402 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
6752de1aeb |
pidfd.v5.16
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYYvE0wAKCRCRxhvAZXjc oo36AQCQRC9+LsfBsfoqrrdfWqp9ifs9DuytUg+CTftsy1Pn0QD/ZtySkNx9mnNl 0/lSTN5dJBfEYm6Xcfxuu/vu/iauhw0= =dY6T -----END PGP SIGNATURE----- Merge tag 'pidfd.v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull pidfd updates from Christian Brauner: "Various places in the kernel have picked up pidfds. The two most recent additions have probably been the ability to use pidfds in bpf maps and the usage of pidfds in mm-based syscalls such as process_mrelease() and process_madvise(). The same pattern to turn a pidfd into a struct task exists in two places. One of those places used PIDTYPE_TGID while the other one used PIDTYPE_PID even though it is clearly documented in all pidfd-helpers that pidfds __currently__ only refer to thread-group leaders (subject to change in the future if need be). This isn't a bug per se but has the potential to be one if we allow pidfds to refer to individual threads. If that happens we want to audit all codepaths that make use of them to ensure they can deal with pidfds refering to individual threads. This adds a simple helper to turn a pidfd into a struct task making it easy to grep for such places. Plus, it gets rid of code-duplication" * tag 'pidfd.v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: mm: use pidfd_get_task() pid: add pidfd_get_task() helper |
||
Linus Torvalds
|
512b7931ad |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ... |
||
Sultan Alsawaf
|
3723929eb0 |
mm: mark the OOM reaper thread as freezable
The OOM reaper alters user address space which might theoretically alter the snapshot if reaping is allowed to happen after the freezer quiescent state. To this end, the reaper kthread uses wait_event_freezable() while waiting for any work so that it cannot run while the system freezes. However, the current implementation doesn't respect the freezer because all kernel threads are created with the PF_NOFREEZE flag, so they are automatically excluded from freezing operations. This means that the OOM reaper can race with system snapshotting if it has work to do while the system is being frozen. Fix this by adding a set_freezable() call which will clear the PF_NOFREEZE flag and thus make the OOM reaper visible to the freezer. Please note that the OOM reaper altering the snapshot this way is mostly a theoretical concern and has not been observed in practice. Link: https://lkml.kernel.org/r/20210921165758.6154-1-sultan@kerneltoast.com Link: https://lkml.kernel.org/r/20210918233920.9174-1-sultan@kerneltoast.com Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
60e2793d44 |
mm, oom: do not trigger out_of_memory from the #PF
Any allocation failure during the #PF path will return with VM_FAULT_OOM which in turn results in pagefault_out_of_memory. This can happen for 2 different reasons. a) Memcg is out of memory and we rely on mem_cgroup_oom_synchronize to perform the memcg OOM handling or b) normal allocation fails. The latter is quite problematic because allocation paths already trigger out_of_memory and the page allocator tries really hard to not fail allocations. Anyway, if the OOM killer has been already invoked there is no reason to invoke it again from the #PF path. Especially when the OOM condition might be gone by that time and we have no way to find out other than allocate. Moreover if the allocation failed and the OOM killer hasn't been invoked then we are unlikely to do the right thing from the #PF context because we have already lost the allocation context and restictions and therefore might oom kill a task from a different NUMA domain. This all suggests that there is no legitimate reason to trigger out_of_memory from pagefault_out_of_memory so drop it. Just to be sure that no #PF path returns with VM_FAULT_OOM without allocation print a warning that this is happening before we restart the #PF. [VvS: #PF allocation can hit into limit of cgroup v1 kmem controller. This is a local problem related to memcg, however, it causes unnecessary global OOM kills that are repeated over and over again and escalate into a real disaster. This has been broken since kmem accounting has been introduced for cgroup v1 (3.8). There was no kmem specific reclaim for the separate limit so the only way to handle kmem hard limit was to return with ENOMEM. In upstream the problem will be fixed by removing the outdated kmem limit, however stable and LTS kernels cannot do it and are still affected. This patch fixes the problem and should be backported into stable/LTS.] Link: https://lkml.kernel.org/r/f5fd8dd8-0ad4-c524-5f65-920b01972a42@virtuozzo.com Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vasily Averin
|
0b28179a61 |
mm, oom: pagefault_out_of_memory: don't force global OOM for dying tasks
Patch series "memcg: prohibit unconditional exceeding the limit of dying tasks", v3. Memory cgroup charging allows killed or exiting tasks to exceed the hard limit. It can be misused and allowed to trigger global OOM from inside a memcg-limited container. On the other hand if memcg fails allocation, called from inside #PF handler it triggers global OOM from inside pagefault_out_of_memory(). To prevent these problems this patchset: (a) removes execution of out_of_memory() from pagefault_out_of_memory(), becasue nobody can explain why it is necessary. (b) allow memcg to fail allocation of dying/killed tasks. This patch (of 3): Any allocation failure during the #PF path will return with VM_FAULT_OOM which in turn results in pagefault_out_of_memory which in turn executes out_out_memory() and can kill a random task. An allocation might fail when the current task is the oom victim and there are no memory reserves left. The OOM killer is already handled at the page allocator level for the global OOM and at the charging level for the memcg one. Both have much more information about the scope of allocation/charge request. This means that either the OOM killer has been invoked properly and didn't lead to the allocation success or it has been skipped because it couldn't have been invoked. In both cases triggering it from here is pointless and even harmful. It makes much more sense to let the killed task die rather than to wake up an eternally hungry oom-killer and send him to choose a fatter victim for breakfast. Link: https://lkml.kernel.org/r/0828a149-786e-7c06-b70a-52d086818ea3@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
a602285ac1 |
Merge branch 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull per signal_struct coredumps from Eric Biederman: "Current coredumps are mixed up with the exit code, the signal handling code, and the ptrace code making coredumps much more complicated than necessary and difficult to follow. This series of changes starts with ptrace_stop and cleans it up, making it easier to follow what is happening in ptrace_stop. Then cleans up the exec interactions with coredumps. Then cleans up the coredump interactions with exit. Finally the coredump interactions with the signal handling code is cleaned up. The first and last changes are bug fixes for minor bugs. I believe the fact that vfork followed by execve can kill the process the called vfork if exec fails is sufficient justification to change the userspace visible behavior. In previous discussions some of these changes were organized differently and individually appeared to make the code base worse. As currently written I believe they all stand on their own as cleanups and bug fixes. Which means that even if the worst should happen and the last change needs to be reverted for some unimaginable reason, the code base will still be improved. If the worst does not happen there are a more cleanups that can be made. Signals that generate coredumps can easily become eligible for short circuit delivery in complete_signal. The entire rendezvous for generating a coredump can move into get_signal. The function force_sig_info_to_task be written in a way that does not modify the signal handling state of the target task (because coredumps are eligible for short circuit delivery). Many of these future cleanups can be done another way but nothing so cleanly as if coredumps become per signal_struct" * 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: coredump: Limit coredumps to a single thread group coredump: Don't perform any cleanups before dumping core exit: Factor coredump_exit_mm out of exit_mm exec: Check for a pending fatal signal instead of core_state ptrace: Remove the unnecessary arguments from arch_ptrace_stop signal: Remove the bogus sigkill_pending in ptrace_stop |
||
Suren Baghdasaryan
|
337546e83f |
mm/oom_kill.c: prevent a race between process_mrelease and exit_mmap
