931 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Yang Shi
|
1eb6234e52 |
mm: swap: make page_evictable() inline
When backporting commit 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") to our 4.9 kernel, our test bench noticed around 10% down with a couple of vm-scalability's test cases (lru-file-readonce, lru-file-readtwice and lru-file-mmap-read). I didn't see that much down on my VM (32c-64g-2nodes). It might be caused by the test configuration, which is 32c-256g with NUMA disabled and the tests were run in root memcg, so the tests actually stress only one inactive and active lru. It sounds not very usual in mordern production environment. That commit did two major changes: 1. Call page_evictable() 2. Use smp_mb to force the PG_lru set visible It looks they contribute the most overhead. The page_evictable() is a function which does function prologue and epilogue, and that was used by page reclaim path only. However, lru add is a very hot path, so it sounds better to make it inline. However, it calls page_mapping() which is not inlined either, but the disassemble shows it doesn't do push and pop operations and it sounds not very straightforward to inline it. Other than this, it sounds smp_mb() is not necessary for x86 since SetPageLRU is atomic which enforces memory barrier already, replace it with smp_mb__after_atomic() in the following patch. With the two fixes applied, the tests can get back around 5% on that test bench and get back normal on my VM. Since the test bench configuration is not that usual and I also saw around 6% up on the latest upstream, so it sounds good enough IMHO. The below is test data (lru-file-readtwice throughput) against the v5.6-rc4: mainline w/ inline fix 150MB 154MB With this patch the throughput gets 2.67% up. The data with using smp_mb__after_atomic() is showed in the following patch. Shakeel Butt did the below test: On a real machine with limiting the 'dd' on a single node and reading 100 GiB sparse file (less than a single node). Just ran a single instance to not cause the lru lock contention. The cmdline used is "dd if=file-100GiB of=/dev/null bs=4k". Ran the cmd 10 times with drop_caches in between and measured the time it took. Without patch: 56.64143 +- 0.672 sec With patches: 56.10 +- 0.21 sec [akpm@linux-foundation.org: move page_evictable() to internal.h] Fixes: 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1584500541-46817-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Gavin Shan
|
76073c646f |
mm/vmscan.c: don't round up scan size for online memory cgroup
Commit 68600f623d69 ("mm: don't miss the last page because of round-off error") makes the scan size round up to @denominator regardless of the memory cgroup's state, online or offline. This affects the overall reclaiming behavior: the corresponding LRU list is eligible for reclaiming only when its size logically right shifted by @sc->priority is bigger than zero in the former formula. For example, the inactive anonymous LRU list should have at least 0x4000 pages to be eligible for reclaiming when we have 60/12 for swappiness/priority and without taking scan/rotation ratio into account. After the roundup is applied, the inactive anonymous LRU list becomes eligible for reclaiming when its size is bigger than or equal to 0x1000 in the same condition. (0x4000 >> 12) * 60 / (60 + 140 + 1) = 1 ((0x1000 >> 12) * 60) + 200) / (60 + 140 + 1) = 1 aarch64 has 512MB huge page size when the base page size is 64KB. The memory cgroup that has a huge page is always eligible for reclaiming in that case. The reclaiming is likely to stop after the huge page is reclaimed, meaing the further iteration on @sc->priority and the silbing and child memory cgroups will be skipped. The overall behaviour has been changed. This fixes the issue by applying the roundup to offlined memory cgroups only, to give more preference to reclaim memory from offlined memory cgroup. It sounds reasonable as those memory is unlikedly to be used by anyone. The issue was found by starting up 8 VMs on a Ampere Mustang machine, which has 8 CPUs and 16 GB memory. Each VM is given with 2 vCPUs and 2GB memory. It took 264 seconds for all VMs to be completely up and 784MB swap is consumed after that. With this patch applied, it took 236 seconds and 60MB swap to do same thing. So there is 10% performance improvement for my case. Note that KSM is disable while THP is enabled in the testing. total used free shared buff/cache available Mem: 16196 10065 2049 16 4081 3749 Swap: 8175 784 7391 total used free shared buff/cache available Mem: 16196 11324 3656 24 1215 2936 Swap: 8175 60 8115 Link: http://lkml.kernel.org/r/20200211024514.8730-1-gshan@redhat.com Fixes: 68600f623d69 ("mm: don't miss the last page because of round-off error") Signed-off-by: Gavin Shan <gshan@redhat.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> [4.20+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
648b5cf368 |
mm/vmscan: remove unused RECLAIM_OFF/RECLAIM_ZONE
Commit 1b2ffb7896ad ("[PATCH] Zone reclaim: Allow modification of zone reclaim behavior")' defined RECLAIM_OFF/RECLAIM_ZONE, but never use them, so better to remove them. [dwagner@suse.de: fix sanity checks enabling] Link: http://lkml.kernel.org/r/20200116131642.642-1-dwagner@suse.de [akpm@linux-foundation.org: renumber the bits for neatness] Link: http://lkml.kernel.org/r/1579005573-58923-1-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Signed-off-by: Daniel Wagner <dwagner@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: "Tobin C. Harding" <tobin@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
fffbacc1ec |
mm/vmscan: remove prefetch_prev_lru_page
This macro was never used in git history. So better to remove. Link: http://lkml.kernel.org/r/1579006500-127143-1-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liu Song
|
6c9e0907fc |
mm/vmscan.c: remove unused return value of shrink_node
The return value of shrink_node is not used, so remove unnecessary operations. Link: http://lkml.kernel.org/r/20191128143524.3223-1-fishland@aliyun.com Signed-off-by: Liu Song <liu.song11@zte.com.cn> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
42a9a53bb3 |
mm: vmscan: protect shrinker idr replace with CONFIG_MEMCG
Since commit 0a432dcbeb32 ("mm: shrinker: make shrinker not depend on memcg kmem"), shrinkers' idr is protected by CONFIG_MEMCG instead of CONFIG_MEMCG_KMEM, so it makes no sense to protect shrinker idr replace with CONFIG_MEMCG_KMEM. And in the CONFIG_MEMCG && CONFIG_SLOB case, shrinker_idr contains only shrinker, and it is deferred_split_shrinker. But it is never actually called, since idr_replace() is never compiled due to the wrong #ifdef. The deferred_split_shrinker all the time is staying in half-registered state, and it's never called for subordinate mem cgroups. Link: http://lkml.kernel.org/r/1575486978-45249-1-git-send-email-yang.shi@linux.alibaba.com Fixes: 0a432dcbeb32 ("mm: shrinker: make shrinker not depend on memcg kmem") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> [5.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Xianting Tian
|
178821b897 |
mm/vmscan.c: fix typo in comment
Fix the typo "resheduled" -> "rescheduled" in comment Link: http://lkml.kernel.org/r/1573486327-9591-1-git-send-email-xianting_tian@126.com Signed-off-by: Xianting Tian <xianting_tian@126.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b91ac37434 |
mm: vmscan: enforce inactive:active ratio at the reclaim root
We split the LRU lists into inactive and an active parts to maximize workingset protection while allowing just enough inactive cache space to faciltate readahead and writeback for one-off file accesses (e.g. a linear scan through a file, or logging); or just enough inactive anon to maintain recent reference information when reclaim needs to swap. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, inactive:active size decisions are done on a per-cgroup level. As a result, we'll reclaim a cgroup's workingset when it doesn't have cold pages, even when one of its siblings has plenty of it that should be reclaimed first. For example: workload A has 50M worth of hot cache but doesn't do any one-off file accesses; meanwhile, parallel workload B scans files and rarely accesses the same page twice. If these workloads were to run in an uncgrouped system, A would be protected from the high rate of cache faults from B. But if they were put in parallel cgroups for memory accounting purposes, B's fast cache fault rate would push out the hot cache pages of A. This is unexpected and undesirable - the "scan resistance" of the page cache is broken. This patch moves inactive:active size balancing decisions to the root of reclaim - the same level where the LRU order is established. It does this by looking at the recursive size of the inactive and the active file sets of the cgroup subtree at the beginning of the reclaim cycle, and then making a decision - scan or skip active pages - that applies throughout the entire run and to every cgroup involved. With that in place, in the test above, the VM will recognize that there are plenty of inactive pages in the combined cache set of workloads A and B and prefer the one-off cache in B over the hot pages in A. The scan resistance of the cache is restored. [cai@lca.pw: fix some -Wenum-conversion warnings] Link: http://lkml.kernel.org/r/1573848697-29262-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20191107205334.158354-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Rik van Riel <riel@surriel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b910718a94 |
mm: vmscan: detect file thrashing at the reclaim root
We use refault information to determine whether the cache workingset is stable or transitioning, and dynamically adjust the inactive:active file LRU ratio so as to maximize protection from one-off cache during stable periods, and minimize IO during transitions. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, refaults only affect the local LRU order in the cgroup in which they are occuring. As a result, cache transitions can take longer in a cgrouped system as the active pages of sibling cgroups aren't challenged when they should be. [ Right now, this is somewhat theoretical, because the siblings, under continued regular reclaim pressure, should eventually run out of inactive pages - and since inactive:active *size* balancing is also done on a cgroup-local level, we will challenge the active pages eventually in most cases. But the next patch will move that relative size enforcement to the reclaim root as well, and then this patch here will be necessary to propagate refault pressure to siblings. ] This patch moves refault detection to the root of reclaim. Instead of remembering the cgroup owner of an evicted page, remember the cgroup that caused the reclaim to happen. When refaults later occur, they'll correctly influence the cross-cgroup LRU order that reclaim follows. I.e. if global reclaim kicked out pages in some subgroup A/B/C, the refault of those pages will challenge the global LRU order, and not just the local order down inside C. [hannes@cmpxchg.org: use page_memcg() instead of another lookup] Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
53138cea7f |
mm: vmscan: move file exhaustion detection to the node level
Patch series "mm: fix page aging across multiple cgroups". When applications are put into unconfigured cgroups for memory accounting purposes, the cgrouping itself should not change the behavior of the page reclaim code. We expect the VM to reclaim the coldest pages in the system. But right now the VM can reclaim hot pages in one cgroup while there is eligible cold cache in others. This is because one part of the reclaim algorithm isn't truly cgroup hierarchy aware: the inactive/active list balancing. That is the part that is supposed to protect hot cache data from one-off streaming IO. The recursive cgroup reclaim scheme will scan and rotate the physical LRU lists of each eligible cgroup at the same rate in a round-robin fashion, thereby establishing a relative order among the pages of all those cgroups. However, the inactive/active balancing decisions are made locally within each cgroup, so when a cgroup is running low on cold pages, its hot pages will get reclaimed - even when sibling cgroups have plenty of cold cache eligible in the same reclaim run. For example: [root@ham ~]# head -n1 /proc/meminfo MemTotal: 1016336 kB [root@ham ~]# ./reclaimtest2.sh Establishing 50M active files in cgroup A... Hot pages cached: 12800/12800 workingset-a Linearly scanning through 18G of file data in cgroup B: real 0m4.269s user 0m0.051s sys 0m4.182s Hot pages cached: 134/12800 workingset-a The streaming IO in B, which doesn't benefit from caching at all, pushes out most of the workingset in A. Solution This series fixes the problem by elevating inactive/active balancing decisions to the toplevel of the reclaim run. This is either a cgroup that hit its limit, or straight-up global reclaim if there is physical memory pressure. From there, it takes a recursive view of the cgroup subtree to decide whether page deactivation is necessary. In the test above, the VM will then recognize that cgroup B has plenty of eligible cold cache, and that the hot pages in A can be spared: [root@ham ~]# ./reclaimtest2.sh Establishing 50M active files in cgroup A... Hot pages cached: 12800/12800 workingset-a Linearly scanning through 18G of file data in cgroup B: real 0m4.244s user 0m0.064s sys 0m4.177s Hot pages cached: 12800/12800 workingset-a Implementation Whether active pages can be deactivated or not is influenced by two factors: the inactive list dropping below a minimum size relative to the active list, and the occurence of refaults. This patch series first moves refault detection to the reclaim root, then enforces the minimum inactive size based on a recursive view of the cgroup tree's LRUs. History Note that this actually never worked correctly in Linux cgroups. In the past it worked for global reclaim and leaf limit reclaim only (we used to have two physical LRU linkages per page), but it never worked for intermediate limit reclaim over multiple leaf cgroups. We're noticing this now because 1) we're putting everything into cgroups for accounting, not just the things we want to control and 2) we're moving away from leaf limits that invoke reclaim on individual cgroups, toward large tree reclaim, triggered by high-level limits, or physical memory pressure that is influenced by local protections such as memory.low and memory.min instead. This patch (of 3): When file pages are lower than the watermark on a node, we try to force scan anonymous pages to counter-act the balancing algorithms preference for new file pages when they are likely thrashing. This is a node-level decision, but it's currently made each time we look at an lruvec. This is unnecessarily expensive and also a layering violation that makes the code harder to understand. Clean this up by making the check once per node and setting a flag in the scan_control. Link: http://lkml.kernel.org/r/20191107205334.158354-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1b05117df7 |
mm: vmscan: harmonize writeback congestion tracking for nodes & memcgs
The current writeback congestion tracking has separate flags for kswapd reclaim (node level) and cgroup limit reclaim (memcg-node level). This is unnecessarily complicated: the lruvec is an existing abstraction layer for that node-memcg intersection. Introduce lruvec->flags and LRUVEC_CONGESTED. Then track that at the reclaim root level, which is either the NUMA node for global reclaim, or the cgroup-node intersection for cgroup reclaim. Link: http://lkml.kernel.org/r/20191022144803.302233-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
0f6a5cff43 |
mm: vmscan: split shrink_node() into node part and memcgs part
This function is getting long and unwieldy, split out the memcg bits. The updated shrink_node() handles the generic (node) reclaim aspects: - global vmpressure notifications - writeback and congestion throttling - reclaim/compaction management - kswapd giving up on unreclaimable nodes It then calls a new shrink_node_memcgs() which handles cgroup specifics: - the cgroup tree traversal - memory.low considerations - per-cgroup slab shrinking callbacks - per-cgroup vmpressure notifications [hannes@cmpxchg.org: rename "root" to "target_memcg", per Roman] Link: http://lkml.kernel.org/r/20191025143640.GA386981@cmpxchg.org Link: http://lkml.kernel.org/r/20191022144803.302233-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
afaf07a65d |
mm: vmscan: turn shrink_node_memcg() into shrink_lruvec()
An lruvec holds LRU pages owned by a certain NUMA node and cgroup. Instead of awkwardly passing around a combination of a pgdat and a memcg pointer, pass down the lruvec as soon as we can look it up. Nested callers that need to access node or cgroup properties can look them them up if necessary, but there are only a few cases. Link: http://lkml.kernel.org/r/20191022144803.302233-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
d2af339706 |
mm: vmscan: replace shrink_node() loop with a retry jump
Most of the function body is inside a loop, which imposes an additional indentation and scoping level that makes the code a bit hard to follow and modify. The looping only happens in case of reclaim-compaction, which isn't the common case. So rather than adding yet another function level to the reclaim path and have every reclaim invocation go through a level that only exists for one specific cornercase, use a retry goto. Link: http://lkml.kernel.org/r/20191022144803.302233-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b5ead35e7e |
mm: vmscan: naming fixes: global_reclaim() and sane_reclaim()
