ready before we
start the idle loop and schedule.
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Debugged-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Paul E. McKenney" <paulmck@kernel.org>
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
A kernel module may need to check the value of the "mitigations=" kernel
command line parameter as part of its setup when the module needs
to perform software mitigations for a CPU flaw.
Uninline and export the helper functions surrounding the cpu_mitigations
enum to allow for their usage from a module.
Lastly, privatize the enum and cpu_mitigations variable since the value of
cpu_mitigations can be checked with the exported helper functions.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
KVM needs to know if SMT is theoretically possible, this means it is
supported and not forcefully disabled ('nosmt=force'). Create and
export cpu_smt_possible() answering this question.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-evaluating the bitmap wheight of the online cpus bitmap in every
invocation of num_online_cpus() over and over is a pretty useless
exercise. Especially when num_online_cpus() is used in code paths
like the IPI delivery of x86 or the membarrier code.
Cache the number of online CPUs in the core and just return the cached
variable. The accessor function provides only a snapshot when used without
protection against concurrent CPU hotplug.
The storage needs to use an atomic_t because the kexec and reboot code
(ab)use set_cpu_online() in their 'shutdown' handlers without any form of
serialization as pointed out by Mathieu. Regular CPU hotplug usage is
properly serialized.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907091622590.1634@nanos.tec.linutronix.de
The booted once information which is required to deal with the MCE
broadcast issue on X86 correctly is stored in the per cpu hotplug state,
which is perfectly fine for the intended purpose.
X86 needs that information for supporting NMI broadcasting via shortcuts,
but retrieving it from per cpu data is cumbersome.
Move it to a cpumask so the information can be checked against the
cpu_present_mask quickly.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.818822855@linutronix.de
Pull SMP/hotplug updates from Thomas Gleixner:
"A small set of updates for SMP and CPU hotplug:
- Abort disabling secondary CPUs in the freezer when a wakeup is
pending instead of evaluating it only after all CPUs have been
offlined.
- Remove the shared annotation for the strict per CPU cfd_data in the
smp function call core code.
- Remove the return values of smp_call_function() and on_each_cpu()
as they are unconditionally 0. Fixup the few callers which actually
bothered to check the return value"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smp: Remove smp_call_function() and on_each_cpu() return values
smp: Do not mark call_function_data as shared
cpu/hotplug: Abort disabling secondary CPUs if wakeup is pending
cpu/hotplug: Fix notify_cpu_starting() reference in bringup_wait_for_ap()
Setting invalid value to /sys/devices/system/cpu/cpuX/hotplug/fail
can control `struct cpuhp_step *sp` address, results in the following
global-out-of-bounds read.
Reproducer:
# echo -2 > /sys/devices/system/cpu/cpu0/hotplug/fail
KASAN report:
BUG: KASAN: global-out-of-bounds in write_cpuhp_fail+0x2cd/0x2e0
Read of size 8 at addr ffffffff89734438 by task bash/1941
CPU: 0 PID: 1941 Comm: bash Not tainted 5.2.0-rc6+ #31
Call Trace:
write_cpuhp_fail+0x2cd/0x2e0
dev_attr_store+0x58/0x80
sysfs_kf_write+0x13d/0x1a0
kernfs_fop_write+0x2bc/0x460
vfs_write+0x1e1/0x560
ksys_write+0x126/0x250
do_syscall_64+0xc1/0x390
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f05e4f4c970
The buggy address belongs to the variable:
cpu_hotplug_lock+0x98/0xa0
Memory state around the buggy address:
ffffffff89734300: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734380: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
>ffffffff89734400: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa
^
ffffffff89734480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Add a sanity check for the value written from user space.
Fixes: 1db49484f2 ("smp/hotplug: Hotplug state fail injection")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Link: https://lkml.kernel.org/r/20190627024732.31672-1-devel@etsukata.com
Currently, if the user specifies an unsupported mitigation strategy on the
kernel command line, it will be ignored silently. The code will fall back
to the default strategy, possibly leaving the system more vulnerable than
expected.
This may happen due to e.g. a simple typo, or, for a stable kernel release,
because not all mitigation strategies have been backported.
Inform the user by printing a message.
Fixes: 98af845294 ("cpu/speculation: Add 'mitigations=' cmdline option")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190516070935.22546-1-geert@linux-m68k.org
When "deep" suspend is enabled, all CPUs except the primary CPU are frozen
via CPU hotplug one by one. After all secondary CPUs are unplugged the
wakeup pending condition is evaluated and if pending the suspend operation
is aborted and the secondary CPUs are brought up again.
CPU hotplug is a slow operation, so it makes sense to check for wakeup
pending in the freezer loop before bringing down the next CPU. This
improves the system suspend abort latency significantly.
[ tglx: Massaged changelog and improved printk message ]
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: iri Kosina <jkosina@suse.cz>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: linux-pm@vger.kernel.org
Link: https://lkml.kernel.org/r/1559536263-16472-1-git-send-email-pkondeti@codeaurora.org
As explained in
0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
we always, no matter what, have to bring up x86 HT siblings during boot at
least once in order to avoid first MCE bringing the system to its knees.
That means that whenever 'nosmt' is supplied on the kernel command-line,
all the HT siblings are as a result sitting in mwait or cpudile after
going through the online-offline cycle at least once.
This causes a serious issue though when a kernel, which saw 'nosmt' on its
commandline, is going to perform resume from hibernation: if the resume
from the hibernated image is successful, cr3 is flipped in order to point
to the address space of the kernel that is being resumed, which in turn
means that all the HT siblings are all of a sudden mwaiting on address
which is no longer valid.
That results in triple fault shortly after cr3 is switched, and machine
reboots.
Fix this by always waking up all the SMT siblings before initiating the
'restore from hibernation' process; this guarantees that all the HT
siblings will be properly carried over to the resumed kernel waiting in
resume_play_dead(), and acted upon accordingly afterwards, based on the
target kernel configuration.
Symmetricaly, the resumed kernel has to push the SMT siblings to mwait
again in case it has SMT disabled; this means it has to online all
the siblings when resuming (so that they come out of hlt) and offline
them again to let them reach mwait.
Cc: 4.19+ <stable@vger.kernel.org> # v4.19+
Debugged-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
bringup_wait_for_ap() comment references cpu_notify_starting(), but the
function is actually called notify_cpu_starting(). Fix that.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1905282128100.1962@cbobk.fhfr.pm
Pull timer updates from Ingo Molnar:
"This cycle had the following changes:
- Timer tracing improvements (Anna-Maria Gleixner)
- Continued tasklet reduction work: remove the hrtimer_tasklet
(Thomas Gleixner)
- Fix CPU hotplug remove race in the tick-broadcast mask handling
code (Thomas Gleixner)
- Force upper bound for setting CLOCK_REALTIME, to fix ABI
inconsistencies with handling values that are close to the maximum
supported and the vagueness of when uptime related wraparound might
occur. Make the consistent maximum the year 2232 across all
relevant ABIs and APIs. (Thomas Gleixner)
- various cleanups and smaller fixes"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick: Fix typos in comments
tick/broadcast: Fix warning about undefined tick_broadcast_oneshot_offline()
timekeeping: Force upper bound for setting CLOCK_REALTIME
timer/trace: Improve timer tracing
timer/trace: Replace deprecated vsprintf pointer extension %pf by %ps
timer: Move trace point to get proper index
tick/sched: Update tick_sched struct documentation
tick: Remove outgoing CPU from broadcast masks
timekeeping: Consistently use unsigned int for seqcount snapshot
softirq: Remove tasklet_hrtimer
xfrm: Replace hrtimer tasklet with softirq hrtimer
mac80211_hwsim: Replace hrtimer tasklet with softirq hrtimer
Pull CPU hotplug updates from Ingo Molnar:
"Two changes in this cycle:
- Make the /sys/devices/system/cpu/smt/* files available on all
arches, so user space has a consistent way to detect whether SMT is
enabled.
- Sparse annotation fix"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smpboot: Place the __percpu annotation correctly
cpu/hotplug: Create SMT sysfs interface for all arches
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Make nohz housekeeping processing more permissive and less
intrusive to isolated CPUs
- Decouple CPU-bound workqueue acconting from the scheduler and move
it into the workqueue code.
- Optimize topology building
- Better handle quota and period overflows
- Add more RCU annotations
- Comment updates, misc cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
nohz_full: Allow the boot CPU to be nohz_full
sched/isolation: Require a present CPU in housekeeping mask
kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
power/suspend: Add function to disable secondaries for suspend
sched/core: Allow the remote scheduler tick to be started on CPU0
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
sched/debug: Fix spelling mistake "logaritmic" -> "logarithmic"
sched/topology: Update init_sched_domains() comment
cgroup/cpuset: Update stale generate_sched_domains() comments
sched/core: Check quota and period overflow at usec to nsec conversion
sched/core: Handle overflow in cpu_shares_write_u64
sched/rt: Check integer overflow at usec to nsec conversion
sched/core: Fix typo in comment
sched/core: Make some functions static
sched/core: Unify p->on_rq updates
sched/core: Remove ttwu_activate()
sched/core, workqueues: Distangle worker accounting from rq lock
sched/fair: Remove unneeded prototype of capacity_of()
sched/topology: Skip duplicate group rewrites in build_sched_groups()
sched/topology: Fix build_sched_groups() comment
...
Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
This patch provides an arch option, ARCH_SUSPEND_NONZERO_CPU, to
opt-in to allowing suspend to occur on one of the housekeeping CPUs
rather than hardcoded CPU0.
This will allow CPU0 to be a nohz_full CPU with a later change.
It may be possible for platforms with hardware/firmware restrictions
on suspend/wake effectively support this by handing off the final
stage to CPU0 when kernel housekeeping is no longer required. Another
option is to make housekeeping / nohz_full mask dynamic at runtime,
but the complexity could not be justified at this time.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-4-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
Make the /sys/devices/system/cpu/smt/* files available on all arches, so
user space has a consistent way to detect whether SMT is enabled.
The 'control' file now shows 'notimplemented' for architectures which
don't yet have CONFIG_HOTPLUG_SMT.
[ tglx: Make notimplemented a real state ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
Tianyu reported a crash in a CPU hotplug teardown callback when booting a
kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot
parameter.
It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken
forever in case that a bringup callback fails. Unfortunately this issue was
not recognized when the CPU hotplug code was reworked, so the shortcoming
just stayed in place.
When a bringup callback fails, the CPU hotplug code rolls back the
operation and takes the CPU offline.
The 'nosmt' command line argument uses a bringup failure to abort the
bringup of SMT sibling CPUs. This partial bringup is required due to the
MCE misdesign on Intel CPUs.
With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but
CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level
teardown of a CPU including the synchronizations in various facilities like
RCU, NOHZ and others.
As a consequence the teardown callbacks which must be executed on the
outgoing CPU within stop machine with interrupts disabled are executed on
the control CPU in interrupt enabled and preemptible context causing the
kernel to crash and burn. The pre state machine code has a different
failure mode which is more subtle and resulting in a less obvious use after
free crash because the control side frees resources which are still in use
by the undead CPU.
But this is not a x86 only problem. Any architecture which supports the
SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less
likely to be triggered because in 99.99999% of the cases all bringup
callbacks succeed.
The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on
all architectures as the following architectures have either no hotplug
support at all or not all subarchitectures support it:
alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial).
Crashing the kernel in such a situation is not an acceptable state
either.
Implement a minimal rollback variant by limiting the teardown to the point
where all regular teardown callbacks have been invoked and leave the CPU in
the 'dead' idle state. This has the following consequences:
- the CPU is brought down to the point where the stop_machine takedown
would happen.
- the CPU stays there forever and is idle
- The CPU is cleared in the CPU active mask, but not in the CPU online
mask which is a legit state.
- Interrupts are not forced away from the CPU
- All facilities which only look at online mask would still see it, but
that is the case during normal hotplug/unplug operations as well. It's
just a (way) longer time frame.
This will expose issues, which haven't been exposed before or only seldom,
because now the normally transient state of being non active but online is
a permanent state. In testing this exposed already an issue vs. work queues
where the vmstat code schedules work on the almost dead CPU which ends up
in an unbound workqueue and triggers 'preemtible context' warnings. This is
not a problem of this change, it merily exposes an already existing issue.
Still this is better than crashing fully without a chance to debug it.
This is mainly thought as workaround for those architectures which do not
support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP.
Fixes: 2e1a3483ce ("cpu/hotplug: Split out the state walk into functions")
Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Konrad Wilk <konrad.wilk@oracle.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Micheal Kelley <michael.h.kelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de
Valentin reported that unplugging a CPU occasionally results in a warning
in the tick broadcast code which is triggered when an offline CPU is in the
broadcast mask.
This happens because the outgoing CPU is not removing itself from the
broadcast masks, especially not from the broadcast_force_mask. The removal
happens on the control CPU after the outgoing CPU is dead. It's a long
standing issue, but the warning is harmless.
Rework the hotplug mechanism so that the outgoing CPU removes itself from
the broadcast masks after disabling interrupts and removing itself from the
online mask.
Reported-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903211540180.1784@nanos.tec.linutronix.de
With the following commit:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
With commit a74cfffb03 ("x86/speculation: Rework SMT state change"),
arch_smt_update() is invoked from each individual CPU hotplug function.
Therefore the extra arch_smt_update() call in the sysfs SMT control is
redundant.
Fixes: a74cfffb03 ("x86/speculation: Rework SMT state change")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <konrad.wilk@oracle.com>
Cc: <dwmw@amazon.co.uk>
Cc: <bp@suse.de>
Cc: <srinivas.eeda@oracle.com>
Cc: <peterz@infradead.org>
Cc: <hpa@zytor.com>
Link: https://lkml.kernel.org/r/e2e064f2-e8ef-42ca-bf4f-76b612964752@default
arch_smt_update() is only called when the sysfs SMT control knob is
changed. This means that when SMT is enabled in the sysfs control knob the
system is considered to have SMT active even if all siblings are offline.
To allow finegrained control of the speculation mitigations, the actual SMT
state is more interesting than the fact that siblings could be enabled.
Rework the code, so arch_smt_update() is invoked from each individual CPU
hotplug function, and simplify the update function while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185004.521974984@linutronix.de
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- Migrate CPU-intense 'misfit' tasks on asymmetric capacity systems,
to better utilize (much) faster 'big core' CPUs. (Morten Rasmussen,
Valentin Schneider)
- Topology handling improvements, in particular when CPU capacity
changes and related load-balancing fixes/improvements (Morten
Rasmussen)
- ... plus misc other improvements, fixes and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/completions/Documentation: Add recommendation for dynamic and ONSTACK completions
sched/completions/Documentation: Clean up the document some more
sched/completions/Documentation: Fix a couple of punctuation nits
cpu/SMT: State SMT is disabled even with nosmt and without "=force"
sched/core: Fix comment regarding nr_iowait_cpu() and get_iowait_load()
sched/fair: Remove setting task's se->runnable_weight during PELT update
sched/fair: Disable LB_BIAS by default
sched/pelt: Fix warning and clean up IRQ PELT config
sched/topology: Make local variables static
sched/debug: Use symbolic names for task state constants
sched/numa: Remove unused numa_stats::nr_running field
sched/numa: Remove unused code from update_numa_stats()
sched/debug: Explicitly cast sched_feat() to bool
sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains
sched/fair: Don't move tasks to lower capacity CPUs unless necessary
sched/fair: Set rq->rd->overload when misfit
sched/fair: Wrap rq->rd->overload accesses with READ/WRITE_ONCE()
sched/core: Change root_domain->overload type to int
sched/fair: Change 'prefer_sibling' type to bool
sched/fair: Kick nohz balance if rq->misfit_task_load
...
When booting with "nosmt=force" a message is issued into dmesg to
confirm that SMT has been force-disabled but such a message is not
issued when only "nosmt" is on the kernel command line.
Fix that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181004172227.10094-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
STIBP is a feature provided by certain Intel ucodes / CPUs. This feature
(once enabled) prevents cross-hyperthread control of decisions made by
indirect branch predictors.
Enable this feature if
- the CPU is vulnerable to spectre v2
- the CPU supports SMT and has SMT siblings online
- spectre_v2 mitigation autoselection is enabled (default)
After some previous discussion, this leaves STIBP on all the time, as wrmsr
on crossing kernel boundary is a no-no. This could perhaps later be a bit
more optimized (like disabling it in NOHZ, experiment with disabling it in
idle, etc) if needed.
Note that the synchronization of the mask manipulation via newly added
spec_ctrl_mutex is currently not strictly needed, as the only updater is
already being serialized by cpu_add_remove_lock, but let's make this a
little bit more future-proof.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "WoodhouseDavid" <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "SchauflerCasey" <casey.schaufler@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm
Anybody trying to assert the cpu_hotplug_lock is held (lockdep_assert_cpus_held())
from AP callbacks will fail, because the lock is held by the BP.
Stick in an explicit annotation in cpuhp_thread_fun() to make this work.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-tip-commits@vger.kernel.org
Fixes: cb538267ea ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations")
Link: http://lkml.kernel.org/r/20180911095127.GT24082@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a teardown callback fails, the CPU hotplug code brings the CPU back to
the previous state. The previous state becomes the new target state. The
rollback happens in undo_cpu_down() which increments the state
unconditionally even if the state is already the same as the target.
As a consequence the next CPU hotplug operation will start at the wrong
state. This is easily to observe when __cpu_disable() fails.
Prevent the unconditional undo by checking the state vs. target before
incrementing state and fix up the consequently wrong conditional in the
unplug code which handles the failure of the final CPU take down on the
control CPU side.
Fixes: 4dddfb5faa ("smp/hotplug: Rewrite AP state machine core")
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: josh@joshtriplett.org
Cc: peterz@infradead.org
Cc: jiangshanlai@gmail.com
Cc: dzickus@redhat.com
Cc: brendan.jackman@arm.com
Cc: malat@debian.org
Cc: sramana@codeaurora.org
Cc: linux-arm-msm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1809051419580.1416@nanos.tec.linutronix.de
----
When notifiers were there, `skip_onerr` was used to avoid calling
particular step startup/teardown callbacks in the CPU up/down rollback
path, which made the hotplug asymmetric.
As notifiers are gone now after the full state machine conversion, the
`skip_onerr` field is no longer required.
Remove it from the structure and its usage.
Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1535439294-31426-1-git-send-email-mojha@codeaurora.org
Commit 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
breaks non-SMP builds.
[ I suspect the 'bool' fields should just be made to be bitfields and be
exposed regardless of configuration, but that's a separate cleanup
that I'll leave to the owners of this file for later. - Linus ]
Fixes: 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Abel Vesa <abelvesa@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal
driver (Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic
scaling governors on systems with many CPUs to avoid
scalability issues with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq
driver (Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes
(from Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures
in the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS
1025C laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in
the devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7
/ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni
XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm
j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9
QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g
PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE
cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p
vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE
CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal
BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7
Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss
wfsFoUE3RaY4msnuHyCh
=kv2M
-----END PGP SIGNATURE-----
Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add a new framework for CPU idle time injection, to be used by
all of the idle injection code in the kernel in the future, fix some
issues and add a number of relatively small extensions in multiple
places.
Specifics:
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory
CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal driver
(Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic scaling
governors on systems with many CPUs to avoid scalability issues
with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
(Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes (from
Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures in
the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS 1025C
laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in the
devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring)"
* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
cpufreq: intel_pstate: Ignore turbo active ratio in HWP
cpufreq: Fix a circular lock dependency problem
cpu/hotplug: Add a cpus_read_trylock() function
x86/power/hibernate_64: Remove VLA usage
cpufreq: trace frequency limits change
cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
cpufreq: armada-37xx: Add AVS support
dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
PM / devfreq: Init user limits from OPP limits, not viceversa
PM / devfreq: rk3399_dmc: fix spelling mistakes.
PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
dt-bindings: clock: add rk3399 DDR3 standard speed bins.
...
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull CPU hotplug update from Thomas Gleixner:
"A trivial name fix for the hotplug state machine"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Clarify CPU hotplug step name for timers
Pull scheduler updates from Thomas Gleixner:
- Cleanup and improvement of NUMA balancing
- Refactoring and improvements to the PELT (Per Entity Load Tracking)
code
- Watchdog simplification and related cleanups
- The usual pile of small incremental fixes and improvements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
watchdog: Reduce message verbosity
stop_machine: Reflow cpu_stop_queue_two_works()
sched/numa: Move task_numa_placement() closer to numa_migrate_preferred()
sched/numa: Use group_weights to identify if migration degrades locality
sched/numa: Update the scan period without holding the numa_group lock
sched/numa: Remove numa_has_capacity()
sched/numa: Modify migrate_swap() to accept additional parameters
sched/numa: Remove unused task_capacity from 'struct numa_stats'
sched/numa: Skip nodes that are at 'hoplimit'
sched/debug: Reverse the order of printing faults
sched/numa: Use task faults only if numa_group is not yet set up
sched/numa: Set preferred_node based on best_cpu
sched/numa: Simplify load_too_imbalanced()
sched/numa: Evaluate move once per node
sched/numa: Remove redundant field
sched/debug: Show the sum wait time of a task group
sched/fair: Remove #ifdefs from scale_rt_capacity()
sched/core: Remove get_cpu() from sched_fork()
sched/cpufreq: Clarify sugov_get_util()
sched/sysctl: Remove unused sched_time_avg_ms sysctl
...
This is purely a preparatory patch for upcoming changes during the 4.19
merge window.
We have a function called "boot_cpu_state_init()" that isn't really
about the bootup cpu state: that is done much earlier by the similarly
named "boot_cpu_init()" (note lack of "state" in name).
This function initializes some hotplug CPU state, and needs to run after
the percpu data has been properly initialized. It even has a comment to
that effect.
Except it _doesn't_ actually run after the percpu data has been properly
initialized. On x86 it happens to do that, but on at least arm and
arm64, the percpu base pointers are initialized by the arch-specific
'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
This had some unexpected results, and in particular we have a patch
pending for the merge window that did the obvious cleanup of using
'this_cpu_write()' in the cpu hotplug init code:
- per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
+ this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
which is obviously the right thing to do. Except because of the
ordering issue, it actually failed miserably and unexpectedly on arm64.
So this just fixes the ordering, and changes the name of the function to
be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
hotplug state, because the core CPU state was supposed to have already
been done earlier.
Marked for stable, since the (not yet merged) patch that will show this
problem is marked for stable.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.
Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.
SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
After commit 249d4a9b32 ("timers: Reinitialize per cpu bases on hotplug")
i.e. the introduction of state CPUHP_TIMERS_PREPARE instead of
CPUHP_TIMERS_DEAD the step name "timers:dead" is not longer accurate.
Rename it to "timers:prepare".
[ tglx: Massaged changelog ]
Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gkohli@codeaurora.org
Cc: neeraju@codeaurora.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Brendan Jackman <brendan.jackman@arm.com>
Cc: Mathieu Malaterre <malat@debian.org>
Link: https://lkml.kernel.org/r/1532443668-26810-1-git-send-email-mojha@codeaurora.org
There are use cases where it can be useful to have a cpus_read_trylock()
function to work around circular lock dependency problem involving
the cpu_hotplug_lock.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If SMT is disabled in BIOS, the CPU code doesn't properly detect it.
The /sys/devices/system/cpu/smt/control file shows 'on', and the 'l1tf'
vulnerabilities file shows SMT as vulnerable.
Fix it by forcing 'cpu_smt_control' to CPU_SMT_NOT_SUPPORTED in such a
case. Unfortunately the detection can only be done after bringing all
the CPUs online, so we have to overwrite any previous writes to the
variable.
Reported-by: Joe Mario <jmario@redhat.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Fixes: f048c399e0 ("x86/topology: Provide topology_smt_supported()")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.
That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.
With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
The L1TF mitigation will gain a commend line parameter which allows to set
a combination of hypervisor mitigation and SMT control.
Expose cpu_smt_disable() so the command line parser can tweak SMT settings.
[ tglx: Split out of larger patch and made it preserve an already existing
force off state ]
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT
siblings. Writing 'on' merily enables the abilify to online them, but does
not online them automatically.
Make 'on' more useful by onlining all offline siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>