Race between process_mrelease and exit_mmap, where free_pgtables is called while __oom_reap_task_mm is in progress, leads to kernel crash during pte_offset_map_lock call. oom-reaper avoids this race by setting MMF_OOM_VICTIM flag and causing exit_mmap to take and release mmap_write_lock, blocking it until oom-reaper releases mmap_read_lock. Reusing MMF_OOM_VICTIM for process_mrelease would be the simplest way to fix this race, however that would be considered a hack. Fix this race by elevating mm->mm_users and preventing exit_mmap from executing until process_mrelease is finished. Patch slightly refactors the code to adapt for a possible mmget_not_zero failure. This fix has considerable negative impact on process_mrelease performance and will likely need later optimization. Link: https://lkml.kernel.org/r/20211022014658.263508-1-surenb@google.com Fixes: 884a7e5964e0 ("mm: introduce process_mrelease system call") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Christian Brauner <christian@brauner.io> Cc: Christoph Hellwig <hch@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jan Engelhardt <jengelh@inai.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christian Brauner
|
ee9955d61a
|
mm: use pidfd_get_task()
Instead of duplicating the same code in two places use the newly added pidfd_get_task() helper. This fixes an (unimportant for now) bug where PIDTYPE_PID is used whereas PIDTYPE_TGID should have been used. Link: https://lore.kernel.org/r/20211004125050.1153693-3-christian.brauner@ubuntu.com Link: https://lore.kernel.org/r/20211011133245.1703103-3-brauner@kernel.org Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Matthew Bobrowski <repnop@google.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Reviewed-by: Matthew Bobrowski <repnop@google.com> Acked-by: David Hildenbrand <david@redhat.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
||
Eric W. Biederman
|
9230738308 |
coredump: Don't perform any cleanups before dumping core
Rename coredump_exit_mm to coredump_task_exit and call it from do_exit before PTRACE_EVENT_EXIT, and before any cleanup work for a task happens. This ensures that an accurate copy of the process can be captured in the coredump as no cleanup for the process happens before the coredump completes. This also ensures that PTRACE_EVENT_EXIT will not be visited by any thread until the coredump is complete. Add a new flag PF_POSTCOREDUMP so that tasks that have passed through coredump_task_exit can be recognized and ignored in zap_process. Now that all of the coredumping happens before exit_mm remove code to test for a coredump in progress from mm_release. Replace "may_ptrace_stop()" with a simple test of "current->ptrace". The other tests in may_ptrace_stop all concern avoiding stopping during a coredump. These tests are no longer necessary as it is now guaranteed that fatal_signal_pending will be set if the code enters ptrace_stop during a coredump. The code in ptrace_stop is guaranteed not to stop if fatal_signal_pending returns true. Until this change "ptrace_event(PTRACE_EVENT_EXIT)" could call ptrace_stop without fatal_signal_pending being true, as signals are dequeued in get_signal before calling do_exit. This is no longer an issue as "ptrace_event(PTRACE_EVENT_EXIT)" is no longer reached until after the coredump completes. Link: https://lkml.kernel.org/r/874kaax26c.fsf@disp2133 Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Eric W. Biederman
|
d67e03e361 |
exit: Factor coredump_exit_mm out of exit_mm
Separate the coredump logic from the ordinary exit_mm logic by moving the coredump logic out of exit_mm into it's own function coredump_exit_mm. Link: https://lkml.kernel.org/r/87a6k2x277.fsf@disp2133 Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Suren Baghdasaryan
|
884a7e5964 |
mm: introduce process_mrelease system call
In modern systems it's not unusual to have a system component monitoring memory conditions of the system and tasked with keeping system memory pressure under control. One way to accomplish that is to kill non-essential processes to free up memory for more important ones. Examples of this are Facebook's OOM killer daemon called oomd and Android's low memory killer daemon called lmkd. For such system component it's important to be able to free memory quickly and efficiently. Unfortunately the time process takes to free up its memory after receiving a SIGKILL might vary based on the state of the process (uninterruptible sleep), size and OPP level of the core the process is running. A mechanism to free resources of the target process in a more predictable way would improve system's ability to control its memory pressure. Introduce process_mrelease system call that releases memory of a dying process from the context of the caller. This way the memory is freed in a more controllable way with CPU affinity and priority of the caller. The workload of freeing the memory will also be charged to the caller. The operation is allowed only on a dying process. After previous discussions [1, 2, 3] the decision was made [4] to introduce a dedicated system call to cover this use case. The API is as follows, int process_mrelease(int pidfd, unsigned int flags); DESCRIPTION The process_mrelease() system call is used to free the memory of an exiting process. The pidfd selects the process referred to by the PID file descriptor. (See pidfd_open(2) for further information) The flags argument is reserved for future use; currently, this argument must be specified as 0. RETURN VALUE On success, process_mrelease() returns 0. On error, -1 is returned and errno is set to indicate the error. ERRORS EBADF pidfd is not a valid PID file descriptor. EAGAIN Failed to release part of the address space. EINTR The call was interrupted by a signal; see signal(7). EINVAL flags is not 0. EINVAL The memory of the task cannot be released because the process is not exiting, the address space is shared with another live process or there is a core dump in progress. ENOSYS This system call is not supported, for example, without MMU support built into Linux. ESRCH The target process does not exist (i.e., it has terminated and been waited on). [1] https://lore.kernel.org/lkml/20190411014353.113252-3-surenb@google.com/ [2] https://lore.kernel.org/linux-api/20201113173448.1863419-1-surenb@google.com/ [3] https://lore.kernel.org/linux-api/20201124053943.1684874-3-surenb@google.com/ [4] https://lore.kernel.org/linux-api/20201223075712.GA4719@lst.de/ Link: https://lkml.kernel.org/r/20210809185259.405936-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Cc: David Rientjes <rientjes@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jan Engelhardt <jengelh@inai.de> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
28e92f9903 |
Merge branch 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney: - Bitmap parsing support for "all" as an alias for all bits - Documentation updates - Miscellaneous fixes, including some that overlap into mm and lockdep - kvfree_rcu() updates - mem_dump_obj() updates, with acks from one of the slab-allocator maintainers - RCU NOCB CPU updates, including limited deoffloading - SRCU updates - Tasks-RCU updates - Torture-test updates * 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits) tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states rcu: Add missing __releases() annotation rcu: Remove obsolete rcu_read_unlock() deadlock commentary rcu: Improve comments describing RCU read-side critical sections rcu: Create an unrcu_pointer() to remove __rcu from a pointer srcu: Early test SRCU polling start rcu: Fix various typos in comments rcu/nocb: Unify timers rcu/nocb: Prepare for fine-grained deferred wakeup rcu/nocb: Only cancel nocb timer if not polling rcu/nocb: Delete bypass_timer upon nocb_gp wakeup rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup rcu/nocb: Allow de-offloading rdp leader rcu/nocb: Directly call __wake_nocb_gp() from bypass timer rcu: Don't penalize priority boosting when there is nothing to boost rcu: Point to documentation of ordering guarantees rcu: Make rcu_gp_cleanup() be noinline for tracing rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP ... |
||
Feng Tang
|
b26e517a05 |
mm/mempolicy: cleanup nodemask intersection check for oom
Patch series "mm/mempolicy: some fix and semantics cleanup", v4. Current memory policy code has some confusing and ambiguous part about MPOL_LOCAL policy, as it is handled as a faked MPOL_PREFERRED one, and there are many places having to distinguish them. Also the nodemask intersection check needs cleanup to be more explicit for OOM use, and handle MPOL_INTERLEAVE correctly. This patchset cleans up these and unifies the parameter sanity check for mbind() and set_mempolicy(). This patch (of 3): mempolicy_nodemask_intersects seem to be a general purpose mempolicy function. In fact it is partially tailored for the OOM purpose instead. The oom proper is the only existing user so rename the function to make that purpose explicit. While at it drop the MPOL_INTERLEAVE as those allocations never has a nodemask defined (see alloc_page_interleave) so this is a dead code and a confusing one because MPOL_INTERLEAVE is a hint rather than a hard requirement so it shouldn't be considered during the OOM. The final code can be reduced to a check for MPOL_BIND which is the only memory policy that is a hard requirement and thus relevant to a constrained OOM logic. [mhocko@suse.com: changelog edits] Link: https://lkml.kernel.org/r/1622560492-1294-1-git-send-email-feng.tang@intel.com Link: https://lkml.kernel.org/r/1622560492-1294-2-git-send-email-feng.tang@intel.com Link: https://lkml.kernel.org/r/1622469956-82897-1-git-send-email-feng.tang@intel.com Link: https://lkml.kernel.org/r/1622469956-82897-2-git-send-email-feng.tang@intel.com Signed-off-by: Feng Tang <feng.tang@intel.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ben Widawsky <ben.widawsky@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rolf Eike Beer
|
4c9c3809ae |
rcu: Fix typo in comment: kthead -> kthread
Signed-off-by: Rolf Eike Beer <eb@emlix.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> |
||
Ingo Molnar
|
f0953a1bba |
mm: fix typos in comments
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zhiyuan Dai
|
68d68ff6eb |
mm/mempool: minor coding style tweaks
Various coding style tweaks to various files under mm/ [daizhiyuan@phytium.com.cn: mm/swapfile: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614223624-16055-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/sparse: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614227288-19363-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/vmscan: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614227649-19853-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/compaction: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614228218-20770-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/oom_kill: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614228360-21168-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/shmem: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614228504-21491-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/page_alloc: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614228613-21754-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/filemap: minor coding style tweaks] Link: https://lkml.kernel.org/r/1614228936-22337-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/mlock: minor coding style tweaks] Link: https://lkml.kernel.org/r/1613956588-2453-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/frontswap: minor coding style tweaks] Link: https://lkml.kernel.org/r/1613962668-15045-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/vmalloc: minor coding style tweaks] Link: https://lkml.kernel.org/r/1613963379-15988-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/memory_hotplug: minor coding style tweaks] Link: https://lkml.kernel.org/r/1613971784-24878-1-git-send-email-daizhiyuan@phytium.com.cn [daizhiyuan@phytium.com.cn: mm/mempolicy: minor coding style tweaks] Link: https://lkml.kernel.org/r/1613972228-25501-1-git-send-email-daizhiyuan@phytium.com.cn Link: https://lkml.kernel.org/r/1614222374-13805-1-git-send-email-daizhiyuan@phytium.com.cn Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
845be1cd34 |
mm: eliminate "expecting prototype" kernel-doc warnings
Fix stray kernel-doc warnings in mm/ due to mis-typed or missing function names. Quietens these kernel-doc warnings: mm/mmu_gather.c:264: warning: expecting prototype for tlb_gather_mmu(). Prototype was for __tlb_gather_mmu() instead mm/oom_kill.c:180: warning: expecting prototype for Check whether unreclaimable slab amount is greater than(). Prototype was for should_dump_unreclaim_slab() instead mm/shuffle.c:155: warning: expecting prototype for shuffle_free_memory(). Prototype was for __shuffle_free_memory() instead Link: https://lkml.kernel.org/r/20210411210642.11362-1-rdunlap@infradead.org Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tang Yizhou
|
f8159c1390 |
mm, oom: fix a comment in dump_task()
If p is a kthread, it will be checked in oom_unkillable_task() so we can delete the corresponding comment. Link: https://lkml.kernel.org/r/20210125133006.7242-1-tangyizhou@huawei.com Signed-off-by: Tang Yizhou <tangyizhou@huawei.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Will Deacon
|
a72afd8730 |
tlb: mmu_gather: Remove start/end arguments from tlb_gather_mmu()
The 'start' and 'end' arguments to tlb_gather_mmu() are no longer needed now that there is a separate function for 'fullmm' flushing. Remove the unused arguments and update all callers. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Yu Zhao <yuzhao@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/CAHk-=wjQWa14_4UpfDf=fiineNP+RH74kZeDMo_f1D35xNzq9w@mail.gmail.com |
||
Will Deacon
|
ae8eba8b5d |
tlb: mmu_gather: Remove unused start/end arguments from tlb_finish_mmu()
Since commit 7a30df49f63a ("mm: mmu_gather: remove __tlb_reset_range() for force flush"), the 'start' and 'end' arguments to tlb_finish_mmu() are no longer used, since we flush the whole mm in case of a nested invalidation. Remove the unused arguments and update all callers. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Yu Zhao <yuzhao@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lkml.kernel.org/r/20210127235347.1402-3-will@kernel.org |
||
Hui Su
|
259b3633e7 |
mm/oom_kill: change comment and rename is_dump_unreclaim_slabs()
Change the comment of is_dump_unreclaim_slabs(), it just check whether nr_unreclaimable slabs amount is greater than user memory, and explain why we dump unreclaim slabs. Rename it to should_dump_unreclaim_slab() maybe better. Link: https://lkml.kernel.org/r/20201030182704.GA53949@rlk Signed-off-by: Hui Su <sh_def@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Suren Baghdasaryan
|
67197a4f28 |
mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
Currently __set_oom_adj loops through all processes in the system to keep oom_score_adj and oom_score_adj_min in sync between processes sharing their mm. This is done for any task with more that one mm_users, which includes processes with multiple threads (sharing mm and signals). However for such processes the loop is unnecessary because their signal structure is shared as well. Android updates oom_score_adj whenever a tasks changes its role (background/foreground/...) or binds to/unbinds from a service, making it more/less important. Such operation can happen frequently. We noticed that updates to oom_score_adj became more expensive and after further investigation found out that the patch mentioned in "Fixes" introduced a regression. Using Pixel 4 with a typical Android workload, write time to oom_score_adj increased from ~3.57us to ~362us. Moreover this regression linearly depends on the number of multi-threaded processes running on the system. Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK). Change __set_oom_adj to use MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj update should be synchronized between multiple processes. To prevent races between clone() and __set_oom_adj(), when oom_score_adj of the process being cloned might be modified from userspace, we use oom_adj_mutex. Its scope is changed to global. The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for the case of vfork(). To prevent performance regressions of vfork(), we skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is specified. Clearing the MMF_MULTIPROCESS flag (when the last process sharing the mm exits) is left out of this patch to keep it simple and because it is believed that this threading model is rare. Should there ever be a need for optimizing that case as well, it can be done by hooking into the exit path, likely following the mm_update_next_owner pattern. With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being quite rare, the regression is gone after the change is applied. [surenb@google.com: v3] Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com Fixes: 44a70adec910 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj") Reported-by: Tim Murray <timmurray@google.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Eugene Syromiatnikov <esyr@redhat.com> Cc: Christian Kellner <christian@kellner.me> Cc: Adrian Reber <areber@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Alexey Gladkov <gladkov.alexey@gmail.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Bernd Edlinger <bernd.edlinger@hotmail.de> Cc: John Johansen <john.johansen@canonical.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com Debugged-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
619b5b469b |
mm, oom: show process exiting information in __oom_kill_process()
When the OOM killer finds a victim and tryies to kill it, if the victim is already exiting, the task mm will be NULL and no process will be killed. But the dump_header() has been already executed, so it will be strange to dump so much information without killing a process. We'd better show some helpful information to indicate why this happens. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/20200721010127.17238-1-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
9066e5cfb7 |
mm, oom: make the calculation of oom badness more accurate
Recently we found an issue on our production environment that when memcg oom is triggered the oom killer doesn't chose the process with largest resident memory but chose the first scanned process. Note that all processes in this memcg have the same oom_score_adj, so the oom killer should chose the process with largest resident memory. Bellow is part of the oom info, which is enough to analyze this issue. [7516987.983223] memory: usage 16777216kB, limit 16777216kB, failcnt 52843037 [7516987.983224] memory+swap: usage 16777216kB, limit 9007199254740988kB, failcnt 0 [7516987.983225] kmem: usage 301464kB, limit 9007199254740988kB, failcnt 0 [...] [7516987.983293] [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name [7516987.983510] [ 5740] 0 5740 257 1 32768 0 -998 pause [7516987.983574] [58804] 0 58804 4594 771 81920 0 -998 entry_point.bas [7516987.983577] [58908] 0 58908 7089 689 98304 0 -998 cron [7516987.983580] [58910] 0 58910 16235 5576 163840 0 -998 supervisord [7516987.983590] [59620] 0 59620 18074 1395 188416 0 -998 sshd [7516987.983594] [59622] 0 59622 18680 6679 188416 0 -998 python [7516987.983598] [59624] 0 59624 1859266 5161 548864 0 -998 odin-agent [7516987.983600] [59625] 0 59625 707223 9248 983040 0 -998 filebeat [7516987.983604] [59627] 0 59627 416433 64239 774144 0 -998 odin-log-agent [7516987.983607] [59631] 0 59631 180671 15012 385024 0 -998 python3 [7516987.983612] [61396] 0 61396 791287 3189 352256 0 -998 client [7516987.983615] [61641] 0 61641 1844642 29089 946176 0 -998 client [7516987.983765] [ 9236] 0 9236 2642 467 53248 0 -998 php_scanner [7516987.983911] [42898] 0 42898 15543 838 167936 0 -998 su [7516987.983915] [42900] 1000 42900 3673 867 77824 0 -998 exec_script_vr2 [7516987.983918] [42925] 1000 42925 36475 19033 335872 0 -998 python [7516987.983921] [57146] 1000 57146 3673 848 73728 0 -998 exec_script_J2p [7516987.983925] [57195] 1000 57195 186359 22958 491520 0 -998 python2 [7516987.983928] [58376] 1000 58376 275764 14402 290816 0 -998 rosmaster [7516987.983931] [58395] 1000 58395 155166 4449 245760 0 -998 rosout [7516987.983935] [58406] 1000 58406 18285584 3967322 37101568 0 -998 data_sim [7516987.984221] oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=3aa16c9482ae3a6f6b78bda68a55d32c87c99b985e0f11331cddf05af6c4d753,mems_allowed=0-1,oom_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184,task_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184/1f246a3eeea8f70bf91141eeaf1805346a666e225f823906485ea0b6c37dfc3d,task=pause,pid=5740,uid=0 [7516987.984254] Memory cgroup out of memory: Killed process 5740 (pause) total-vm:1028kB, anon-rss:4kB, file-rss:0kB, shmem-rss:0kB [7516988.092344] oom_reaper: reaped process 5740 (pause), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB We can find that the first scanned process 5740 (pause) was killed, but its rss is only one page. That is because, when we calculate the oom badness in oom_badness(), we always ignore the negtive point and convert all of these negtive points to 1. Now as oom_score_adj of all the processes in this targeted memcg have the same value -998, the points of these processes are all negtive value. As a result, the first scanned process will be killed. The oom_socre_adj (-998) in this memcg is set by kubelet, because it is a a Guaranteed pod, which has higher priority to prevent from being killed by system oom. To fix this issue, we should make the calculation of oom point more accurate. We can achieve it by convert the chosen_point from 'unsigned long' to 'long'. [cai@lca.pw: reported a issue in the previous version] [mhocko@suse.com: fixed the issue reported by Cai] [mhocko@suse.com: add the comment in proc_oom_score()] [laoar.shao@gmail.com: v3] Link: http://lkml.kernel.org/r/1594396651-9931-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/1594309987-9919-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
d42f3245c7 |
mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
f5678e7f2a |
kernel: better document the use_mm/unuse_mm API contract
Switch the function documentation to kerneldoc comments, and add WARN_ON_ONCE asserts that the calling thread is a kernel thread and does not have ->mm set (or has ->mm set in the case of unuse_mm). Also give the functions a kthread_ prefix to better document the use case. [hch@lst.de: fix a comment typo, cover the newly merged use_mm/unuse_mm caller in vfio] Link: http://lkml.kernel.org/r/20200416053158.586887-3-hch@lst.de [sfr@canb.auug.org.au: powerpc/vas: fix up for {un}use_mm() rename] Link: http://lkml.kernel.org/r/20200422163935.5aa93ba5@canb.auug.org.au Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Jens Axboe <axboe@kernel.dk> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [usb] Acked-by: Haren Myneni <haren@linux.ibm.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Felipe Balbi <balbi@kernel.org> Cc: Jason Wang <jasowang@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Zhenyu Wang <zhenyuw@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Link: http://lkml.kernel.org/r/20200404094101.672954-6-hch@lst.de Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
c1e8d7c6a7 |
mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
3e4e28c5a8 |
mmap locking API: convert mmap_sem API comments
Convert comments that reference old mmap_sem APIs to reference corresponding new mmap locking APIs instead. Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-12-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
d8ed45c5dc |
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
97a225e69a |
mm/page_alloc: integrate classzone_idx and high_zoneidx
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
8a7ff02aca |
mm, oom: dump stack of victim when reaping failed
When a process cannot be oom reaped, for whatever reason, currently the list of locks that are held is currently dumped to the kernel log. Much more interesting is the stack trace of the victim that cannot be reaped. If the stack trace is dumped, we have the ability to find related occurrences in the same kernel code and hopefully solve the issue that is making it wedged. Dump the stack trace when a process fails to be oom reaped. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001141519280.200484@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ilya Dryomov
|
941f762bcb |
mm/oom: fix pgtables units mismatch in Killed process message
pr_err() expects kB, but mm_pgtables_bytes() returns the number of bytes. As everything else is printed in kB, I chose to fix the value rather than the string. Before: [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name ... [ 1878] 1000 1878 217253 151144 1269760 0 0 python ... Out of memory: Killed process 1878 (python) total-vm:869012kB, anon-rss:604572kB, file-rss:4kB, shmem-rss:0kB, UID:1000 pgtables:1269760kB oom_score_adj:0 After: [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name ... [ 1436] 1000 1436 217253 151890 1294336 0 0 python ... Out of memory: Killed process 1436 (python) total-vm:869012kB, anon-rss:607516kB, file-rss:44kB, shmem-rss:0kB, UID:1000 pgtables:1264kB oom_score_adj:0 Link: http://lkml.kernel.org/r/20191211202830.1600-1-idryomov@gmail.com Fixes: 70cb6d267790 ("mm/oom: add oom_score_adj and pgtables to Killed process message") Signed-off-by: Ilya Dryomov <idryomov@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Edward Chron <echron@arista.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
9c276cc65a |
mm: introduce MADV_COLD
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7. - Background The Android terminology used for forking a new process and starting an app from scratch is a cold start, while resuming an existing app is a hot start. While we continually try to improve the performance of cold starts, hot starts will always be significantly less power hungry as well as faster so we are trying to make hot start more likely than cold start. To increase hot start, Android userspace manages the order that apps should be killed in a process called ActivityManagerService. ActivityManagerService tracks every Android app or service that the user could be interacting with at any time and translates that into a ranked list for lmkd(low memory killer daemon). They are likely to be killed by lmkd if the system has to reclaim memory. In that sense they are similar to entries in any other cache. Those apps are kept alive for opportunistic performance improvements but those performance improvements will vary based on the memory requirements of individual workloads. - Problem Naturally, cached apps were dominant consumers of memory on the system. However, they were not significant consumers of swap even though they are good candidate for swap. Under investigation, swapping out only begins once the low zone watermark is hit and kswapd wakes up, but the overall allocation rate in the system might trip lmkd thresholds and cause a cached process to be killed(we measured performance swapping out vs. zapping the memory by killing a process. Unsurprisingly, zapping is 10x times faster even though we use zram which is much faster than real storage) so kill from lmkd will often satisfy the high zone watermark, resulting in very few pages actually being moved to swap. - Approach The approach we chose was to use a new interface to allow userspace to proactively reclaim entire processes by leveraging platform information. This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages that are known to be cold from userspace and to avoid races with lmkd by reclaiming apps as soon as they entered the cached state. Additionally, it could provide many chances for platform to use much information to optimize memory efficiency. To achieve the goal, the patchset introduce two new options for madvise. One is MADV_COLD which will deactivate activated pages and the other is MADV_PAGEOUT which will reclaim private pages instantly. These new options complement MADV_DONTNEED and MADV_FREE by adding non-destructive ways to gain some free memory space. MADV_PAGEOUT is similar to MADV_DONTNEED in a way that it hints the kernel that memory region is not currently needed and should be reclaimed immediately; MADV_COLD is similar to MADV_FREE in a way that it hints the kernel that memory region is not currently needed and should be reclaimed when memory pressure rises. This patch (of 5): When a process expects no accesses to a certain memory range, it could give a hint to kernel that the pages can be reclaimed when memory pressure happens but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_COLD hint to madvise(2) syscall. MADV_COLD can be used by a process to mark a memory range as not expected to be used in the near future. The hint can help kernel in deciding which pages to evict early during memory pressure. It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves active file page -> inactive file LRU active anon page -> inacdtive anon LRU Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file LRU's head because MADV_COLD is a little bit different symantic. MADV_FREE means it's okay to discard when the memory pressure because the content of the page is *garbage* so freeing such pages is almost zero overhead since we don't need to swap out and access afterward causes just minor fault. Thus, it would make sense to put those freeable pages in inactive file LRU to compete other used-once pages. It makes sense for implmentaion point of view, too because it's not swapbacked memory any longer until it would be re-dirtied. Even, it could give a bonus to make them be reclaimed on swapless system. However, MADV_COLD doesn't mean garbage so reclaiming them requires swap-out/in in the end so it's bigger cost. Since we have designed VM LRU aging based on cost-model, anonymous cold pages would be better to position inactive anon's LRU list, not file LRU. Furthermore, it would help to avoid unnecessary scanning if system doesn't have a swap device. Let's start simpler way without adding complexity at this moment. However, keep in mind, too that it's a caveat that workloads with a lot of pages cache are likely to ignore MADV_COLD on anonymous memory because we rarely age anonymous LRU lists. * man-page material MADV_COLD (since Linux x.x) Pages in the specified regions will be treated as less-recently-accessed compared to pages in the system with similar access frequencies. In contrast to MADV_FREE, the contents of the region are preserved regardless of subsequent writes to pages. MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1eb41bb07e |
mm, oom: consider present pages for the node size
constrained_alloc() calculates the size of the oom domain by using node_spanned_pages which is incorrect because this is the full range of the physical memory range that the numa node occupies rather than the memory that backs that range which is represented by node_present_pages. Sparsely populated nodes (e.g. after memory hot remove or simply sparse due to memory layout) can have really a large difference between the two. This shouldn't really cause any real user observable problems because the oom calculates a ratio against totalpages and used memory cannot exceed present pages but it is confusing and wrong from code point of view. Link: http://lkml.kernel.org/r/20190829163443.899-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yi Wang
|
f364f06b34 |
mm/oom_kill.c: fix oom_cpuset_eligible() comment
Commit ac311a14c682 ("oom: decouple mems_allowed from oom_unkillable_task") changed has_intersects_mems_allowed() to oom_cpuset_eligible(), but didn't change the comment. Link: http://lkml.kernel.org/r/1566959929-10638-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Edward Chron
|
70cb6d2677 |
mm/oom: add oom_score_adj and pgtables to Killed process message
For an OOM event: print oom_score_adj value for the OOM Killed process to document what the oom score adjust value was at the time the process was OOM Killed. The adjustment value can be set by user code and it affects the resulting oom_score so it is used to influence kill process selection. When eligible tasks are not printed (sysctl oom_dump_tasks = 0) printing this value is the only documentation of the value for the process being killed. Having this value on the Killed process message is useful to document if a miscconfiguration occurred or to confirm that the oom_score_adj configuration applies as expected. An example which illustates both misconfiguration and validation that the oom_score_adj was applied as expected is: Aug 14 23:00:02 testserver kernel: Out of memory: Killed process 2692 (systemd-udevd) total-vm:1056800kB, anon-rss:1052760kB, file-rss:4kB, shmem-rss:0kB pgtables:22kB oom_score_adj:1000 The systemd-udevd is a critical system application that should have an oom_score_adj of -1000. It was miconfigured to have a adjustment of 1000 making it a highly favored OOM kill target process. The output documents both the misconfiguration and the fact that the process was correctly targeted by OOM due to the miconfiguration. This can be quite helpful for triage and problem determination. The addition of the pgtables_bytes shows page table usage by the process and is a useful measure of the memory size of the process. Link: http://lkml.kernel.org/r/20190822173157.1569-1-echron@arista.com Signed-off-by: Edward Chron <echron@arista.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
f9c645621a |
memcg, oom: don't require __GFP_FS when invoking memcg OOM killer
Masoud Sharbiani noticed that commit 29ef680ae7c21110 ("memcg, oom: move out_of_memory back to the charge path") broke memcg OOM called from __xfs_filemap_fault() path. It turned out that try_charge() is retrying forever without making forward progress because mem_cgroup_oom(GFP_NOFS) cannot invoke the OOM killer due to commit 3da88fb3bacfaa33 ("mm, oom: move GFP_NOFS check to out_of_memory"). Allowing forced charge due to being unable to invoke memcg OOM killer will lead to global OOM situation. Also, just returning -ENOMEM will be risky because OOM path is lost and some paths (e.g. get_user_pages()) will leak -ENOMEM. Therefore, invoking memcg OOM killer (despite GFP_NOFS) will be the only choice we can choose for now. Until 29ef680ae7c21110, we were able to invoke memcg OOM killer when GFP_KERNEL reclaim failed [1]. But since 29ef680ae7c21110, we need to invoke memcg OOM killer when GFP_NOFS reclaim failed [2]. Although in the past we did invoke memcg OOM killer for GFP_NOFS [3], we might get pre-mature memcg OOM reports due to this patch. [1] leaker invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), nodemask=(null), order=0, oom_score_adj=0 CPU: 0 PID: 2746 Comm: leaker Not tainted 4.18.0+ #19 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 Call Trace: dump_stack+0x63/0x88 dump_header+0x67/0x27a ? mem_cgroup_scan_tasks+0x91/0xf0 oom_kill_process+0x210/0x410 out_of_memory+0x10a/0x2c0 mem_cgroup_out_of_memory+0x46/0x80 mem_cgroup_oom_synchronize+0x2e4/0x310 ? high_work_func+0x20/0x20 pagefault_out_of_memory+0x31/0x76 mm_fault_error+0x55/0x115 ? handle_mm_fault+0xfd/0x220 __do_page_fault+0x433/0x4e0 do_page_fault+0x22/0x30 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 RIP: 0033:0x4009f0 Code: 03 00 00 00 e8 71 fd ff ff 48 83 f8 ff 49 89 c6 74 74 48 89 c6 bf c0 0c 40 00 31 c0 e8 69 fd ff ff 45 85 ff 7e 21 31 c9 66 90 <41> 0f be 14 0e 01 d3 f7 c1 ff 0f 00 00 75 05 41 c6 04 0e 2a 48 83 RSP: 002b:00007ffe29ae96f0 EFLAGS: 00010206 RAX: 000000000000001b RBX: 0000000000000000 RCX: 0000000001ce1000 RDX: 0000000000000000 RSI: 000000007fffffe5 RDI: 0000000000000000 RBP: 000000000000000c R08: 0000000000000000 R09: 00007f94be09220d R10: 0000000000000002 R11: 0000000000000246 R12: 00000000000186a0 R13: 0000000000000003 R14: 00007f949d845000 R15: 0000000002800000 Task in /leaker killed as a result of limit of /leaker memory: usage 524288kB, limit 524288kB, failcnt 158965 memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0 kmem: usage 2016kB, limit 9007199254740988kB, failcnt 0 Memory cgroup stats for /leaker: cache:844KB rss:521136KB rss_huge:0KB shmem:0KB mapped_file:0KB dirty:132KB writeback:0KB inactive_anon:0KB active_anon:521224KB inactive_file:1012KB active_file:8KB unevictable:0KB Memory cgroup out of memory: Kill process 2746 (leaker) score 998 or sacrifice child Killed process 2746 (leaker) total-vm:536704kB, anon-rss:521176kB, file-rss:1208kB, shmem-rss:0kB oom_reaper: reaped process 2746 (leaker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [2] leaker invoked oom-killer: gfp_mask=0x600040(GFP_NOFS), nodemask=(null), order=0, oom_score_adj=0 CPU: 1 PID: 2746 Comm: leaker Not tainted 4.18.0+ #20 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 Call Trace: dump_stack+0x63/0x88 dump_header+0x67/0x27a ? mem_cgroup_scan_tasks+0x91/0xf0 oom_kill_process+0x210/0x410 out_of_memory+0x109/0x2d0 mem_cgroup_out_of_memory+0x46/0x80 try_charge+0x58d/0x650 ? __radix_tree_replace+0x81/0x100 mem_cgroup_try_charge+0x7a/0x100 __add_to_page_cache_locked+0x92/0x180 add_to_page_cache_lru+0x4d/0xf0 iomap_readpages_actor+0xde/0x1b0 ? iomap_zero_range_actor+0x1d0/0x1d0 iomap_apply+0xaf/0x130 iomap_readpages+0x9f/0x150 ? iomap_zero_range_actor+0x1d0/0x1d0 xfs_vm_readpages+0x18/0x20 [xfs] read_pages+0x60/0x140 __do_page_cache_readahead+0x193/0x1b0 ondemand_readahead+0x16d/0x2c0 page_cache_async_readahead+0x9a/0xd0 filemap_fault+0x403/0x620 ? alloc_set_pte+0x12c/0x540 ? _cond_resched+0x14/0x30 __xfs_filemap_fault+0x66/0x180 [xfs] xfs_filemap_fault+0x27/0x30 [xfs] __do_fault+0x19/0x40 __handle_mm_fault+0x8e8/0xb60 handle_mm_fault+0xfd/0x220 __do_page_fault+0x238/0x4e0 do_page_fault+0x22/0x30 ? page_fault+0x8/0x30 page_fault+0x1e/0x30 RIP: 0033:0x4009f0 Code: 03 00 00 00 e8 71 fd ff ff 48 83 f8 ff 49 89 c6 74 74 48 89 c6 bf c0 0c 40 00 31 c0 e8 69 fd ff ff 45 85 ff 7e 21 31 c9 66 90 <41> 0f be 14 0e 01 d3 f7 c1 ff 0f 00 00 75 05 41 c6 04 0e 2a 48 83 RSP: 002b:00007ffda45c9290 EFLAGS: 00010206 RAX: 000000000000001b RBX: 0000000000000000 RCX: 0000000001a1e000 RDX: 0000000000000000 RSI: 000000007fffffe5 RDI: 0000000000000000 RBP: 000000000000000c R08: 0000000000000000 R09: 00007f6d061ff20d R10: 0000000000000002 R11: 0000000000000246 R12: 00000000000186a0 R13: 0000000000000003 R14: 00007f6ce59b2000 R15: 0000000002800000 Task in /leaker killed as a result of limit of /leaker memory: usage 524288kB, limit 524288kB, failcnt 7221 memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0 kmem: usage 1944kB, limit 9007199254740988kB, failcnt 0 Memory cgroup stats for /leaker: cache:3632KB rss:518232KB rss_huge:0KB shmem:0KB mapped_file:0KB dirty:0KB writeback:0KB inactive_anon:0KB active_anon:518408KB inactive_file:3908KB active_file:12KB unevictable:0KB Memory cgroup out of memory: Kill process 2746 (leaker) score 992 or sacrifice child Killed process 2746 (leaker) total-vm:536704kB, anon-rss:518264kB, file-rss:1188kB, shmem-rss:0kB oom_reaper: reaped process 2746 (leaker), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [3] leaker invoked oom-killer: gfp_mask=0x50, order=0, oom_score_adj=0 leaker cpuset=/ mems_allowed=0 CPU: 1 PID: 3206 Comm: leaker Not tainted 3.10.0-957.27.2.el7.x86_64 #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 Call Trace: [<ffffffffaf364147>] dump_stack+0x19/0x1b [<ffffffffaf35eb6a>] dump_header+0x90/0x229 [<ffffffffaedbb456>] ? find_lock_task_mm+0x56/0xc0 [<ffffffffaee32a38>] ? try_get_mem_cgroup_from_mm+0x28/0x60 [<ffffffffaedbb904>] oom_kill_process+0x254/0x3d0 [<ffffffffaee36c36>] mem_cgroup_oom_synchronize+0x546/0x570 [<ffffffffaee360b0>] ? mem_cgroup_charge_common+0xc0/0xc0 [<ffffffffaedbc194>] pagefault_out_of_memory+0x14/0x90 [<ffffffffaf35d072>] mm_fault_error+0x6a/0x157 [<ffffffffaf3717c8>] __do_page_fault+0x3c8/0x4f0 [<ffffffffaf371925>] do_page_fault+0x35/0x90 [<ffffffffaf36d768>] page_fault+0x28/0x30 Task in /leaker killed as a result of limit of /leaker memory: usage 524288kB, limit 524288kB, failcnt 20628 memory+swap: usage 524288kB, limit 9007199254740988kB, failcnt 0 kmem: usage 0kB, limit 9007199254740988kB, failcnt 0 Memory cgroup stats for /leaker: cache:840KB rss:523448KB rss_huge:0KB mapped_file:0KB swap:0KB inactive_anon:0KB active_anon:523448KB inactive_file:464KB active_file:376KB unevictable:0KB Memory cgroup out of memory: Kill process 3206 (leaker) score 970 or sacrifice child Killed process 3206 (leaker) total-vm:536692kB, anon-rss:523304kB, file-rss:412kB, shmem-rss:0kB Bisected by Masoud Sharbiani. Link: http://lkml.kernel.org/r/cbe54ed1-b6ba-a056-8899-2dc42526371d@i-love.sakura.ne.jp Fixes: 3da88fb3bacfaa33 ("mm, oom: move GFP_NOFS check to out_of_memory") [necessary after 29ef680ae7c21110] Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: Masoud Sharbiani <msharbiani@apple.com> Tested-by: Masoud Sharbiani <msharbiani@apple.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joel Savitz
|
8ac3f8fe91 |
mm/oom_kill.c: add task UID to info message on an oom kill
In the event of an oom kill, useful information about the killed process is printed to dmesg. Users, especially system administrators, will find it useful to immediately see the UID of the process. We already print uid when dumping eligible tasks so it is not overly hard to find that information in the oom report. However this information is unavailable when dumping of eligible tasks is disabled. In the following example, abuse_the_ram is the name of a program that attempts to iteratively allocate all available memory until it is stopped by force. Current message: Out of memory: Killed process 35389 (abuse_the_ram) total-vm:133718232kB, anon-rss:129624980kB, file-rss:0kB, shmem-rss:0kB Patched message: Out of memory: Killed process 2739 (abuse_the_ram), total-vm:133880028kB, anon-rss:129754836kB, file-rss:0kB, shmem-rss:0kB, UID:0 [akpm@linux-foundation.org: s/UID %d/UID:%u/ in printk] Link: http://lkml.kernel.org/r/1560362273-534-1-git-send-email-jsavitz@redhat.com Signed-off-by: Joel Savitz <jsavitz@redhat.com> Suggested-by: David Rientjes <rientjes@google.com> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
2c207985f3 |
mm/oom_kill.c: remove redundant OOM score normalization in select_bad_process()
Since commit bbbe48029720 ("mm, oom: remove 'prefer children over parent' heuristic") removed the "%s: Kill process %d (%s) score %u or sacrifice child\n" line, oc->chosen_points is no longer used after select_bad_process(). Link: http://lkml.kernel.org/r/1560853435-15575-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
ac311a14c6 |
oom: decouple mems_allowed from oom_unkillable_task
Commit ef08e3b4981a ("[PATCH] cpusets: confine oom_killer to mem_exclusive cpuset") introduces a heuristic where a potential oom-killer victim is skipped if the intersection of the potential victim and the current (the process triggered the oom) is empty based on the reason that killing such victim most probably will not help the current allocating process. However the commit 7887a3da753e ("[PATCH] oom: cpuset hint") changed the heuristic to just decrease the oom_badness scores of such potential victim based on the reason that the cpuset of such processes might have changed and previously they may have allocated memory on mems where the current allocating process can allocate from. Unintentionally 7887a3da753e ("[PATCH] oom: cpuset hint") introduced a side effect as the oom_badness is also exposed to the user space through /proc/[pid]/oom_score, so, readers with different cpusets can read different oom_score of the same process. Later, commit 6cf86ac6f36b ("oom: filter tasks not sharing the same cpuset") fixed the side effect introduced by 7887a3da753e by moving the cpuset intersection back to only oom-killer context and out of oom_badness. However the combination of ab290adbaf8f ("oom: make oom_unkillable_task() helper function") and 26ebc984913b ("oom: /proc/<pid>/oom_score treat kernel thread honestly") unintentionally brought back the cpuset intersection check into the oom_badness calculation function. Other than doing cpuset/mempolicy intersection from oom_badness, the memcg oom context is also doing cpuset/mempolicy intersection which is quite wrong and is caught by syzcaller with the following report: kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 28426 Comm: syz-executor.5 Not tainted 5.2.0-rc3-next-20190607 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline] RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline] RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline] RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155 Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f 85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff RSP: 0018:ffff888000127490 EFLAGS: 00010a03 RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001 RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0 R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007 R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6 FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000607304 CR3: 000000009237e000 CR4: 00000000001426f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 Call Trace: oom_evaluate_task+0x49/0x520 mm/oom_kill.c:321 mem_cgroup_scan_tasks+0xcc/0x180 mm/memcontrol.c:1169 select_bad_process mm/oom_kill.c:374 [inline] out_of_memory mm/oom_kill.c:1088 [inline] out_of_memory+0x6b2/0x1280 mm/oom_kill.c:1035 mem_cgroup_out_of_memory+0x1ca/0x230 mm/memcontrol.c:1573 mem_cgroup_oom mm/memcontrol.c:1905 [inline] try_charge+0xfbe/0x1480 mm/memcontrol.c:2468 mem_cgroup_try_charge+0x24d/0x5e0 mm/memcontrol.c:6073 mem_cgroup_try_charge_delay+0x1f/0xa0 mm/memcontrol.c:6088 do_huge_pmd_wp_page_fallback+0x24f/0x1680 mm/huge_memory.c:1201 do_huge_pmd_wp_page+0x7fc/0x2160 mm/huge_memory.c:1359 wp_huge_pmd mm/memory.c:3793 [inline] __handle_mm_fault+0x164c/0x3eb0 mm/memory.c:4006 handle_mm_fault+0x3b7/0xa90 mm/memory.c:4053 do_user_addr_fault arch/x86/mm/fault.c:1455 [inline] __do_page_fault+0x5ef/0xda0 arch/x86/mm/fault.c:1521 do_page_fault+0x71/0x57d arch/x86/mm/fault.c:1552 page_fault+0x1e/0x30 arch/x86/entry/entry_64.S:1156 RIP: 0033:0x400590 Code: 06 e9 49 01 00 00 48 8b 44 24 10 48 0b 44 24 28 75 1f 48 8b 14 24 48 8b 7c 24 20 be 04 00 00 00 e8 f5 56 00 00 48 8b 74 24 08 <89> 06 e9 1e 01 00 00 48 8b 44 24 08 48 8b 14 24 be 04 00 00 00 8b RSP: 002b:00007fff7bc49780 EFLAGS: 00010206 RAX: 0000000000000001 RBX: 0000000000760000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000002000cffc RDI: 0000000000000001 RBP: fffffffffffffffe R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000075 R11: 0000000000000246 R12: 0000000000760008 R13: 00000000004c55f2 R14: 0000000000000000 R15: 00007fff7bc499b0 Modules linked in: ---[ end trace a65689219582ffff ]--- RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline] RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline] RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline] RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155 Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f 85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff RSP: 0018:ffff888000127490 EFLAGS: 00010a03 RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001 RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0 R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007 R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6 FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2f823000 CR3: 000000009237e000 CR4: 00000000001426f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 The fix is to decouple the cpuset/mempolicy intersection check from oom_unkillable_task() and make sure cpuset/mempolicy intersection check is only done in the global oom context. [shakeelb@google.com: change function name and update comment] Link: http://lkml.kernel.org/r/20190628152421.198994-3-shakeelb@google.com Link: http://lkml.kernel.org/r/20190624212631.87212-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: syzbot+d0fc9d3c166bc5e4a94b@syzkaller.appspotmail.com Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
6ba749ee78 |
mm, oom: remove redundant task_in_mem_cgroup() check
oom_unkillable_task() can be called from three different contexts i.e. global OOM, memcg OOM and oom_score procfs interface. At the moment oom_unkillable_task() does a task_in_mem_cgroup() check on the given process. Since there is no reason to perform task_in_mem_cgroup() check for global OOM and oom_score procfs interface, those contexts provide NULL memcg and skips the task_in_mem_cgroup() check. However for memcg OOM context, the oom_unkillable_task() is always called from mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes redundant and effectively dead code. So, just remove the task_in_mem_cgroup() check altogether. Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
5eee7e1cdb |
mm, oom: refactor dump_tasks for memcg OOMs
dump_tasks() traverses all the existing processes even for the memcg OOM context which is not only unnecessary but also wasteful. This imposes a long RCU critical section even from a contained context which can be quite disruptive. Change dump_tasks() to be aligned with select_bad_process and use mem_cgroup_scan_tasks to selectively traverse only processes of the target memcg hierarchy during memcg OOM. Link: http://lkml.kernel.org/r/20190617231207.160865-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Paul Jackson <pj@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
f168a9a54e |
mm: memcontrol: use CSS_TASK_ITER_PROCS at mem_cgroup_scan_tasks()
Since commit c03cd7738a83 ("cgroup: Include dying leaders with live threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works, mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check only one thread from each thread group. [penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()] Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
432b1de0de |
mm/oom_kill.c: fix uninitialized oc->constraint
In dump_oom_summary() oc->constraint is used to show oom_constraint_text, but it hasn't been set before. So the value of it is always the default value 0. We should inititialize it before. Bellow is the output when memcg oom occurs, before this patch: oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null), cpuset=/,mems_allowed=0,oom_memcg=/foo,task_memcg=/foo,task=bash,pid=7997,uid=0 after this patch: oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null), cpuset=/,mems_allowed=0,oom_memcg=/foo,task_memcg=/foo,task=bash,pid=13681,uid=0 Link: http://lkml.kernel.org/r/1560522038-15879-1-git-send-email-laoar.shao@gmail.com Fixes: ef8444ea01d7 ("mm, oom: reorganize the oom report in dump_header") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Wind Yu <yuzhoujian@didichuxing.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Gleixner
|
457c899653 |
treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Jérôme Glisse
|
6f4f13e8d9 |
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
d342a0b386 |
mm,oom: don't kill global init via memory.oom.group
Since setting global init process to some memory cgroup is technically possible, oom_kill_memcg_member() must check it. Tasks in /test1 are going to be killed due to memory.oom.group set Memory cgroup out of memory: Killed process 1 (systemd) total-vm:43400kB, anon-rss:1228kB, file-rss:3992kB, shmem-rss:0kB oom_reaper: reaped process 1 (systemd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000008b #include <stdio.h> #include <string.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int main(int argc, char *argv[]) { static char buffer[10485760]; static int pipe_fd[2] = { EOF, EOF }; unsigned int i; int fd; char buf[64] = { }; if (pipe(pipe_fd)) return 1; if (chdir("/sys/fs/cgroup/")) return 1; fd = open("cgroup.subtree_control", O_WRONLY); write(fd, "+memory", 7); close(fd); mkdir("test1", 0755); fd = open("test1/memory.oom.group", O_WRONLY); write(fd, "1", 1); close(fd); fd = open("test1/cgroup.procs", O_WRONLY); write(fd, "1", 1); snprintf(buf, sizeof(buf) - 1, "%d", getpid()); write(fd, buf, strlen(buf)); close(fd); snprintf(buf, sizeof(buf) - 1, "%lu", sizeof(buffer) * 5); fd = open("test1/memory.max", O_WRONLY); write(fd, buf, strlen(buf)); close(fd); for (i = 0; i < 10; i++) if (fork() == 0) { char c; close(pipe_fd[1]); read(pipe_fd[0], &c, 1); memset(buffer, 0, sizeof(buffer)); sleep(3); _exit(0); } close(pipe_fd[0]); close(pipe_fd[1]); sleep(3); return 0; } [ 37.052923][ T9185] a.out invoked oom-killer: gfp_mask=0xcc0(GFP_KERNEL), order=0, oom_score_adj=0 [ 37.056169][ T9185] CPU: 4 PID: 9185 Comm: a.out Kdump: loaded Not tainted 5.0.0-rc4-next-20190131 #280 [ 37.059205][ T9185] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 [ 37.062954][ T9185] Call Trace: [ 37.063976][ T9185] dump_stack+0x67/0x95 [ 37.065263][ T9185] dump_header+0x51/0x570 [ 37.066619][ T9185] ? trace_hardirqs_on+0x3f/0x110 [ 37.068171][ T9185] ? _raw_spin_unlock_irqrestore+0x3d/0x70 [ 37.069967][ T9185] oom_kill_process+0x18d/0x210 [ 37.071515][ T9185] out_of_memory+0x11b/0x380 [ 37.072936][ T9185] mem_cgroup_out_of_memory+0xb6/0xd0 [ 37.074601][ T9185] try_charge+0x790/0x820 [ 37.076021][ T9185] mem_cgroup_try_charge+0x42/0x1d0 [ 37.077629][ T9185] mem_cgroup_try_charge_delay+0x11/0x30 [ 37.079370][ T9185] do_anonymous_page+0x105/0x5e0 [ 37.080939][ T9185] __handle_mm_fault+0x9cb/0x1070 [ 37.082485][ T9185] handle_mm_fault+0x1b2/0x3a0 [ 37.083819][ T9185] ? handle_mm_fault+0x47/0x3a0 [ 37.085181][ T9185] __do_page_fault+0x255/0x4c0 [ 37.086529][ T9185] do_page_fault+0x28/0x260 [ 37.087788][ T9185] ? page_fault+0x8/0x30 [ 37.088978][ T9185] page_fault+0x1e/0x30 [ 37.090142][ T9185] RIP: 0033:0x7f8b183aefe0 [ 37.091433][ T9185] Code: 20 f3 44 0f 7f 44 17 d0 f3 44 0f 7f 47 30 f3 44 0f 7f 44 17 c0 48 01 fa 48 83 e2 c0 48 39 d1 74 a3 66 0f 1f 84 00 00 00 00 00 <66> 44 0f 7f 01 66 44 0f 7f 41 10 66 44 0f 7f 41 20 66 44 0f 7f 41 [ 37.096917][ T9185] RSP: 002b:00007fffc5d329e8 EFLAGS: 00010206 [ 37.098615][ T9185] RAX: 00000000006010e0 RBX: 0000000000000008 RCX: 0000000000c30000 [ 37.100905][ T9185] RDX: 00000000010010c0 RSI: 0000000000000000 RDI: 00000000006010e0 [ 37.103349][ T9185] RBP: 0000000000000000 R08: 00007f8b188f4740 R09: 0000000000000000 [ 37.105797][ T9185] R10: 00007fffc5d32420 R11: 00007f8b183aef40 R12: 0000000000000005 [ 37.108228][ T9185] R13: 0000000000000000 R14: ffffffffffffffff R15: 0000000000000000 [ 37.110840][ T9185] memory: usage 51200kB, limit 51200kB, failcnt 125 [ 37.113045][ T9185] memory+swap: usage 0kB, limit 9007199254740988kB, failcnt 0 [ 37.115808][ T9185] kmem: usage 0kB, limit 9007199254740988kB, failcnt 0 [ 37.117660][ T9185] Memory cgroup stats for /test1: cache:0KB rss:49484KB rss_huge:30720KB shmem:0KB mapped_file:0KB dirty:0KB writeback:0KB inactive_anon:0KB active_anon:49700KB inactive_file:0KB active_file:0KB unevictable:0KB [ 37.123371][ T9185] oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0,oom_memcg=/test1,task_memcg=/test1,task=a.out,pid=9188,uid=0 [ 37.128158][ T9185] Memory cgroup out of memory: Killed process 9188 (a.out) total-vm:14456kB, anon-rss:10324kB, file-rss:504kB, shmem-rss:0kB [ 37.132710][ T9185] Tasks in /test1 are going to be killed due to memory.oom.group set [ 37.132833][ T54] oom_reaper: reaped process 9188 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.135498][ T9185] Memory cgroup out of memory: Killed process 1 (systemd) total-vm:43400kB, anon-rss:1228kB, file-rss:3992kB, shmem-rss:0kB [ 37.143434][ T9185] Memory cgroup out of memory: Killed process 9182 (a.out) total-vm:14456kB, anon-rss:76kB, file-rss:588kB, shmem-rss:0kB [ 37.144328][ T54] oom_reaper: reaped process 1 (systemd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.147585][ T9185] Memory cgroup out of memory: Killed process 9183 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB [ 37.157222][ T9185] Memory cgroup out of memory: Killed process 9184 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:508kB, shmem-rss:0kB [ 37.157259][ T9185] Memory cgroup out of memory: Killed process 9185 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB [ 37.157291][ T9185] Memory cgroup out of memory: Killed process 9186 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:508kB, shmem-rss:0kB [ 37.157306][ T54] oom_reaper: reaped process 9183 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.157328][ T9185] Memory cgroup out of memory: Killed process 9187 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:512kB, shmem-rss:0kB [ 37.157452][ T9185] Memory cgroup out of memory: Killed process 9189 (a.out) total-vm:14456kB, anon-rss:6228kB, file-rss:512kB, shmem-rss:0kB [ 37.158733][ T9185] Memory cgroup out of memory: Killed process 9190 (a.out) total-vm:14456kB, anon-rss:552kB, file-rss:512kB, shmem-rss:0kB [ 37.160083][ T54] oom_reaper: reaped process 9186 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.160187][ T54] oom_reaper: reaped process 9189 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.206941][ T54] oom_reaper: reaped process 9185 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.212300][ T9185] Memory cgroup out of memory: Killed process 9191 (a.out) total-vm:14456kB, anon-rss:4180kB, file-rss:512kB, shmem-rss:0kB [ 37.212317][ T54] oom_reaper: reaped process 9190 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.218860][ T9185] Memory cgroup out of memory: Killed process 9192 (a.out) total-vm:14456kB, anon-rss:1080kB, file-rss:512kB, shmem-rss:0kB [ 37.227667][ T54] oom_reaper: reaped process 9192 (a.out), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB [ 37.292323][ T9193] abrt-hook-ccpp (9193) used greatest stack depth: 10480 bytes left [ 37.351843][ T1] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000008b [ 37.354833][ T1] CPU: 7 PID: 1 Comm: systemd Kdump: loaded Not tainted 5.0.0-rc4-next-20190131 #280 [ 37.357876][ T1] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 [ 37.361685][ T1] Call Trace: [ 37.363239][ T1] dump_stack+0x67/0x95 [ 37.365010][ T1] panic+0xfc/0x2b0 [ 37.366853][ T1] do_exit+0xd55/0xd60 [ 37.368595][ T1] do_group_exit+0x47/0xc0 [ 37.370415][ T1] get_signal+0x32a/0x920 [ 37.372449][ T1] ? _raw_spin_unlock_irqrestore+0x3d/0x70 [ 37.374596][ T1] do_signal+0x32/0x6e0 [ 37.376430][ T1] ? exit_to_usermode_loop+0x26/0x9b [ 37.378418][ T1] ? prepare_exit_to_usermode+0xa8/0xd0 [ 37.380571][ T1] exit_to_usermode_loop+0x3e/0x9b [ 37.382588][ T1] prepare_exit_to_usermode+0xa8/0xd0 [ 37.384594][ T1] ? page_fault+0x8/0x30 [ 37.386453][ T1] retint_user+0x8/0x18 [ 37.388160][ T1] RIP: 0033:0x7f42c06974a8 [ 37.389922][ T1] Code: Bad RIP value. [ 37.391788][ T1] RSP: 002b:00007ffc3effd388 EFLAGS: 00010213 [ 37.394075][ T1] RAX: 000000000000000e RBX: 00007ffc3effd390 RCX: 0000000000000000 [ 37.396963][ T1] RDX: 000000000000002a RSI: 00007ffc3effd390 RDI: 0000000000000004 [ 37.399550][ T1] RBP: 00007ffc3effd680 R08: 0000000000000000 R09: 0000000000000000 [ 37.402334][ T1] R10: 00000000ffffffff R11: 0000000000000246 R12: 0000000000000001 [ 37.404890][ T1] R13: ffffffffffffffff R14: 0000000000000884 R15: 000056460b1ac3b0 Link: http://lkml.kernel.org/r/201902010336.x113a4EO027170@www262.sakura.ne.jp Fixes: 3d8b38eb81cac813 ("mm, oom: introduce memory.oom.group") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
bbbe480297 |
mm, oom: remove 'prefer children over parent' heuristic
Since the start of the git history of Linux, the kernel after selecting the worst process to be oom-killed, prefer to kill its child (if the child does not share mm with the parent). Later it was changed to prefer to kill a child who is worst. If the parent is still the worst then the parent will be killed. This heuristic assumes that the children did less work than their parent and by killing one of them, the work lost will be less. However this is very workload dependent. If there is a workload which can benefit from this heuristic, can use oom_score_adj to prefer children to be killed before the parent. The select_bad_process() has already selected the worst process in the system/memcg. There is no need to recheck the badness of its children and hoping to find a worse candidate. That's a lot of unneeded racy work. Also the heuristic is dangerous because it make fork bomb like workloads to recover much later because we constantly pick and kill processes which are not memory hogs. So, let's remove this whole heuristic. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
cefc7ef3c8 |
mm, oom: fix use-after-free in oom_kill_process
Syzbot instance running on upstream kernel found a use-after-free bug in oom_kill_process. On further inspection it seems like the process selected to be oom-killed has exited even before reaching read_lock(&tasklist_lock) in oom_kill_process(). More specifically the tsk->usage is 1 which is due to get_task_struct() in oom_evaluate_task() and the put_task_struct within for_each_thread() frees the tsk and for_each_thread() tries to access the tsk. The easiest fix is to do get/put across the for_each_thread() on the selected task. Now the next question is should we continue with the oom-kill as the previously selected task has exited? However before adding more complexity and heuristics, let's answer why we even look at the children of oom-kill selected task? The select_bad_process() has already selected the worst process in the system/memcg. Due to race, the selected process might not be the worst at the kill time but does that matter? The userspace can use the oom_score_adj interface to prefer children to be killed before the parent. I looked at the history but it seems like this is there before git history. Link: http://lkml.kernel.org/r/20190121215850.221745-1-shakeelb@google.com Reported-by: syzbot+7fbbfa368521945f0e3d@syzkaller.appspotmail.com Fixes: 6b0c81b3be11 ("mm, oom: reduce dependency on tasklist_lock") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
9bcdeb51bd |
oom, oom_reaper: do not enqueue same task twice
Arkadiusz reported that enabling memcg's group oom killing causes strange memcg statistics where there is no task in a memcg despite the number of tasks in that memcg is not 0. It turned out that there is a bug in wake_oom_reaper() which allows enqueuing same task twice which makes impossible to decrease the number of tasks in that memcg due to a refcount leak. This bug existed since the OOM reaper became invokable from task_will_free_mem(current) path in out_of_memory() in Linux 4.7, T1@P1 |T2@P1 |T3@P1 |OOM reaper ----------+----------+----------+------------ # Processing an OOM victim in a different memcg domain. try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) try_charge() mem_cgroup_out_of_memory() mutex_lock(&oom_lock) out_of_memory() oom_kill_process(P1) do_send_sig_info(SIGKILL, @P1) mark_oom_victim(T1@P1) wake_oom_reaper(T1@P1) # T1@P1 is enqueued. mutex_unlock(&oom_lock) out_of_memory() mark_oom_victim(T2@P1) wake_oom_reaper(T2@P1) # T2@P1 is enqueued. mutex_unlock(&oom_lock) out_of_memory() mark_oom_victim(T1@P1) wake_oom_reaper(T1@P1) # T1@P1 is enqueued again due to oom_reaper_list == T2@P1 && T1@P1->oom_reaper_list == NULL. mutex_unlock(&oom_lock) # Completed processing an OOM victim in a different memcg domain. spin_lock(&oom_reaper_lock) # T1P1 is dequeued. spin_unlock(&oom_reaper_lock) but memcg's group oom killing made it easier to trigger this bug by calling wake_oom_reaper() on the same task from one out_of_memory() request. Fix this bug using an approach used by commit 855b018325737f76 ("oom, oom_reaper: disable oom_reaper for oom_kill_allocating_task"). As a side effect of this patch, this patch also avoids enqueuing multiple threads sharing memory via task_will_free_mem(current) path. Link: http://lkml.kernel.org/r/e865a044-2c10-9858-f4ef-254bc71d6cc2@i-love.sakura.ne.jp Link: http://lkml.kernel.org/r/5ee34fc6-1485-34f8-8790-903ddabaa809@i-love.sakura.ne.jp Fixes: af8e15cc85a25315 ("oom, oom_reaper: do not enqueue task if it is on the oom_reaper_list head") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: Arkadiusz Miskiewicz <arekm@maven.pl> Tested-by: Arkadiusz Miskiewicz <arekm@maven.pl> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aleksa Sarai <asarai@suse.de> Cc: Jay Kamat <jgkamat@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |