IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If memory allocation in cpu_initialize_context() fails then it will
bring up the VCPU and leave with the corresponding CPU bit set in
xen_cpu_initialized_map.
The following (presumably successful) CPU bring up will BUG in
xen_pv_cpu_up() because nothing for that VCPU would be initialized.
Clear the CPU bits, that were set in cpu_initialize_context() in case
the memory allocation fails.
[ bigeasy: Creating a patch from Boris' email. ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220209080214.1439408-2-bigeasy@linutronix.de
is_xen_pmu() is taking the cpu number as parameter, but it is not using
it. Instead it just tests whether the Xen PMU initialization on the
current cpu did succeed. As this test is done by checking a percpu
pointer, preemption needs to be disabled in order to avoid switching
the cpu while doing the test. While resuming from suspend() this seems
not to be the case:
[ 88.082751] ACPI: PM: Low-level resume complete
[ 88.087933] ACPI: EC: EC started
[ 88.091464] ACPI: PM: Restoring platform NVS memory
[ 88.097166] xen_acpi_processor: Uploading Xen processor PM info
[ 88.103850] Enabling non-boot CPUs ...
[ 88.108128] installing Xen timer for CPU 1
[ 88.112763] BUG: using smp_processor_id() in preemptible [00000000] code: systemd-sleep/7138
[ 88.122256] caller is is_xen_pmu+0x12/0x30
[ 88.126937] CPU: 0 PID: 7138 Comm: systemd-sleep Tainted: G W 5.16.13-2.fc32.qubes.x86_64 #1
[ 88.137939] Hardware name: Star Labs StarBook/StarBook, BIOS 7.97 03/21/2022
[ 88.145930] Call Trace:
[ 88.148757] <TASK>
[ 88.151193] dump_stack_lvl+0x48/0x5e
[ 88.155381] check_preemption_disabled+0xde/0xe0
[ 88.160641] is_xen_pmu+0x12/0x30
[ 88.164441] xen_smp_intr_init_pv+0x75/0x100
Fix that by replacing is_xen_pmu() by a simple boolean variable which
reflects the Xen PMU initialization state on cpu 0.
Modify xen_pmu_init() to return early in case it is being called for a
cpu other than cpu 0 and the boolean variable not being set.
Fixes: bf6dfb154d ("xen/PMU: PMU emulation code")
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20220325142002.31789-1-jgross@suse.com
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
This started out with me noticing that "dom0_max_vcpus=<N>" with <N>
larger than the number of physical CPUs reported through ACPI tables
would not bring up the "excess" vCPU-s. Addressing this is the primary
purpose of the change; CPU maps handling is being tidied only as far as
is necessary for the change here (with the effect of also avoiding the
setting up of too much per-CPU infrastructure, i.e. for CPUs which can
never come online).
Noticing that xen_fill_possible_map() is called way too early, whereas
xen_filter_cpu_maps() is called too late (after per-CPU areas were
already set up), and further observing that each of the functions serves
only one of Dom0 or DomU, it looked like it was better to simplify this.
Use the .get_smp_config hook instead, uniformly for Dom0 and DomU.
xen_fill_possible_map() can be dropped altogether, while
xen_filter_cpu_maps() is re-purposed but not otherwise changed.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/2dbd5f0a-9859-ca2d-085e-a02f7166c610@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
Commit 66558b730f ("sched: Add cluster scheduler level for x86")
introduced cpu_l2c_shared_map mask which is expected to be initialized
by smp_op.smp_prepare_cpus(). That commit only updated
native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus().
As result Xen PV guests crash in set_cpu_sibling_map().
While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can
see that both versions of smp_prepare_cpus ops share a number of common
operations that can be factored out. So do that instead.
Fixes: 66558b730f ("sched: Add cluster scheduler level for x86")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
All these handlers are regular device interrupt handlers, so they already
went through the proper entry code which handles this correctly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: x86@kernel.org
Cc: xen-devel@lists.xenproject.org
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/877deicqqy.ffs@tglx
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Just after having obtained the pointer from kzalloc() there's no reason
at all to set part of the area to all zero yet another time. Similarly
there's no point explicitly clearing "ldt_ents".
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrvsky@oracle.com>
Link: https://lore.kernel.org/r/14881835-a48e-29fa-0870-e177b10fcf65@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
In cpu_bringup() there is a call of preempt_disable() without a paired
preempt_enable(). This is not needed as interrupts are off initially.
Additionally this will result in early boot messages like:
BUG: scheduling while atomic: swapper/1/0/0x00000002
Signed-off-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20210825113158.11716-1-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXzaSXAAKCRCAXGG7T9hj
vuSEAP4qOIv7Hr1wMJfTsN7ZoNNr/K6ph8ADcjFm9RGikn8MawD8CU/OfcFKJFwl
UVwM1HPnRG6pvCI9bmHS4WYrIBYBVw0=
=Bi6R
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.9-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull more xen updates from Juergen Gross:
- Remove support for running as 32-bit Xen PV-guest.
32-bit PV guests are rarely used, are lacking security fixes for
Meltdown, and can be easily replaced by PVH mode. Another series for
doing more cleanup will follow soon (removal of 32-bit-only pvops
functionality).
- Fixes and additional features for the Xen display frontend driver.
* tag 'for-linus-5.9-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
drm/xen-front: Pass dumb buffer data offset to the backend
xen: Sync up with the canonical protocol definition in Xen
drm/xen-front: Add YUYV to supported formats
drm/xen-front: Fix misused IS_ERR_OR_NULL checks
xen/gntdev: Fix dmabuf import with non-zero sgt offset
x86/xen: drop tests for highmem in pv code
x86/xen: eliminate xen-asm_64.S
x86/xen: remove 32-bit Xen PV guest support
Xen is requiring 64-bit machines today and since Xen 4.14 it can be
built without 32-bit PV guest support. There is no need to carry the
burden of 32-bit PV guest support in the kernel any longer, as new
guests can be either HVM or PVH, or they can use a 64 bit kernel.
Remove the 32-bit Xen PV support from the kernel.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
- Untangle the header spaghetti which causes build failures in various
situations caused by the lockdep additions to seqcount to validate that
the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict per
CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot
validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored and
write_seqcount_begin() has a lockdep assertion to validate that the
lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API is
unchanged and determines the type at compile time with the help of
_Generic which is possible now that the minimal GCC version has been
moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs which
have been addressed already independent of this.
While generaly useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if the
writers are serialized by an associated lock, which leads to the well
known reader preempts writer livelock. RT prevents this by storing the
associated lock pointer independent of lockdep in the seqcount and
changing the reader side to block on the lock when a reader detects
that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and initializers.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8xmPYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoTuQEACyzQCjU8PgehPp9oMqWzaX2fcVyuZO
QU2yw6gmz2oTz3ZHUNwdW8UnzGh2OWosK3kDruoD9FtSS51lER1/ISfSPCGfyqxC
KTjOcB1Kvxwq/3LcCx7Zi3ZxWApat74qs3EhYhKtEiQ2Y9xv9rLq8VV1UWAwyxq0
eHpjlIJ6b6rbt+ARslaB7drnccOsdK+W/roNj4kfyt+gezjBfojGRdMGQNMFcpnv
shuTC+vYurAVIiVA/0IuizgHfwZiXOtVpjVoEWaxg6bBH6HNuYMYzdSa/YrlDkZs
n/aBI/Xkvx+Eacu8b1Zwmbzs5EnikUK/2dMqbzXKUZK61eV4hX5c2xrnr1yGWKTs
F/juh69Squ7X6VZyKVgJ9RIccVueqwR2EprXWgH3+RMice5kjnXH4zURp0GHALxa
DFPfB6fawcH3Ps87kcRFvjgm6FBo0hJ1AxmsW1dY4ACFB9azFa2euW+AARDzHOy2
VRsUdhL9CGwtPjXcZ/9Rhej6fZLGBXKr8uq5QiMuvttp4b6+j9FEfBgD4S6h8csl
AT2c2I9LcbWqyUM9P4S7zY/YgOZw88vHRuDH7tEBdIeoiHfrbSBU7EQ9jlAKq/59
f+Htu2Io281c005g7DEeuCYvpzSYnJnAitj5Lmp/kzk2Wn3utY1uIAVszqwf95Ul
81ppn2KlvzUK8g==
=7Gj+
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
"A set of locking fixes and updates:
- Untangle the header spaghetti which causes build failures in
various situations caused by the lockdep additions to seqcount to
validate that the write side critical sections are non-preemptible.
- The seqcount associated lock debug addons which were blocked by the
above fallout.
seqcount writers contrary to seqlock writers must be externally
serialized, which usually happens via locking - except for strict
per CPU seqcounts. As the lock is not part of the seqcount, lockdep
cannot validate that the lock is held.
This new debug mechanism adds the concept of associated locks.
sequence count has now lock type variants and corresponding
initializers which take a pointer to the associated lock used for
writer serialization. If lockdep is enabled the pointer is stored
and write_seqcount_begin() has a lockdep assertion to validate that
the lock is held.
Aside of the type and the initializer no other code changes are
required at the seqcount usage sites. The rest of the seqcount API
is unchanged and determines the type at compile time with the help
of _Generic which is possible now that the minimal GCC version has
been moved up.
Adding this lockdep coverage unearthed a handful of seqcount bugs
which have been addressed already independent of this.
While generally useful this comes with a Trojan Horse twist: On RT
kernels the write side critical section can become preemtible if
the writers are serialized by an associated lock, which leads to
the well known reader preempts writer livelock. RT prevents this by
storing the associated lock pointer independent of lockdep in the
seqcount and changing the reader side to block on the lock when a
reader detects that a writer is in the write side critical section.
- Conversion of seqcount usage sites to associated types and
initializers"
* tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
locking/seqlock, headers: Untangle the spaghetti monster
locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header
x86/headers: Remove APIC headers from <asm/smp.h>
seqcount: More consistent seqprop names
seqcount: Compress SEQCNT_LOCKNAME_ZERO()
seqlock: Fold seqcount_LOCKNAME_init() definition
seqlock: Fold seqcount_LOCKNAME_t definition
seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g
hrtimer: Use sequence counter with associated raw spinlock
kvm/eventfd: Use sequence counter with associated spinlock
userfaultfd: Use sequence counter with associated spinlock
NFSv4: Use sequence counter with associated spinlock
iocost: Use sequence counter with associated spinlock
raid5: Use sequence counter with associated spinlock
vfs: Use sequence counter with associated spinlock
timekeeping: Use sequence counter with associated raw spinlock
xfrm: policy: Use sequence counters with associated lock
netfilter: nft_set_rbtree: Use sequence counter with associated rwlock
netfilter: conntrack: Use sequence counter with associated spinlock
sched: tasks: Use sequence counter with associated spinlock
...
The APIC headers are relatively complex and bring in additional
header dependencies - while smp.h is a relatively simple header
included from high level headers.
Remove the dependency and add in the missing #include's in .c
files where they gained it indirectly before.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The idle tasks created for each secondary CPU already have a random stack
canary generated by fork(). Copy the canary to the percpu variable before
starting the secondary CPU which removes the need to call
boot_init_stack_canary().
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200617225624.799335-1-brgerst@gmail.com
Convert the XEN/PV hypercall to IDTENTRY:
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64-bit
- Remove the open coded ASM entry code in 32-bit
- Remove the old prototypes
The handler stubs need to stay in ASM code as they need corner case handling
and adjustment of the stack pointer.
Provide a new C function which invokes the entry/exit handling and calls
into the XEN handler on the interrupt stack if required.
The exit code is slightly different from the regular idtentry_exit() on
non-preemptible kernels. If the hypercall is preemptible and need_resched()
is set then XEN provides a preempt hypercall scheduling function.
Move this functionality into the entry code so it can use the existing
idtentry functionality.
[ mingo: Build fixes. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Juergen Gross <jgross@suse.com>
Tested-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20200521202118.055270078@linutronix.de
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... or the odyssey of trying to disable the stack protector for the
function which generates the stack canary value.
The whole story started with Sergei reporting a boot crash with a kernel
built with gcc-10:
Kernel panic — not syncing: stack-protector: Kernel stack is corrupted in: start_secondary
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc5—00235—gfffb08b37df9 #139
Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./H77M—D3H, BIOS F12 11/14/2013
Call Trace:
dump_stack
panic
? start_secondary
__stack_chk_fail
start_secondary
secondary_startup_64
-—-[ end Kernel panic — not syncing: stack—protector: Kernel stack is corrupted in: start_secondary
This happens because gcc-10 tail-call optimizes the last function call
in start_secondary() - cpu_startup_entry() - and thus emits a stack
canary check which fails because the canary value changes after the
boot_init_stack_canary() call.
To fix that, the initial attempt was to mark the one function which
generates the stack canary with:
__attribute__((optimize("-fno-stack-protector"))) ... start_secondary(void *unused)
however, using the optimize attribute doesn't work cumulatively
as the attribute does not add to but rather replaces previously
supplied optimization options - roughly all -fxxx options.
The key one among them being -fno-omit-frame-pointer and thus leading to
not present frame pointer - frame pointer which the kernel needs.
The next attempt to prevent compilers from tail-call optimizing
the last function call cpu_startup_entry(), shy of carving out
start_secondary() into a separate compilation unit and building it with
-fno-stack-protector, was to add an empty asm("").
This current solution was short and sweet, and reportedly, is supported
by both compilers but we didn't get very far this time: future (LTO?)
optimization passes could potentially eliminate this, which leads us
to the third attempt: having an actual memory barrier there which the
compiler cannot ignore or move around etc.
That should hold for a long time, but hey we said that about the other
two solutions too so...
Reported-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kalle Valo <kvalo@codeaurora.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200314164451.346497-1-slyfox@gentoo.org
The unwinder reports the secondary CPU idle tasks' stack on XEN PV as
unreliable, which affects at least live patching.
cpu_initialize_context() sets up the context of the CPU through
VCPUOP_initialise hypercall. After it is woken up, the idle task starts
in cpu_bringup_and_idle() function and its stack starts at the offset
right below pt_regs. The unwinder correctly detects the end of stack
there but it is confused by NULL return address in the last frame.
Introduce a wrapper in assembly, which just calls
cpu_bringup_and_idle(). The return address is thus pushed on the stack
and the wrapper contains the annotation hint for the unwinder regarding
the stack state.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
The pinning of sensitive CR0 and CR4 bits caused a boot crash when loading
the kvm_intel module on a kernel compiled with CONFIG_PARAVIRT=n.
The reason is that the static key which controls the pinning is marked RO
after init. The kvm_intel module contains a CR4 write which requires to
update the static key entry list. That obviously does not work when the key
is in a RO section.
With CONFIG_PARAVIRT enabled this does not happen because the CR4 write
uses the paravirt indirection and the actual write function is built in.
As the key is intended to be immutable after init, move
native_write_cr0/4() out of line.
While at it consolidate the update of the cr4 shadow variable and store the
value right away when the pinning is initialized on a booting CPU. No point
in reading it back 20 instructions later. This allows to confine the static
key and the pinning variable to cpu/common and allows to mark them static.
Fixes: 8dbec27a24 ("x86/asm: Pin sensitive CR0 bits")
Fixes: 873d50d58f ("x86/asm: Pin sensitive CR4 bits")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Xi Ruoyao <xry111@mengyan1223.wang>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Xi Ruoyao <xry111@mengyan1223.wang>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907102140340.1758@nanos.tec.linutronix.de
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list"
These attributes represent all of the logical CPUs that share the
same core.
These attriutes is synonymous with the existing "thread_siblings" and
"thread_siblings_list" attribute, which will be deprecated.
Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list".
These attributes represent all of the logical CPUs that share the
same die.
Suggested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
irq_ctx_init() crashes hard on page allocation failures. While that's ok
during early boot, it's just wrong in the CPU hotplug bringup code.
Check the page allocation failure and return -ENOMEM and handle it at the
call sites. On early boot the only way out is to BUG(), but on CPU hotplug
there is no reason to crash, so just abort the operation.
Rename the function to something more sensible while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
The following commit:
d7880812b3 ("idle: Add the stack canary init to cpu_startup_entry()")
... added an x86 specific boot_init_stack_canary() call to the generic
cpu_startup_entry() as a temporary hack, with the intention to remove
the #ifdef CONFIG_X86 later.
More than 5 years later let's finally realize that plan! :-)
While implementing stack protector support for PowerPC, we found
that calling boot_init_stack_canary() is also needed for PowerPC
which uses per task (TLS) stack canary like the X86.
However, calling boot_init_stack_canary() would break architectures
using a global stack canary (ARM, SH, MIPS and XTENSA).
Instead of modifying the #ifdef CONFIG_X86 to an even messier:
#if defined(CONFIG_X86) || defined(CONFIG_PPC)
PowerPC implemented the call to boot_init_stack_canary() in the function
calling cpu_startup_entry().
Let's try the same cleanup on the x86 side as well.
On x86 we have two functions calling cpu_startup_entry():
- start_secondary()
- cpu_bringup_and_idle()
start_secondary() already calls boot_init_stack_canary(), so
it's good, and this patch adds the call to boot_init_stack_canary()
in cpu_bringup_and_idle().
I.e. now x86 catches up to the rest of the world and the ugly init
sequence in init/main.c can be removed from cpu_startup_entry().
As a final benefit we can also remove the <linux/stackprotector.h>
dependency from <linux/sched.h>.
[ mingo: Improved the changelog a bit, added language explaining x86 borkage and sched.h change. ]
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181020072649.5B59310483E@pc16082vm.idsi0.si.c-s.fr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
... added speculative_store_bypass_ht_init() to the per-CPU initialization sequence.
speculative_store_bypass_ht_init() needs to be called on each CPU for
PV guests, too.
Reported-by: Brian Woods <brian.woods@amd.com>
Tested-by: Brian Woods <brian.woods@amd.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: xen-devel@lists.xenproject.org
Fixes: 1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
Link: https://lore.kernel.org/lkml/20180621084331.21228-1-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.
The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.
Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.
Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
I'm removing thread_struct::sp0, and Xen's usage of it is slightly
dubious and unnecessary. Use appropriate helpers instead.
While we're at at, reorder the code slightly to make it more obvious
what's going on.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/d5b9a3da2b47c68325bd2bbe8f82d9554dee0d0f.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit dc6416f1d7 ("xen/x86: Call
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE) from xen_play_dead()")
introduced an error leading to a stack overflow of the idle task when
a cpu was brought offline/online many times: by calling
cpu_startup_entry() instead of returning at the end of xen_play_dead()
do_idle() would be entered again and again.
Don't use cpu_startup_entry(), but cpuhp_online_idle() instead allowing
to return from xen_play_dead().
Cc: <stable@vger.kernel.org> # 4.12
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
On PVH, PVHVM, at failure in the VCPUOP_register_vcpu_info hypercall
we limit the number of cpus to to MAX_VIRT_CPUS. However, if this
failure had occurred for a cpu beyond MAX_VIRT_CPUS, we continue
to function with > MAX_VIRT_CPUS.
This leads to problems at the next save/restore cycle when there
are > MAX_VIRT_CPUS threads going into stop_machine() but coming
back up there's valid state for only the first MAX_VIRT_CPUS.
This patch pulls the excess CPUs down via cpu_down().
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Recent code rework that split handling ov PV, HVM and PVH guests into
separate files missed calling xen_smp_intr_init_pv() on CPU0.
Add this call.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: Juergen Gross <jgross@suse.com>
After code split between PV and HVM some functions in xen_smp_ops have
xen_pv_ prefix and some only xen_ which makes them look like they're
common for both PV and HVM while they're not. Rename all the rest to
have xen_pv_ prefix.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Basically, smp.c is renamed to smp_pv.c and some code moved out to common
smp.c. struct xen_common_irq delcaration ended up in smp.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>