Seven years after introducing the global_reclaim() function, I still have to double take when reading a callsite. I don't know how others do it, this is a terrible name. Invert the meaning and rename it to cgroup_reclaim(). [ After all, "global reclaim" is just regular reclaim invoked from the page allocator. It's reclaim on behalf of a cgroup limit that is a special case of reclaim, and should be explicit - not the reverse. ] sane_reclaim() isn't very descriptive either: it tests whether we can use the regular writeback throttling - available during regular page reclaim or cgroup2 limit reclaim - or need to use the broken wait_on_page_writeback() method. Use "writeback_throttling_sane()". Link: http://lkml.kernel.org/r/20191022144803.302233-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
a108629149 |
mm: vmscan: move inactive_list_is_low() swap check to the caller
inactive_list_is_low() should be about one thing: checking the ratio between inactive and active list. Kitchensink checks like the one for swap space makes the function hard to use and modify its callsites. Luckly, most callers already have an understanding of the swap situation, so it's easy to clean up. get_scan_count() has its own, memcg-aware swap check, and doesn't even get to the inactive_list_is_low() check on the anon list when there is no swap space available. shrink_list() is called on the results of get_scan_count(), so that check is redundant too. age_active_anon() has its own totalswap_pages check right before it checks the list proportions. The shrink_node_memcg() site is the only one that doesn't do its own swap check. Add it there. Then delete the swap check from inactive_list_is_low(). Link: http://lkml.kernel.org/r/20191022144803.302233-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
867e5e1de1 |
mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being used is somewhat confusing right now, and it's easy to make mistakes - especially when it comes to global reclaim. How it works: when memory cgroups are enabled, we always use the root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled in or disabled at runtime, we use pgdat->lruvec. Document that in a comment. Due to the way the reclaim code is generalized, all lookups use the mem_cgroup_lruvec() helper function, and nobody should have to find the right lruvec manually right now. But to avoid future mistakes, rename the pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper that suggests it's a commonly accessed member. While in this area, swap the mem_cgroup_lruvec() argument order. The name suggests a memcg operation, yet it takes a pgdat first and a memcg second. I have to double take every time I call this. Fix that. Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
de3b01506e |
mm: vmscan: simplify lruvec_lru_size()
Patch series "mm: vmscan: cgroup-related cleanups". Here are 8 patches that clean up the reclaim code's interaction with cgroups a bit. They're not supposed to change any behavior, just make the implementation easier to understand and work with. This patch (of 8): This function currently takes the node or lruvec size and subtracts the zones that are excluded by the classzone index of the allocation. It uses four different types of counters to do this. Just add up the eligible zones. [cai@lca.pw: fix an undefined behavior for zone id] Link: http://lkml.kernel.org/r/20191108204407.1435-1-cai@lca.pw [akpm@linux-foundation.org: deal with the MAX_NR_ZONES special case. per Qian Cai] Link: http://lkml.kernel.org/r/64E60F6F-7582-427B-8DD5-EF97B1656F5A@lca.pw Link: http://lkml.kernel.org/r/20191022144803.302233-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
cb16556d91 |
mm/vmscan.c: remove unused scan_control parameter from pageout()
Since lumpy reclaim was removed in v3.5 scan_control is not used by may_write_to_{queue|inode} and pageout() anymore, remove the unused parameter. Link: http://lkml.kernel.org/r/1570124498-19300-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
f87bccde6a |
mm/vmscan: remove unused lru_pages argument
Since 9092c71bb724 ("mm: use sc->priority for slab shrink targets") the argument 'unsigned long *lru_pages' passed around with no purpose. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-4-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
fa40d1ee9f |
mm: vmscan: memcontrol: remove mem_cgroup_select_victim_node()
Since commit 1ba6fc9af35b ("mm: vmscan: do not share cgroup iteration between reclaimers"), the memcg reclaim does not bail out earlier based on sc->nr_reclaimed and will traverse all the nodes. All the reclaimable pages of the memcg on all the nodes will be scanned relative to the reclaim priority. So, there is no need to maintain state regarding which node to start the memcg reclaim from. This patch effectively reverts the commit 889976dbcb12 ("memcg: reclaim memory from nodes in round-robin order") and commit 453a9bf347f1 ("memcg: fix numa scan information update to be triggered by memory event"). [shakeelb@google.com: v2] Link: http://lkml.kernel.org/r/20191030204232.139424-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20191029234753.224143-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
William Kucharski
|
906d278d75 |
mm/vmscan.c: support removing arbitrary sized pages from mapping
__remove_mapping() assumes that pages can only be either base pages or HPAGE_PMD_SIZE. Ask the page what size it is. Link: http://lkml.kernel.org/r/20191017164223.2762148-4-songliubraving@fb.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Honglei Wang
|
b11edebbc9 |
mm: memcg: get number of pages on the LRU list in memcgroup base on lru_zone_size
Commit 1a61ab8038e72 ("mm: memcontrol: replace zone summing with lruvec_page_state()") has made lruvec_page_state to use per-cpu counters instead of calculating it directly from lru_zone_size with an idea that this would be more effective. Tim has reported that this is not really the case for their database benchmark which is showing an opposite results where lruvec_page_state is taking up a huge chunk of CPU cycles (about 25% of the system time which is roughly 7% of total cpu cycles) on 5.3 kernels. The workload is running on a larger machine (96cpus), it has many cgroups (500) and it is heavily direct reclaim bound. Tim Chen said: : The problem can also be reproduced by running simple multi-threaded : pmbench benchmark with a fast Optane SSD swap (see profile below). : : : 6.15% 3.08% pmbench [kernel.vmlinux] [k] lruvec_lru_size : | : |--3.07%--lruvec_lru_size : | | : | |--2.11%--cpumask_next : | | | : | | --1.66%--find_next_bit : | | : | --0.57%--call_function_interrupt : | | : | --0.55%--smp_call_function_interrupt : | : |--1.59%--0x441f0fc3d009 : | _ops_rdtsc_init_base_freq : | access_histogram : | page_fault : | __do_page_fault : | handle_mm_fault : | __handle_mm_fault : | | : | --1.54%--do_swap_page : | swapin_readahead : | swap_cluster_readahead : | | : | --1.53%--read_swap_cache_async : | __read_swap_cache_async : | alloc_pages_vma : | __alloc_pages_nodemask : | __alloc_pages_slowpath : | try_to_free_pages : | do_try_to_free_pages : | shrink_node : | shrink_node_memcg : | | : | |--0.77%--lruvec_lru_size : | | : | --0.76%--inactive_list_is_low : | | : | --0.76%--lruvec_lru_size : | : --1.50%--measure_read : page_fault : __do_page_fault : handle_mm_fault : __handle_mm_fault : do_swap_page : swapin_readahead : swap_cluster_readahead : | : --1.48%--read_swap_cache_async : __read_swap_cache_async : alloc_pages_vma : __alloc_pages_nodemask : __alloc_pages_slowpath : try_to_free_pages : do_try_to_free_pages : shrink_node : shrink_node_memcg : | : |--0.75%--inactive_list_is_low : | | : | --0.75%--lruvec_lru_size : | : --0.73%--lruvec_lru_size The likely culprit is the cache traffic the lruvec_page_state_local generates. Dave Hansen says: : I was thinking purely of the cache footprint. If it's reading : pn->lruvec_stat_local->count[idx] is three separate cachelines, so 192 : bytes of cache *96 CPUs = 18k of data, mostly read-only. 1 cgroup would : be 18k of data for the whole system and the caching would be pretty : efficient and all 18k would probably survive a tight page fault loop in : the L1. 500 cgroups would be ~90k of data per CPU thread which doesn't : fit in the L1 and probably wouldn't survive a tight page fault loop if : both logical threads were banging on different cgroups. : : It's just a theory, but it's why I noted the number of cgroups when I : initially saw this show up in profiles Fix the regression by partially reverting the said commit and calculate the lru size explicitly. Link: http://lkml.kernel.org/r/20190905071034.16822-1-honglei.wang@oracle.com Fixes: 1a61ab8038e72 ("mm: memcontrol: replace zone summing with lruvec_page_state()") Signed-off-by: Honglei Wang <honglei.wang@oracle.com> Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Tested-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: <stable@vger.kernel.org> [5.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
1bc63fb127 |
mm, memcg: make scan aggression always exclude protection
This patch is an incremental improvement on the existing memory.{low,min} relative reclaim work to base its scan pressure calculations on how much protection is available compared to the current usage, rather than how much the current usage is over some protection threshold. This change doesn't change the experience for the user in the normal case too much. One benefit is that it replaces the (somewhat arbitrary) 100% cutoff with an indefinite slope, which makes it easier to ballpark a memory.low value. As well as this, the old methodology doesn't quite apply generically to machines with varying amounts of physical memory. Let's say we have a top level cgroup, workload.slice, and another top level cgroup, system-management.slice. We want to roughly give 12G to system-management.slice, so on a 32GB machine we set memory.low to 20GB in workload.slice, and on a 64GB machine we set memory.low to 52GB. However, because these are relative amounts to the total machine size, while the amount of memory we want to generally be willing to yield to system.slice is absolute (12G), we end up putting more pressure on system.slice just because we have a larger machine and a larger workload to fill it, which seems fairly unintuitive. With this new behaviour, we don't end up with this unintended side effect. Previously the way that memory.low protection works is that if you are 50% over a certain baseline, you get 50% of your normal scan pressure. This is certainly better than the previous cliff-edge behaviour, but it can be improved even further by always considering memory under the currently enforced protection threshold to be out of bounds. This means that we can set relatively low memory.low thresholds for variable or bursty workloads while still getting a reasonable level of protection, whereas with the previous version we may still trivially hit the 100% clamp. The previous 100% clamp is also somewhat arbitrary, whereas this one is more concretely based on the currently enforced protection threshold, which is likely easier to reason about. There is also a subtle issue with the way that proportional reclaim worked previously -- it promotes having no memory.low, since it makes pressure higher during low reclaim. This happens because we base our scan pressure modulation on how far memory.current is between memory.min and memory.low, but if memory.low is unset, we only use the overage method. In most cromulent configurations, this then means that we end up with *more* pressure than with no memory.low at all when we're in low reclaim, which is not really very usable or expected. With this patch, memory.low and memory.min affect reclaim pressure in a more understandable and composable way. For example, from a user standpoint, "protected" memory now remains untouchable from a reclaim aggression standpoint, and users can also have more confidence that bursty workloads will still receive some amount of guaranteed protection. Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9de7ca46ad |
mm, memcg: make memory.emin the baseline for utilisation determination
Roman points out that when when we do the low reclaim pass, we scale the reclaim pressure relative to position between 0 and the maximum protection threshold. However, if the maximum protection is based on memory.elow, and memory.emin is above zero, this means we still may get binary behaviour on second-pass low reclaim. This is because we scale starting at 0, not starting at memory.emin, and since we don't scan at all below emin, we end up with cliff behaviour. This should be a fairly uncommon case since usually we don't go into the second pass, but it makes sense to scale our low reclaim pressure starting at emin. You can test this by catting two large sparse files, one in a cgroup with emin set to some moderate size compared to physical RAM, and another cgroup without any emin. In both cgroups, set an elow larger than 50% of physical RAM. The one with emin will have less page scanning, as reclaim pressure is lower. Rebase on top of and apply the same idea as what was applied to handle cgroup_memory=disable properly for the original proportional patch http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm, memcg: Handle cgroup_disable=memory when getting memcg protection"). Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Suggested-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9783aa9917 |
mm, memcg: proportional memory.{low,min} reclaim
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
1a4e58cce8 |
mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long time, it could hint kernel that the pages can be reclaimed instantly but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall. MADV_PAGEOUT can be used by a process to mark a memory range as not expected to be used for a long time so that kernel reclaims *any LRU* pages instantly. The hint can help kernel in deciding which pages to evict proactively. A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit intentionally because it's automatically bounded by PMD size. If PMD size(e.g., 256) makes some trouble, we could fix it later by limit it to SWAP_CLUSTER_MAX[1]. - man-page material MADV_PAGEOUT (since Linux x.x) Do not expect access in the near future so pages in the specified regions could be reclaimed instantly regardless of memory pressure. Thus, access in the range after successful operation could cause major page fault but never lose the up-to-date contents unlike MADV_DONTNEED. Pages belonging to a shared mapping are only processed if a write access is allowed for the calling process. MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/ [minchan@kernel.org: clear PG_active on MADV_PAGEOUT] Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
8940b34a4e |
mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM
The local variable references in shrink_page_list is PAGEREF_RECLAIM_CLEAN as default. It is for preventing to reclaim dirty pages when CMA try to migrate pages. Strictly speaking, we don't need it because CMA didn't allow to write out by .may_writepage = 0 in reclaim_clean_pages_from_list. Moreover, it has a problem to prevent anonymous pages's swap out even though force_reclaim = true in shrink_page_list on upcoming patch. So this patch makes references's default value to PAGEREF_RECLAIM and rename force_reclaim with ignore_references to make it more clear. This is a preparatory work for next patch. Link: http://lkml.kernel.org/r/20190726023435.214162-3-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: kbuild test robot <lkp@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
0a432dcbeb |
mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is enabled. But, THP deferred split shrinker is not slab shrinker, it doesn't make too much sense to have such shrinker depend on memcg kmem. It should be able to reclaim THP even though memcg kmem is disabled. Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker. When memcg kmem is disabled, just such shrinkers can be called in shrinking memcg slab. [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
7ae88534cd |
mm: move mem_cgroup_uncharge out of __page_cache_release()
A later patch makes THP deferred split shrinker memcg aware, but it needs page->mem_cgroup information in THP destructor, which is called after mem_cgroup_uncharge() now. So move mem_cgroup_uncharge() from __page_cache_release() to compound page destructor, which is called by both THP and other compound pages except HugeTLB. And call it in __put_single_page() for single order page. Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
5ee04716c4 |
mm, reclaim: cleanup should_continue_reclaim()
After commit "mm, reclaim: make should_continue_reclaim perform dryrun detection", closer look at the function shows, that nr_reclaimed == 0 means the function will always return false. And since non-zero nr_reclaimed implies non_zero nr_scanned, testing nr_scanned serves no purpose, and so does the testing for __GFP_RETRY_MAYFAIL. This patch thus cleans up the function to test only !nr_reclaimed upfront, and remove the __GFP_RETRY_MAYFAIL test and nr_scanned parameter completely. Comment is also updated, explaining that approximating "full LRU list has been scanned" with nr_scanned == 0 didn't really work. Link: http://lkml.kernel.org/r/20190806014744.15446-3-mike.kravetz@oracle.com Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hillf Danton
|
1c6c15971e |
mm, reclaim: make should_continue_reclaim perform dryrun detection
Patch series "address hugetlb page allocation stalls", v2. Allocation of hugetlb pages via sysctl or procfs can stall for minutes or hours. A simple example on a two node system with 8GB of memory is as follows: echo 4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages echo 4096 > /proc/sys/vm/nr_hugepages Obviously, both allocation attempts will fall short of their 8GB goal. However, one or both of these commands may stall and not be interruptible. The issues were initially discussed in mail thread [1] and RFC code at [2]. This series addresses the issues causing the stalls. There are two distinct fixes, a cleanup, and an optimization. The reclaim patch by Hillf and compaction patch by Vlasitmil address corner cases in their respective areas. hugetlb page allocation could stall due to either of these issues. Vlasitmil added a cleanup patch after Hillf's modifications. The hugetlb patch by Mike is an optimization suggested during the debug and development process. [1] http://lkml.kernel.org/r/d38a095e-dc39-7e82-bb76-2c9247929f07@oracle.com [2] http://lkml.kernel.org/r/20190724175014.9935-1-mike.kravetz@oracle.com This patch (of 4): Address the issue of should_continue_reclaim returning true too often for __GFP_RETRY_MAYFAIL attempts when !nr_reclaimed and nr_scanned. This was observed during hugetlb page allocation causing stalls for minutes or hours. We can stop reclaiming pages if compaction reports it can make a progress. There might be side-effects for other high-order allocations that would potentially benefit from reclaiming more before compaction so that they would be faster and less likely to stall. However, the consequences of premature/over-reclaim are considered worse. We can also bail out of reclaiming pages if we know that there are not enough inactive lru pages left to satisfy the costly allocation. We can give up reclaiming pages too if we see dryrun occur, with the certainty of plenty of inactive pages. IOW with dryrun detected, we are sure we have reclaimed as many pages as we could. Link: http://lkml.kernel.org/r/20190806014744.15446-2-mike.kravetz@oracle.com Signed-off-by: Hillf Danton <hdanton@sina.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1ba6fc9af3 |
mm: vmscan: do not share cgroup iteration between reclaimers
One of our services observed a high rate of cgroup OOM kills in the presence of large amounts of clean cache. Debugging showed that the culprit is the shared cgroup iteration in page reclaim. Under high allocation concurrency, multiple threads enter reclaim at the same time. Fearing overreclaim when we first switched from the single global LRU to cgrouped LRU lists, we introduced a shared iteration state for reclaim invocations - whether 1 or 20 reclaimers are active concurrently, we only walk the cgroup tree once: the 1st reclaimer reclaims the first cgroup, the second the second one etc. With more reclaimers than cgroups, we start another walk from the top. This sounded reasonable at the time, but the problem is that reclaim concurrency doesn't scale with allocation concurrency. As reclaim concurrency increases, the amount of memory individual reclaimers get to scan gets smaller and smaller. Individual reclaimers may only see one cgroup per cycle, and that may not have much reclaimable memory. We see individual reclaimers declare OOM when there is plenty of reclaimable memory available in cgroups they didn't visit. This patch does away with the shared iterator, and every reclaimer is allowed to scan the full cgroup tree and see all of reclaimable memory, just like it would on a non-cgrouped system. This way, when OOM is declared, we know that the reclaimer actually had a chance. To still maintain fairness in reclaim pressure, disallow cgroup reclaim from bailing out of the tree walk early. Kswapd and regular direct reclaim already don't bail, so it's not clear why limit reclaim would have to, especially since it only walks subtrees to begin with. This change completely eliminates the OOM kills on our service, while showing no signs of overreclaim - no increased scan rates, %sys time, or abrupt free memory spikes. I tested across 100 machines that have 64G of RAM and host about 300 cgroups each. [ It's possible overreclaim never was a *practical* issue to begin with - it was simply a concern we had on the mailing lists at the time, with no real data to back it up. But we have also added more bail-out conditions deeper inside reclaim (e.g. the proportional exit in shrink_node_memcg) since. Regardless, now we have data that suggests full walks are more reliable and scale just fine. ] Link: http://lkml.kernel.org/r/20190812192316.13615-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
d8c6546b1a |
mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page). Minor improvements in readability. Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
d2e5fb927e |
mm, memcg: do not set reclaim_state on soft limit reclaim
Adric Blake has noticed[1] the following warning: WARNING: CPU: 7 PID: 175 at mm/vmscan.c:245 set_task_reclaim_state+0x1e/0x40 [...] Call Trace: mem_cgroup_shrink_node+0x9b/0x1d0 mem_cgroup_soft_limit_reclaim+0x10c/0x3a0 balance_pgdat+0x276/0x540 kswapd+0x200/0x3f0 ? wait_woken+0x80/0x80 kthread+0xfd/0x130 ? balance_pgdat+0x540/0x540 ? kthread_park+0x80/0x80 ret_from_fork+0x35/0x40 ---[ end trace 727343df67b2398a ]--- which tells us that soft limit reclaim is about to overwrite the reclaim_state configured up in the call chain (kswapd in this case but the direct reclaim is equally possible). This means that reclaim stats would get misleading once the soft reclaim returns and another reclaim is done. Fix the warning by dropping set_task_reclaim_state from the soft reclaim which is always called with reclaim_state set up. [1] http://lkml.kernel.org/r/CAE1jjeePxYPvw1mw2B3v803xHVR_BNnz0hQUY_JDMN8ny29M6w@mail.gmail.com Link: http://lkml.kernel.org/r/20190828071808.20410-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Adric Blake <promarbler14@gmail.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
28360f3987 |
mm, vmscan: do not special-case slab reclaim when watermarks are boosted
Dave Chinner reported a problem pointing a finger at commit 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs"). The report is extensive: https://lore.kernel.org/linux-mm/20190807091858.2857-1-david@fromorbit.com/ and it's worth recording the most relevant parts (colorful language and typos included). When running a simple, steady state 4kB file creation test to simulate extracting tarballs larger than memory full of small files into the filesystem, I noticed that once memory fills up the cache balance goes to hell. The workload is creating one dirty cached inode for every dirty page, both of which should require a single IO each to clean and reclaim, and creation of inodes is throttled by the rate at which dirty writeback runs at (via balance dirty pages). Hence the ingest rate of new cached inodes and page cache pages is identical and steady. As a result, memory reclaim should quickly find a steady balance between page cache and inode caches. The moment memory fills, the page cache is reclaimed at a much faster rate than the inode cache, and evidence suggests that the inode cache shrinker is not being called when large batches of pages are being reclaimed. In roughly the same time period that it takes to fill memory with 50% pages and 50% slab caches, memory reclaim reduces the page cache down to just dirty pages and slab caches fill the entirety of memory. The LRU is largely full of dirty pages, and we're getting spikes of random writeback from memory reclaim so it's all going to shit. Behaviour never recovers, the page cache remains pinned at just dirty pages, and nothing I could tune would make any difference. vfs_cache_pressure makes no difference - I would set it so high it should trim the entire inode caches in a single pass, yet it didn't do anything. It was clear from tracing and live telemetry that the shrinkers were pretty much not running except when there was absolutely no memory free at all, and then they did the minimum necessary to free memory to make progress. So I went looking at the code, trying to find places where pages got reclaimed and the shrinkers weren't called. There's only one - kswapd doing boosted reclaim as per commit 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs"). The watermark boosting introduced by the commit is triggered in response to an allocation "fragmentation event". The boosting was not intended to target THP specifically and triggers even if THP is disabled. However, with Dave's perfectly reasonable workload, fragmentation events can be very common given the ratio of slab to page cache allocations so boosting remains active for long periods of time. As high-order allocations might use compaction and compaction cannot move slab pages the decision was made in the commit to special-case kswapd when watermarks are boosted -- kswapd avoids reclaiming slab as reclaiming slab does not directly help compaction. As Dave notes, this decision means that slab can be artificially protected for long periods of time and messes up the balance with slab and page caches. Removing the special casing can still indirectly help avoid fragmentation by avoiding fragmentation-causing events due to slab allocation as pages from a slab pageblock will have some slab objects freed. Furthermore, with the special casing, reclaim behaviour is unpredictable as kswapd sometimes examines slab and sometimes does not in a manner that is tricky to tune or analyse. This patch removes the special casing. The downside is that this is not a universal performance win. Some benchmarks that depend on the residency of data when rereading metadata may see a regression when slab reclaim is restored to its original behaviour. Similarly, some benchmarks that only read-once or write-once may perform better when page reclaim is too aggressive. The primary upside is that slab shrinker is less surprising (arguably more sane but that's a matter of opinion), behaves consistently regardless of the fragmentation state of the system and properly obeys VM sysctls. A fsmark benchmark configuration was constructed similar to what Dave reported and is codified by the mmtest configuration config-io-fsmark-small-file-stream. It was evaluated on a 1-socket machine to avoid dealing with NUMA-related issues and the timing of reclaim. The storage was an SSD Samsung Evo and a fresh trimmed XFS filesystem was used for the test data. This is not an exact replication of Dave's setup. The configuration scales its parameters depending on the memory size of the SUT to behave similarly across machines. The parameters mean the first sample reported by fs_mark is using 50% of RAM which will barely be throttled and look like a big outlier. Dave used fake NUMA to have multiple kswapd instances which I didn't replicate. Finally, the number of iterations differ from Dave's test as the target disk was not large enough. While not identical, it should be representative. fsmark 5.3.0-rc3 5.3.0-rc3 vanilla shrinker-v1r1 Min 1-files/sec 4444.80 ( 0.00%) 4765.60 ( 7.22%) 1st-qrtle 1-files/sec 5005.10 ( 0.00%) 5091.70 ( 1.73%) 2nd-qrtle 1-files/sec 4917.80 ( 0.00%) 4855.60 ( -1.26%) 3rd-qrtle 1-files/sec 4667.40 ( 0.00%) 4831.20 ( 3.51%) Max-1 1-files/sec 11421.50 ( 0.00%) 9999.30 ( -12.45%) Max-5 1-files/sec 11421.50 ( 0.00%) 9999.30 ( -12.45%) Max-10 1-files/sec 11421.50 ( 0.00%) 9999.30 ( -12.45%) Max-90 1-files/sec 4649.60 ( 0.00%) 4780.70 ( 2.82%) Max-95 1-files/sec 4491.00 ( 0.00%) 4768.20 ( 6.17%) Max-99 1-files/sec 4491.00 ( 0.00%) 4768.20 ( 6.17%) Max 1-files/sec 11421.50 ( 0.00%) 9999.30 ( -12.45%) Hmean 1-files/sec 5004.75 ( 0.00%) 5075.96 ( 1.42%) Stddev 1-files/sec 1778.70 ( 0.00%) 1369.66 ( 23.00%) CoeffVar 1-files/sec 33.70 ( 0.00%) 26.05 ( 22.71%) BHmean-99 1-files/sec 5053.72 ( 0.00%) 5101.52 ( 0.95%) BHmean-95 1-files/sec 5053.72 ( 0.00%) 5101.52 ( 0.95%) BHmean-90 1-files/sec 5107.05 ( 0.00%) 5131.41 ( 0.48%) BHmean-75 1-files/sec 5208.45 ( 0.00%) 5206.68 ( -0.03%) BHmean-50 1-files/sec 5405.53 ( 0.00%) 5381.62 ( -0.44%) BHmean-25 1-files/sec 6179.75 ( 0.00%) 6095.14 ( -1.37%) 5.3.0-rc3 5.3.0-rc3 vanillashrinker-v1r1 Duration User 501.82 497.29 Duration System 4401.44 4424.08 Duration Elapsed 8124.76 8358.05 This is showing a slight skew for the max result representing a large outlier for the 1st, 2nd and 3rd quartile are similar indicating that the bulk of the results show little difference. Note that an earlier version of the fsmark configuration showed a regression but that included more samples taken while memory was still filling. Note that the elapsed time is higher. Part of this is that the configuration included time to delete all the test files when the test completes -- the test automation handles the possibility of testing fsmark with multiple thread counts. Without the patch, many of these objects would be memory resident which is part of what the patch is addressing. There are other important observations that justify the patch. 1. With the vanilla kernel, the number of dirty pages in the system is very low for much of the test. With this patch, dirty pages is generally kept at 10% which matches vm.dirty_background_ratio which is normal expected historical behaviour. 2. With the vanilla kernel, the ratio of Slab/Pagecache is close to 0.95 for much of the test i.e. Slab is being left alone and dominating memory consumption. With the patch applied, the ratio varies between 0.35 and 0.45 with the bulk of the measured ratios roughly half way between those values. This is a different balance to what Dave reported but it was at least consistent. 3. Slabs are scanned throughout the entire test with the patch applied. The vanille kernel has periods with no scan activity and then relatively massive spikes. 4. Without the patch, kswapd scan rates are very variable. With the patch, the scan rates remain quite steady. 4. Overall vmstats are closer to normal expectations 5.3.0-rc3 5.3.0-rc3 vanilla shrinker-v1r1 Ops Direct pages scanned 99388.00 328410.00 Ops Kswapd pages scanned 45382917.00 33451026.00 Ops Kswapd pages reclaimed 30869570.00 25239655.00 Ops Direct pages reclaimed 74131.00 5830.00 Ops Kswapd efficiency % 68.02 75.45 Ops Kswapd velocity 5585.75 4002.25 Ops Page reclaim immediate 1179721.00 430927.00 Ops Slabs scanned 62367361.00 73581394.00 Ops Direct inode steals 2103.00 1002.00 Ops Kswapd inode steals 570180.00 5183206.00 o Vanilla kernel is hitting direct reclaim more frequently, not very much in absolute terms but the fact the patch reduces it is interesting o "Page reclaim immediate" in the vanilla kernel indicates dirty pages are being encountered at the tail of the LRU. This is generally bad and means in this case that the LRU is not long enough for dirty pages to be cleaned by the background flush in time. This is much reduced by the patch. o With the patch, kswapd is reclaiming 10 times more slab pages than with the vanilla kernel. This is indicative of the watermark boosting over-protecting slab A more complete set of tests were run that were part of the basis for introducing boosting and while there are some differences, they are well within tolerances. Bottom line, the special casing kswapd to avoid slab behaviour is unpredictable and can lead to abnormal results for normal workloads. This patch restores the expected behaviour that slab and page cache is balanced consistently for a workload with a steady allocation ratio of slab/pagecache pages. It also means that if there are workloads that favour the preservation of slab over pagecache that it can be tuned via vm.vfs_cache_pressure where as the vanilla kernel effectively ignores the parameter when boosting is active. Link: http://lkml.kernel.org/r/20190808182946.GM2739@techsingularity.net Fixes: 1c30844d2dfe ("mm: reclaim small amounts of memory when an external fragmentation event occurs") Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Dave Chinner <dchinner@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> [5.0+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
fa1e512fac |
mm: vmscan: check if mem cgroup is disabled or not before calling memcg slab shrinker
Shakeel Butt reported premature oom on kernel with "cgroup_disable=memory" since mem_cgroup_is_root() returns false even though memcg is actually NULL. The drop_caches is also broken. It is because commit aeed1d325d42 ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()") removed the !memcg check before !mem_cgroup_is_root(). And, surprisingly root memcg is allocated even though memory cgroup is disabled by kernel boot parameter. Add mem_cgroup_disabled() check to make reclaimer work as expected. Link: http://lkml.kernel.org/r/1563385526-20805-1-git-send-email-yang.shi@linux.alibaba.com Fixes: aeed1d325d42 ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reported-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jan Hadrava <had@kam.mff.cuni.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Hugh Dickins <hughd@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> [4.19+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
1732d2b011 |
mm/vmscan.c: add checks for incorrect handling of current->reclaim_state
Six sites are presently altering current->reclaim_state. There is a risk that one function stomps on a caller's value. Use a helper function to catch such errors. Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
0308f7cf19 |
mm/vmscan.c: calculate reclaimed slab caches in all reclaim paths
There are six different reclaim paths by now: - kswapd reclaim path - node reclaim path - hibernate preallocate memory reclaim path - direct reclaim path - memcg reclaim path - memcg softlimit reclaim path The slab caches reclaimed in these paths are only calculated in the above three paths. There're some drawbacks if we don't calculate the reclaimed slab caches. - The sc->nr_reclaimed isn't correct if there're some slab caches relcaimed in this path. - The slab caches may be reclaimed thoroughly if there're lots of reclaimable slab caches and few page caches. Let's take an easy example for this case. If one memcg is full of slab caches and the limit of it is 512M, in other words there're approximately 512M slab caches in this memcg. Then the limit of the memcg is reached and the memcg reclaim begins, and then in this memcg reclaim path it will continuesly reclaim the slab caches until the sc->priority drops to 0. After this reclaim stops, you will find there're few slab caches left, which is less than 20M in my test case. While after this patch applied the number is greater than 300M and the sc->priority only drops to 3. Link: http://lkml.kernel.org/r/1561112086-6169-3-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
e5ca8071fe |
mm/vmscan.c: add a new member reclaim_state in struct shrink_control
Patch series "mm/vmscan: calculate reclaimed slab in all reclaim paths". This patchset is to fix the issues in doing shrink slab. There're six different reclaim paths by now, - kswapd reclaim path - node reclaim path - hibernate preallocate memory reclaim path - direct reclaim path - memcg reclaim path - memcg softlimit reclaim path The slab caches reclaimed in these paths are only calculated in the above three paths. The issues are detailed explained in patch #2. We should calculate the reclaimed slab caches in every reclaim path. In order to do it, the struct reclaim_state is placed into the struct shrink_control. In node reclaim path, there'is another issue about shrinking slab, which is adressed in "mm/vmscan: shrink slab in node reclaim" (https://lore.kernel.org/linux-mm/1559874946-22960-1-git-send-email-laoar.shao@gmail.com/). This patch (of 2): The struct reclaim_state is used to record how many slab caches are reclaimed in one reclaim path. The struct shrink_control is used to control one reclaim path. So we'd better put reclaim_state into shrink_control. [laoar.shao@gmail.com: remove reclaim_state assignment from __perform_reclaim()] Link: http://lkml.kernel.org/r/1561381582-13697-1-git-send-email-laoar.shao@gmail.com Link: http://lkml.kernel.org/r/1561112086-6169-2-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
98879b3b9e |
mm: vmscan: correct some vmscan counters for THP swapout
Commit bd4c82c22c36 ("mm, THP, swap: delay splitting THP after swapped out"), THP can be swapped out in a whole. But, nr_reclaimed and some other vm counters still get inc'ed by one even though a whole THP (512 pages) gets swapped out. This doesn't make too much sense to memory reclaim. For example, direct reclaim may just need reclaim SWAP_CLUSTER_MAX pages, reclaiming one THP could fulfill it. But, if nr_reclaimed is not increased correctly, direct reclaim may just waste time to reclaim more pages, SWAP_CLUSTER_MAX * 512 pages in worst case. And, it may cause pgsteal_{kswapd|direct} is greater than pgscan_{kswapd|direct}, like the below: pgsteal_kswapd 122933 pgsteal_direct 26600225 pgscan_kswapd 174153 pgscan_direct 14678312 nr_reclaimed and nr_scanned must be fixed in parallel otherwise it would break some page reclaim logic, e.g. vmpressure: this looks at the scanned/reclaimed ratio so it won't change semantics as long as scanned & reclaimed are fixed in parallel. compaction/reclaim: compaction wants a certain number of physical pages freed up before going back to compacting. kswapd priority raising: kswapd raises priority if we scan fewer pages than the reclaim target (which itself is obviously expressed in order-0 pages). As a result, kswapd can falsely raise its aggressiveness even when it's making great progress. Other than nr_scanned and nr_reclaimed, some other counters, e.g. pgactivate, nr_skipped, nr_ref_keep and nr_unmap_fail need to be fixed too since they are user visible via cgroup, /proc/vmstat or trace points, otherwise they would be underreported. When isolating pages from LRUs, nr_taken has been accounted in base page, but nr_scanned and nr_skipped are still accounted in THP. It doesn't make too much sense too since this may cause trace point underreport the numbers as well. So accounting those counters in base page instead of accounting THP as one page. nr_dirty, nr_unqueued_dirty, nr_congested and nr_writeback are used by file cache, so they are not impacted by THP swap. This change may result in lower steal/scan ratio in some cases since THP may get split during page reclaim, then a part of tail pages get reclaimed instead of the whole 512 pages, but nr_scanned is accounted by 512, particularly for direct reclaim. But, this should be not a significant issue. Link: http://lkml.kernel.org/r/1559025859-72759-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
af5d440365 |
mm: vmscan: remove double slab pressure by inc'ing sc->nr_scanned
Commit 9092c71bb724 ("mm: use sc->priority for slab shrink targets") has broken up the relationship between sc->nr_scanned and slab pressure. The sc->nr_scanned can't double slab pressure anymore. So, it sounds no sense to still keep sc->nr_scanned inc'ed. Actually, it would prevent from adding pressure on slab shrink since excessive sc->nr_scanned would prevent from scan->priority raise. The bonnie test doesn't show this would change the behavior of slab shrinkers. w/ w/o /sec %CP /sec %CP Sequential delete: 3960.6 94.6 3997.6 96.2 Random delete: 2518 63.8 2561.6 64.6 The slight increase of "/sec" without the patch would be caused by the slight increase of CPU usage. Link: http://lkml.kernel.org/r/1559025859-72759-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kuo-Hsin Yang
|
2c012a4ad1 |
mm: vmscan: scan anonymous pages on file refaults
When file refaults are detected and there are many inactive file pages, the system never reclaim anonymous pages, the file pages are dropped aggressively when there are still a lot of cold anonymous pages and system thrashes. This issue impacts the performance of applications with large executable, e.g. chrome. With this patch, when file refault is detected, inactive_list_is_low() always returns true for file pages in get_scan_count() to enable scanning anonymous pages. The problem can be reproduced by the following test program. ---8<--- void fallocate_file(const char *filename, off_t size) { struct stat st; int fd; if (!stat(filename, &st) && st.st_size >= size) return; fd = open(filename, O_WRONLY | O_CREAT, 0600); if (fd < 0) { perror("create file"); exit(1); } if (posix_fallocate(fd, 0, size)) { perror("fallocate"); exit(1); } close(fd); } long *alloc_anon(long size) { long *start = malloc(size); memset(start, 1, size); return start; } long access_file(const char *filename, long size, long rounds) { int fd, i; volatile char *start1, *end1, *start2; const int page_size = getpagesize(); long sum = 0; fd = open(filename, O_RDONLY); if (fd == -1) { perror("open"); exit(1); } /* * Some applications, e.g. chrome, use a lot of executable file * pages, map some of the pages with PROT_EXEC flag to simulate * the behavior. */ start1 = mmap(NULL, size / 2, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); if (start1 == MAP_FAILED) { perror("mmap"); exit(1); } end1 = start1 + size / 2; start2 = mmap(NULL, size / 2, PROT_READ, MAP_SHARED, fd, size / 2); if (start2 == MAP_FAILED) { perror("mmap"); exit(1); } for (i = 0; i < rounds; ++i) { struct timeval before, after; volatile char *ptr1 = start1, *ptr2 = start2; gettimeofday(&before, NULL); for (; ptr1 < end1; ptr1 += page_size, ptr2 += page_size) sum += *ptr1 + *ptr2; gettimeofday(&after, NULL); printf("File access time, round %d: %f (sec) ", i, (after.tv_sec - before.tv_sec) + (after.tv_usec - before.tv_usec) / 1000000.0); } return sum; } int main(int argc, char *argv[]) { const long MB = 1024 * 1024; long anon_mb, file_mb, file_rounds; const char filename[] = "large"; long *ret1; long ret2; if (argc != 4) { printf("usage: thrash ANON_MB FILE_MB FILE_ROUNDS "); exit(0); } anon_mb = atoi(argv[1]); file_mb = atoi(argv[2]); file_rounds = atoi(argv[3]); fallocate_file(filename, file_mb * MB); printf("Allocate %ld MB anonymous pages ", anon_mb); ret1 = alloc_anon(anon_mb * MB); printf("Access %ld MB file pages ", file_mb); ret2 = access_file(filename, file_mb * MB, file_rounds); printf("Print result to prevent optimization: %ld ", *ret1 + ret2); return 0; } ---8<--- Running the test program on 2GB RAM VM with kernel 5.2.0-rc5, the program fills ram with 2048 MB memory, access a 200 MB file for 10 times. Without this patch, the file cache is dropped aggresively and every access to the file is from disk. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.489316 (sec) File access time, round 1: 2.581277 (sec) File access time, round 2: 2.487624 (sec) File access time, round 3: 2.449100 (sec) File access time, round 4: 2.420423 (sec) File access time, round 5: 2.343411 (sec) File access time, round 6: 2.454833 (sec) File access time, round 7: 2.483398 (sec) File access time, round 8: 2.572701 (sec) File access time, round 9: 2.493014 (sec) With this patch, these file pages can be cached. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.475189 (sec) File access time, round 1: 2.440777 (sec) File access time, round 2: 2.411671 (sec) File access time, round 3: 1.955267 (sec) File access time, round 4: 0.029924 (sec) File access time, round 5: 0.000808 (sec) File access time, round 6: 0.000771 (sec) File access time, round 7: 0.000746 (sec) File access time, round 8: 0.000738 (sec) File access time, round 9: 0.000747 (sec) Checked the swap out stats during the test [1], 19006 pages swapped out with this patch, 3418 pages swapped out without this patch. There are more swap out, but I think it's within reasonable range when file backed data set doesn't fit into the memory. $ ./thrash 2000 100 2100 5 1 # ANON_MB FILE_EXEC FILE_NOEXEC ROUNDS PROCESSES Allocate 2000 MB anonymous pages active_anon: 1613644, inactive_anon: 348656, active_file: 892, inactive_file: 1384 (kB) pswpout: 7972443, pgpgin: 478615246 Access 100 MB executable file pages Access 2100 MB regular file pages File access time, round 0: 12.165, (sec) active_anon: 1433788, inactive_anon: 478116, active_file: 17896, inactive_file: 24328 (kB) File access time, round 1: 11.493, (sec) active_anon: 1430576, inactive_anon: 477144, active_file: 25440, inactive_file: 26172 (kB) File access time, round 2: 11.455, (sec) active_anon: 1427436, inactive_anon: 476060, active_file: 21112, inactive_file: 28808 (kB) File access time, round 3: 11.454, (sec) active_anon: 1420444, inactive_anon: 473632, active_file: 23216, inactive_file: 35036 (kB) File access time, round 4: 11.479, (sec) active_anon: 1413964, inactive_anon: 471460, active_file: 31728, inactive_file: 32224 (kB) pswpout: 7991449 (+ 19006), pgpgin: 489924366 (+ 11309120) With 4 processes accessing non-overlapping parts of a large file, 30316 pages swapped out with this patch, 5152 pages swapped out without this patch. The swapout number is small comparing to pgpgin. [1]: https://github.com/vovo/testing/blob/master/mem_thrash.c Link: http://lkml.kernel.org/r/20190701081038.GA83398@google.com Fixes: e9868505987a ("mm,vmscan: only evict file pages when we have plenty") Fixes: 7c5bd705d8f9 ("mm: memcg: only evict file pages when we have plenty") Signed-off-by: Kuo-Hsin Yang <vovoy@chromium.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Sonny Rao <sonnyrao@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> [4.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
dffcac2cb8 |
mm/vmscan.c: prevent useless kswapd loops
In production we have noticed hard lockups on large machines running large jobs due to kswaps hoarding lru lock within isolate_lru_pages when sc->reclaim_idx is 0 which is a small zone. The lru was couple hundred GiBs and the condition (page_zonenum(page) > sc->reclaim_idx) in isolate_lru_pages() was basically skipping GiBs of pages while holding the LRU spinlock with interrupt disabled. On further inspection, it seems like there are two issues: (1) If kswapd on the return from balance_pgdat() could not sleep (i.e. node is still unbalanced), the classzone_idx is unintentionally set to 0 and the whole reclaim cycle of kswapd will try to reclaim only the lowest and smallest zone while traversing the whole memory. (2) Fundamentally isolate_lru_pages() is really bad when the allocation has woken kswapd for a smaller zone on a very large machine running very large jobs. It can hoard the LRU spinlock while skipping over 100s of GiBs of pages. This patch only fixes (1). (2) needs a more fundamental solution. To fix (1), in the kswapd context, if pgdat->kswapd_classzone_idx is invalid use the classzone_idx of the previous kswapd loop otherwise use the one the waker has requested. Link: http://lkml.kernel.org/r/20190701201847.251028-1-shakeelb@google.com Fixes: e716f2eb24de ("mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
a58f2cef26 |
mm/vmscan.c: fix trying to reclaim unevictable LRU page
There was the below bug report from Wu Fangsuo. On the CMA allocation path, isolate_migratepages_range() could isolate unevictable LRU pages and reclaim_clean_page_from_list() can try to reclaim them if they are clean file-backed pages. page:ffffffbf02f33b40 count:86 mapcount:84 mapping:ffffffc08fa7a810 index:0x24 flags: 0x19040c(referenced|uptodate|arch_1|mappedtodisk|unevictable|mlocked) raw: 000000000019040c ffffffc08fa7a810 0000000000000024 0000005600000053 raw: ffffffc009b05b20 ffffffc009b05b20 0000000000000000 ffffffc09bf3ee80 page dumped because: VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page)) page->mem_cgroup:ffffffc09bf3ee80 ------------[ cut here ]------------ kernel BUG at /home/build/farmland/adroid9.0/kernel/linux/mm/vmscan.c:1350! Internal error: Oops - BUG: 0 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 7125 Comm: syz-executor Tainted: G S 4.14.81 #3 Hardware name: ASR AQUILAC EVB (DT) task: ffffffc00a54cd00 task.stack: ffffffc009b00000 PC is at shrink_page_list+0x1998/0x3240 LR is at shrink_page_list+0x1998/0x3240 pc : [<ffffff90083a2158>] lr : [<ffffff90083a2158>] pstate: 60400045 sp : ffffffc009b05940 .. shrink_page_list+0x1998/0x3240 reclaim_clean_pages_from_list+0x3c0/0x4f0 alloc_contig_range+0x3bc/0x650 cma_alloc+0x214/0x668 ion_cma_allocate+0x98/0x1d8 ion_alloc+0x200/0x7e0 ion_ioctl+0x18c/0x378 do_vfs_ioctl+0x17c/0x1780 SyS_ioctl+0xac/0xc0 Wu found it's due to commit ad6b67041a45 ("mm: remove SWAP_MLOCK in ttu"). Before that, unevictable pages go to cull_mlocked so that we can't reach the VM_BUG_ON_PAGE line. To fix the issue, this patch filters out unevictable LRU pages from the reclaim_clean_pages_from_list in CMA. Link: http://lkml.kernel.org/r/20190524071114.74202-1-minchan@kernel.org Fixes: ad6b67041a45 ("mm: remove SWAP_MLOCK in ttu") Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Wu Fangsuo <fangsuowu@asrmicro.com> Debugged-by: Wu Fangsuo <fangsuowu@asrmicro.com> Tested-by: Wu Fangsuo <fangsuowu@asrmicro.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Pankaj Suryawanshi <pankaj.suryawanshi@einfochips.com> Cc: <stable@vger.kernel.org> [4.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b17f18aff2 |
mm/vmscan.c: fix recent_rotated history
Johannes pointed out that after commit 886cf1901db9 ("mm: move recent_rotated pages calculation to shrink_inactive_list()") we lost all zone_reclaim_stat::recent_rotated history. This fixes it. Link: http://lkml.kernel.org/r/155905972210.26456.11178359431724024112.stgit@localhost.localdomain Fixes: 886cf1901db9 ("mm: move recent_rotated pages calculation to shrink_inactive_list()") Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reported-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
205b20cc5a |
mm: memcontrol: make cgroup stats and events query API explicitly local
Patch series "mm: memcontrol: memory.stat cost & correctness". The cgroup memory.stat file holds recursive statistics for the entire subtree. The current implementation does this tree walk on-demand whenever the file is read. This is giving us problems in production. 1. The cost of aggregating the statistics on-demand is high. A lot of system service cgroups are mostly idle and their stats don't change between reads, yet we always have to check them. There are also always some lazily-dying cgroups sitting around that are pinned by a handful of remaining page cache; the same applies to them. In an application that periodically monitors memory.stat in our fleet, we have seen the aggregation consume up to 5% CPU time. 2. When cgroups die and disappear from the cgroup tree, so do their accumulated vm events. The result is that the event counters at higher-level cgroups can go backwards and confuse some of our automation, let alone people looking at the graphs over time. To address both issues, this patch series changes the stat implementation to spill counts upwards when the counters change. The upward spilling is batched using the existing per-cpu cache. In a sparse file stress test with 5 level cgroup nesting, the additional cost of the flushing was negligible (a little under 1% of CPU at 100% CPU utilization, compared to the 5% of reading memory.stat during regular operation). This patch (of 4): memcg_page_state(), lruvec_page_state(), memcg_sum_events() are currently returning the state of the local memcg or lruvec, not the recursive state. In practice there is a demand for both versions, although the callers that want the recursive counts currently sum them up by hand. Per default, cgroups are considered recursive entities and generally we expect more users of the recursive counters, with the local counts being special cases. To reflect that in the name, add a _local suffix to the current implementations. The following patch will re-incarnate these functions with recursive semantics, but with an O(1) implementation. [hannes@cmpxchg.org: fix bisection hole] Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
2fa2690ca6 |
mm/vmscan.c: don't disable irq again when count pgrefill for memcg
We can use __count_memcg_events() directly because this callsite is alreay protected by spin_lock_irq(). Link: http://lkml.kernel.org/r/1556093494-30798-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f46b79120e |
mm/vmscan.c: simplify shrink_inactive_list()
This merges together duplicated patterns of code. Also, replace count_memcg_events() with its irq-careless namesake, because they are already called in interrupts disabled context. Link: http://lkml.kernel.org/r/2ece1df4-2989-bc9b-6172-61e9fdde5bfd@virtuozzo.com Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Baoquan He <bhe@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
3481c37ffa |
mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin template
There are three tracepoints using this template, which are mm_vmscan_direct_reclaim_begin, mm_vmscan_memcg_reclaim_begin, mm_vmscan_memcg_softlimit_reclaim_begin. Regarding mm_vmscan_direct_reclaim_begin, sc.may_writepage is !laptop_mode, that's a static setting, and reclaim_idx is derived from gfp_mask which is already show in this tracepoint. Regarding mm_vmscan_memcg_reclaim_begin, may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1), which are both static value. mm_vmscan_memcg_softlimit_reclaim_begin is the same with mm_vmscan_memcg_reclaim_begin. So we can drop them all. Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |