Commit Graph

2402 Commits

Author SHA1 Message Date
e0a34641eb rcuscale: fix building with RCU_TINY
Both the CONFIG_TASKS_RCU and CONFIG_TASKS_RUDE_RCU options
are broken when RCU_TINY is enabled as well, as some functions
are missing a declaration.

In file included from kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1271:21: error: no previous prototype for 'get_rcu_tasks_rude_gp_kthread' [-Werror=missing-prototypes]
 1271 | struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
      |                     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/rcu/rcuscale.c:330:27: error: 'get_rcu_tasks_rude_gp_kthread' undeclared here (not in a function); did you mean 'get_rcu_tasks_trace_gp_kthread'?
  330 |         .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
      |                           ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      |                           get_rcu_tasks_trace_gp_kthread

In file included from /home/arnd/arm-soc/kernel/rcu/update.c:649:
kernel/rcu/tasks.h:1113:21: error: no previous prototype for 'get_rcu_tasks_gp_kthread' [-Werror=missing-prototypes]
 1113 | struct task_struct *get_rcu_tasks_gp_kthread(void)
      |                     ^~~~~~~~~~~~~~~~~~~~~~~~

Also, building with CONFIG_TASKS_RUDE_RCU but not CONFIG_TASKS_RCU is
broken because of some missing stub functions:

kernel/rcu/rcuscale.c:322:27: error: 'tasks_scale_read_lock' undeclared here (not in a function); did you mean 'srcu_scale_read_lock'?
  322 |         .readlock       = tasks_scale_read_lock,
      |                           ^~~~~~~~~~~~~~~~~~~~~
      |                           srcu_scale_read_lock
kernel/rcu/rcuscale.c:323:27: error: 'tasks_scale_read_unlock' undeclared here (not in a function); did you mean 'srcu_scale_read_unlock'?
  323 |         .readunlock     = tasks_scale_read_unlock,
      |                           ^~~~~~~~~~~~~~~~~~~~~~~
      |                           srcu_scale_read_unlock

Move the declarations outside of the RCU_TINY #ifdef and duplicate the
shared stub functions to address all of the above.

Fixes: 88d7ff818f0ce ("rcuscale: Add RCU Tasks Rude testing")
Fixes: 755f1c5eb416b ("rcuscale: Measure RCU Tasks Trace grace-period kthread CPU time")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
a15ec57cfc rcuscale: Add RCU Tasks Rude testing
Add a "tasks-rude" option to the rcuscale.scale_type module parameter.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
271a8467a5 rcuscale: Measure RCU Tasks Trace grace-period kthread CPU time
This commit causes RCU Tasks Trace to output the CPU time consumed by
its grace-period kthread.  The CPU time is whatever is in the designated
task's current->stime field, and thus is controlled by whatever CPU-time
accounting scheme is in effect.

This output appears in microseconds as follows on the console:

rcu_scale: Grace-period kthread CPU time: 42367.037

[ paulmck: Apply Willy Tarreau feedback. ]

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
5f8e320269 rcuscale: Measure grace-period kthread CPU time
This commit adds the ability to output the CPU time consumed by the
grace-period kthread for the RCU variant under test.  The CPU time is
whatever is in the designated task's current->stime field, and thus is
controlled by whatever CPU-time accounting scheme is in effect.

This output appears in microseconds as follows on the console:

rcu_scale: Grace-period kthread CPU time: 42367.037

[ paulmck: Apply feedback from Stephen Rothwell and kernel test robot. ]

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
2023-07-14 15:01:49 -07:00
bb7bad3dae rcuscale: Print out full set of kfree_rcu parameters
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
2023-07-14 15:01:49 -07:00
c68465dfaa rcuscale: Print out full set of module parameters
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
7221f493c5 rcuscale: Add minruntime module parameter
By default, rcuscale collects only 100 points of data per writer, but
arranging for all kthreads to be actively collecting (if not recording)
data during the time that any kthread might be recording.  This works
well, but does not allow much time to bring external performance tools
to bear.  This commit therefore adds a minruntime module parameter
that specifies a minimum data-collection interval in seconds.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
ee7516a163 rcuscale: Fix gp_async_max typo: s/reader/writer/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:49 -07:00
2226f3dc05 rcuscale: Permit blocking delays between writers
Some workloads do isolated RCU work, and this can affect operation
latencies.  This commit therefore adds a writer_holdoff_jiffies module
parameter that causes writers to block for the specified number of
jiffies between each pair of consecutive write-side operations.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:48 -07:00
b5a2801fc0 refscale: Add a "jiffies" test
This commit adds a "jiffies" test to refscale, allowing use of jiffies
to be compared to ktime_get_real_fast_ns().  On my x86 laptop, jiffies
is more than 20x faster.  (Though for many uses, the tens-of-nanoseconds
overhead of ktime_get_real_fast_ns() will be just fine.)

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:04 -07:00
f5063e8948 refscale: Fix uninitalized use of wait_queue_head_t
Running the refscale test occasionally crashes the kernel with the
following error:

[ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8
[ 8569.952900] #PF: supervisor read access in kernel mode
[ 8569.952902] #PF: error_code(0x0000) - not-present page
[ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0
[ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI
[ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021
[ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190
  :
[ 8569.952940] Call Trace:
[ 8569.952941]  <TASK>
[ 8569.952944]  ref_scale_reader+0x380/0x4a0 [refscale]
[ 8569.952959]  kthread+0x10e/0x130
[ 8569.952966]  ret_from_fork+0x1f/0x30
[ 8569.952973]  </TASK>

The likely cause is that init_waitqueue_head() is called after the call to
the torture_create_kthread() function that creates the ref_scale_reader
kthread.  Although this init_waitqueue_head() call will very likely
complete before this kthread is created and starts running, it is
possible that the calling kthread will be delayed between the calls to
torture_create_kthread() and init_waitqueue_head().  In this case, the
new kthread will use the waitqueue head before it is properly initialized,
which is not good for the kernel's health and well-being.

The above crash happened here:

	static inline void __add_wait_queue(...)
	{
		:
		if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here

The offset of flags from list_head entry in wait_queue_entry is
-0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task
structure is zero initialized, the instruction will try to access address
0xffffffffffffffe8, which is exactly the fault address listed above.

This commit therefore invokes init_waitqueue_head() before creating
the kthread.

Fixes: 653ed64b01 ("refperf: Add a test to measure performance of read-side synchronization")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:01:04 -07:00
db13710a03 rcu-tasks: Cancel callback laziness if too many callbacks
The various RCU Tasks flavors now do lazy grace periods when there are
only asynchronous grace period requests.  By default, the system will let
250 milliseconds elapse after the first call_rcu_tasks*() callbacki is
queued before starting a grace period.  In contrast, synchronous grace
period requests such as synchronize_rcu_tasks*() will start a grace
period immediately.

However, invoking one of the call_rcu_tasks*() functions in a too-tight
loop can result in a callback flood, which in turn can exhaust memory
if grace periods are delayed for too long.

This commit therefore sets a limit so that the grace-period kthread
will be awakened when any CPU's callback list expands to contain
rcupdate.rcu_task_lazy_lim callbacks elements (defaulting to 32, set to -1
to disable), the grace-period kthread will be awakened, thus cancelling
any ongoing laziness and getting out in front of the potential callback
flood.

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:00:12 -07:00
450d461aa6 rcu-tasks: Add kernel boot parameters for callback laziness
This commit adds kernel boot parameters for callback laziness, allowing
the RCU Tasks flavors to be individually adjusted.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:00:12 -07:00
5ae769c611 rcu-tasks: Remove redundant #ifdef CONFIG_TASKS_RCU
The kernel/rcu/tasks.h file has a #endif immediately followed by an

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:00:12 -07:00
d119357d07 rcu-tasks: Treat only synchronous grace periods urgently
The performance requirements on RCU Tasks, and in particular on RCU
Tasks Trace, have evolved over time as the workloads have evolved.
The current implementation is designed to provide low grace-period
latencies, and also to accommodate short-duration floods of callbacks.

However, current workloads can also provide a constant background
callback-queuing rate of a few hundred call_rcu_tasks_trace() invocations
per second.  This results in continuous back-to-back RCU Tasks Trace
grace periods, which in turn can consume the better part of 10% of a CPU.
One could take the attitude that there are several tens of other CPUs on
the systems running such workloads, but energy efficiency is a thing.
On these systems, although asynchronous grace-period requests happen
every few milliseconds, synchronous grace-period requests are quite rare.

This commit therefore arrranges for grace periods to be initiated
immediately in response to calls to synchronize_rcu_tasks*() and
also to calls to synchronize_rcu_mult() that are passed one of the
call_rcu_tasks*() functions.  These are recognized by the tell-tale
wakeme_after_rcu callback function.

In other cases, callbacks are gathered up for up to about 250 milliseconds
before a grace period is initiated.  This results in more than an order of
magnitude reduction in RCU Tasks Trace grace periods, with corresponding
reduction in consumption of CPU time.

Reported-by: Alexei Starovoitov <ast@kernel.org>
Reported-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-14 15:00:11 -07:00
43a89baecf rcu: Export rcu_request_urgent_qs_task()
If a CPU is executing a long series of non-sleeping system calls,
RCU grace periods can be delayed for on the order of a couple hundred
milliseconds.  This is normally not a problem, but if each system call
does a call_rcu(), those callbacks can stack up.  RCU will eventually
notice this callback storm, but use of rcu_request_urgent_qs_task()
allows the code invoking call_rcu() to give RCU a heads up.

This function is not for general use, not yet, anyway.

Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230706033447.54696-11-alexei.starovoitov@gmail.com
2023-07-12 23:45:23 +02:00
2e31da752c Merge branches 'doc.2023.05.10a', 'fixes.2023.05.11a', 'kvfree.2023.05.10a', 'nocb.2023.05.11a', 'rcu-tasks.2023.05.10a', 'torture.2023.05.15a' and 'rcu-urgent.2023.06.06a' into HEAD
doc.2023.05.10a: Documentation updates
fixes.2023.05.11a: Miscellaneous fixes
kvfree.2023.05.10a: kvfree_rcu updates
nocb.2023.05.11a: Callback-offloading updates
rcu-tasks.2023.05.10a: Tasks RCU updates
torture.2023.05.15a: Torture-test updates
rcu-urgent.2023.06.06a: Urgent SRCU fix
2023-06-07 13:44:06 -07:00
23fc8df26d rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale
Running the 'kfree_rcu_test' test case [1] results in a splat [2].
The root cause is the kfree_scale_thread thread(s) continue running
after unloading the rcuscale module.  This commit fixes that isue by
invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing
the rcuscale module.

[1] modprobe rcuscale kfree_rcu_test=1
    // After some time
    rmmod rcuscale
    rmmod torture

[2] BUG: unable to handle page fault for address: ffffffffc0601a87
    #PF: supervisor instruction fetch in kernel mode
    #PF: error_code(0x0010) - not-present page
    PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0
    Oops: 0010 [#1] PREEMPT SMP NOPTI
    CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
    RIP: 0010:0xffffffffc0601a87
    Code: Unable to access opcode bytes at 0xffffffffc0601a5d.
    RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297
    RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000
    RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de
    RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000
    R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
    R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe
    FS:  0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     <TASK>
     ? kvfree_call_rcu+0xf0/0x3a0
     ? kthread+0xf3/0x120
     ? kthread_complete_and_exit+0x20/0x20
     ? ret_from_fork+0x1f/0x30
     </TASK>
    Modules linked in: rfkill sunrpc ... [last unloaded: torture]
    CR2: ffffffffc0601a87
    ---[ end trace 0000000000000000 ]---

Fixes: e6e78b004f ("rcuperf: Add kfree_rcu() performance Tests")
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:48:50 -07:00
bf5ddd7365 rcu/rcuscale: Move rcu_scale_*() after kfree_scale_cleanup()
This code-movement-only commit moves the rcu_scale_cleanup() and
rcu_scale_shutdown() functions to follow kfree_scale_cleanup().
This is code movement is in preparation for a bug-fix patch that invokes
kfree_scale_cleanup() from rcu_scale_cleanup().

Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-05-11 13:48:41 -07:00
fbde57d2d2 rcu/nocb: Make shrinker iterate only over NOCB CPUs
Callbacks can only be queued as lazy on NOCB CPUs, therefore iterating
over the NOCB mask is enough for both counting and scanning. Just lock
the mostly uncontended barrier mutex on counting as well in order to
keep rcu_nocb_mask stable.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:44:50 -07:00
401b0de3ae rcu-tasks: Stop rcu_tasks_invoke_cbs() from using never-onlined CPUs
The rcu_tasks_invoke_cbs() function relies on queue_work_on() to silently
fall back to WORK_CPU_UNBOUND when the specified CPU is offline.  However,
the queue_work_on() function's silent fallback mechanism relies on that
CPU having been online at some time in the past.  When queue_work_on()
is passed a CPU that has never been online, workqueue lockups ensue,
which can be bad for your kernel's general health and well-being.

This commit therefore checks whether a given CPU has ever been online,
and, if not substitutes WORK_CPU_UNBOUND in the subsequent call to
queue_work_on().  Why not simply omit the queue_work_on() call entirely?
Because this function is flooding callback-invocation notifications
to all CPUs, and must deal with possibilities that include a sparse
cpu_possible_mask.

This commit also moves the setting of the rcu_data structure's
->beenonline field to rcu_cpu_starting(), which executes on the
incoming CPU before that CPU has ever enabled interrupts.  This ensures
that the required workqueues are present.  In addition, because the
incoming CPU has not yet enabled its interrupts, there cannot yet have
been any softirq handlers running on this CPU, which means that the
WARN_ON_ONCE(!rdp->beenonline) within the RCU_SOFTIRQ handler cannot
have triggered yet.

Fixes: d363f833c6 ("rcu-tasks: Use workqueues for multiple rcu_tasks_invoke_cbs() invocations")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
15d44dfa40 rcu: Make rcu_cpu_starting() rely on interrupts being disabled
Currently, rcu_cpu_starting() is written so that it might be invoked
with interrupts enabled.  However, it is always called when interrupts
are disabled, either by rcu_init(), notify_cpu_starting(), or from a
call point prior to the call to notify_cpu_starting().

But why bother requiring that interrupts be disabled?  The purpose is
to allow the rcu_data structure's ->beenonline flag to be set after all
early processing has completed for the incoming CPU, thus allowing this
flag to be used to determine when workqueues have been set up for the
incoming CPU, while still allowing this flag to be used as a diagnostic
within rcu_core().

This commit therefore makes rcu_cpu_starting() rely on interrupts being
disabled.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
a24c1aab65 rcu: Mark rcu_cpu_kthread() accesses to ->rcu_cpu_has_work
The rcu_data structure's ->rcu_cpu_has_work field can be modified by
any CPU attempting to wake up the rcuc kthread.  Therefore, this commit
marks accesses to this field from the rcu_cpu_kthread() function.

This data race was reported by KCSAN.  Not appropriate for backporting
due to failure being unlikely.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
9146eb2549 rcu: Mark additional concurrent load from ->cpu_no_qs.b.exp
The per-CPU rcu_data structure's ->cpu_no_qs.b.exp field is updated
only on the instance corresponding to the current CPU, but can be read
more widely.  Unmarked accesses are OK from the corresponding CPU, but
only if interrupts are disabled, given that interrupt handlers can and
do modify this field.

Unfortunately, although the load from rcu_preempt_deferred_qs() is always
carried out from the corresponding CPU, interrupts are not necessarily
disabled.  This commit therefore upgrades this load to READ_ONCE.

Similarly, the diagnostic access from synchronize_rcu_expedited_wait()
might run with interrupts disabled and from some other CPU.  This commit
therefore marks this load with data_race().

Finally, the C-language access in rcu_preempt_ctxt_queue() is OK as
is because interrupts are disabled and this load is always from the
corresponding CPU.  This commit adds a comment giving the rationale for
this access being safe.

This data race was reported by KCSAN.  Not appropriate for backporting
due to failure being unlikely.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
f51164a808 rcu: Employ jiffies-based backstop to callback time limit
Currently, if there are more than 100 ready-to-invoke RCU callbacks queued
on a given CPU, the rcu_do_batch() function sets a timeout for invocation
of the series.  This timeout defaulting to three milliseconds, and may
be adjusted using the rcutree.rcu_resched_ns kernel boot parameter.
This timeout is checked using local_clock(), but the overhead of this
function combined with the common-case very small callback-invocation
overhead means that local_clock() is checked every 32nd invocation.

This works well except for longer-than average callbacks.  For example,
a series of 500-microsecond-duration callbacks means that local_clock()
is checked only once every 16 milliseconds, which makes it difficult to
enforce a three-millisecond timeout.

This commit therefore adds a Kconfig option RCU_DOUBLE_CHECK_CB_TIME
that enables backup timeout checking using the coarser grained but
lighter weight jiffies.  If the jiffies counter detects a timeout,
then local_clock() is consulted even if this is not the 32nd callback.
This prevents the aforementioned 16-millisecond latency blow.

Reported-by: Domas Mituzas <dmituzas@meta.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
fea1c1f010 rcu: Check callback-invocation time limit for rcuc kthreads
Currently, a callback-invocation time limit is enforced only for
callbacks invoked from the softirq environment, the rationale being
that when callbacks are instead invoked from rcuc and rcuoc kthreads,
these callbacks cannot be holding up other softirq vectors.

Which is in fact true.  However, if an rcuc kthread spends too much time
invoking callbacks, it can delay quiescent-state reports from its CPU,
which can also be a problem.

This commit therefore applies the callback-invocation time limit to
callback invocation from the rcuc kthreads as well as from softirq.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-11 13:42:39 -07:00
edff5e9a99 rcu-tasks: Clarify the cblist_init_generic() function's pr_info() output
This commit uses rtp->name instead of __func__ and outputs the value
of rcu_task_cb_adjust, thus reducing console-log output.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:27:43 -07:00
5fc8cbe4cf rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic()
pr_info() is called with rtp->cbs_gbl_lock spin lock locked.  Because
pr_info() calls printk() that might sleep, this will result in BUG
like below:

[    0.206455] cblist_init_generic: Setting adjustable number of callback queues.
[    0.206463]
[    0.206464] =============================
[    0.206464] [ BUG: Invalid wait context ]
[    0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted
[    0.206466] -----------------------------
[    0.206466] swapper/0/1 is trying to lock:
[    0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0
[    0.206473] other info that might help us debug this:
[    0.206473] context-{5:5}
[    0.206474] 3 locks held by swapper/0/1:
[    0.206474]  #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0
[    0.206478]  #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e
[    0.206482]  #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330
[    0.206485] stack backtrace:
[    0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5
[    0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
[    0.206489] Call Trace:
[    0.206490]  <TASK>
[    0.206491]  dump_stack_lvl+0x6a/0x9f
[    0.206493]  __lock_acquire.cold+0x2d7/0x2fe
[    0.206496]  ? stack_trace_save+0x46/0x70
[    0.206497]  lock_acquire+0xd1/0x2f0
[    0.206499]  ? serial8250_console_write+0x327/0x4a0
[    0.206500]  ? __lock_acquire+0x5c7/0x2720
[    0.206502]  _raw_spin_lock_irqsave+0x3d/0x90
[    0.206504]  ? serial8250_console_write+0x327/0x4a0
[    0.206506]  serial8250_console_write+0x327/0x4a0
[    0.206508]  console_emit_next_record.constprop.0+0x180/0x330
[    0.206511]  console_unlock+0xf7/0x1f0
[    0.206512]  vprintk_emit+0xf7/0x330
[    0.206514]  _printk+0x63/0x7e
[    0.206516]  cblist_init_generic.constprop.0.cold+0x24/0x32
[    0.206518]  rcu_init_tasks_generic+0x5/0xd9
[    0.206522]  kernel_init_freeable+0x15b/0x2a2
[    0.206523]  ? rest_init+0x160/0x160
[    0.206526]  kernel_init+0x11/0x120
[    0.206527]  ret_from_fork+0x1f/0x30
[    0.206530]  </TASK>
[    0.207018] cblist_init_generic: Setting shift to 1 and lim to 1.

This patch moves pr_info() so that it is called without
rtp->cbs_gbl_lock locked.

Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:27:42 -07:00
b96a8b0b5b rcu/nocb: Recheck lazy callbacks under the ->nocb_lock from shrinker
The ->lazy_len is only checked locklessly. Recheck again under the
->nocb_lock to avoid spending more time on flushing/waking if not
necessary. The ->lazy_len can still increment concurrently (from 1 to
infinity) but under the ->nocb_lock we at least know for sure if there
are lazy callbacks at all (->lazy_len > 0).

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:59 -07:00
7625926086 rcu/nocb: Fix shrinker race against callback enqueuer
The shrinker resets the lazy callbacks counter in order to trigger the
pending lazy queue flush though the rcuog kthread. The counter reset is
protected by the ->nocb_lock against concurrent accesses...except
for one of them. Here is a list of existing synchronized readers/writer:

1) The first lazy enqueuer (incrementing ->lazy_len to 1) does so under
   ->nocb_lock and ->nocb_bypass_lock.

2) The further lazy enqueuers (incrementing ->lazy_len above 1) do so
   under ->nocb_bypass_lock _only_.

3) The lazy flush checks and resets to 0 under ->nocb_lock and
	->nocb_bypass_lock.

The shrinker protects its ->lazy_len reset against cases 1) and 3) but
not against 2). As such, setting ->lazy_len to 0 under the ->nocb_lock
may be cancelled right away by an overwrite from an enqueuer, leading
rcuog to ignore the flush.

To avoid that, use the proper bypass flush API which takes care of all
those details.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:58 -07:00
5c83cedbaa rcu/nocb: Protect lazy shrinker against concurrent (de-)offloading
The shrinker may run concurrently with callbacks (de-)offloading. As
such, calling rcu_nocb_lock() is very dangerous because it does a
conditional locking. The worst outcome is that rcu_nocb_lock() doesn't
lock but rcu_nocb_unlock() eventually unlocks, or the reverse, creating
an imbalance.

Fix this with protecting against (de-)offloading using the barrier mutex.
Although if the barrier mutex is contended, which should be rare, then
step aside so as not to trigger a mutex VS allocation
dependency chain.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:58 -07:00
6b706e5603 rcu/kvfree: Make drain_page_cache() take early return if cache is disabled
If the rcutree.rcu_min_cached_objs kernel boot parameter is set to zero,
then krcp->page_cache_work will never be triggered to fill page cache.
In addition, the put_cached_bnode() will not fill page cache.  As a
result krcp->bkvcache will always be empty, so there is no need to acquire
krcp->lock to get page from krcp->bkvcache.  This commit therefore makes
drain_page_cache() return immediately if the rcu_min_cached_objs is zero.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
60888b77a0 rcu/kvfree: Make fill page cache start from krcp->nr_bkv_objs
When the fill_page_cache_func() function is invoked, it assumes that
the cache of pages is completely empty.  However, there can be some time
between triggering execution of this function and its actual invocation.
During this time, kfree_rcu_work() might run, and might fill in part or
all of this cache of pages, thus invalidating the fill_page_cache_func()
function's assumption.

This will not overfill the cache because put_cached_bnode() will reject
the extra page.  However, it will result in a needless allocation and
freeing of one extra page, which might not be helpful under lowish-memory
conditions.

This commit therefore causes the fill_page_cache_func() to explicitly
account for pages that have been placed into the cache shortly before
it starts running.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
021a5ff847 rcu/kvfree: Do not run a page work if a cache is disabled
By default the cache size is 5 pages per CPU, but it can be disabled at
boot time by setting the rcu_min_cached_objs to zero.  When that happens,
the current code will uselessly set an hrtimer to schedule refilling this
cache with zero pages.  This commit therefore streamlines this process
by simply refusing the set the hrtimer when rcu_min_cached_objs is zero.

Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
309a431650 rcu/kvfree: Use consistent krcp when growing kfree_rcu() page cache
The add_ptr_to_bulk_krc_lock() function is invoked to allocate a new
kfree_rcu() page, also known as a kvfree_rcu_bulk_data structure.
The kfree_rcu_cpu structure's lock is used to protect this operation,
except that this lock must be momentarily dropped when allocating memory.
It is clearly important that the lock that is reacquired be the same
lock that was acquired initially via krc_this_cpu_lock().

Unfortunately, this same krc_this_cpu_lock() function is used to
re-acquire this lock, and if the task migrated to some other CPU during
the memory allocation, this will result in the kvfree_rcu_bulk_data
structure being added to the wrong CPU's kfree_rcu_cpu structure.

This commit therefore replaces that second call to krc_this_cpu_lock()
with raw_spin_lock_irqsave() in order to explicitly acquire the lock on
the correct kfree_rcu_cpu structure, thus keeping things straight even
when the task migrates.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
1e237994d9 rcu/kvfree: Invoke debug_rcu_bhead_unqueue() after checking bnode->gp_snap
If kvfree_rcu_bulk() sees that the required grace period has failed to
elapse, it leaks the memory because readers might still be using it.
But in that case, the debug-objects subsystem still marks the relevant
structures as having been freed, even though they are instead being
leaked.

This commit fixes this mismatch by invoking debug_rcu_bhead_unqueue()
only when we are actually going to free the objects.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
f32276a376 rcu/kvfree: Add debug check for GP complete for kfree_rcu_cpu list
Under low-memory conditions, kvfree_rcu() will use each object's
rcu_head structure to queue objects in a singly linked list headed by
the kfree_rcu_cpu structure's ->head field.  This list is passed to
call_rcu() as a unit, but there is no indication of which grace period
this list needs to wait for.  This in turn prevents adding debug checks
in the kfree_rcu_work() as was done for the two page-of-pointers channels
in the kfree_rcu_cpu structure.

This commit therefore adds a ->head_free_gp_snap field to the
kfree_rcu_cpu_work structure to record this grace-period number.  It also
adds a WARN_ON_ONCE() to kfree_rcu_monitor() that checks to make sure
that the required grace period has in fact elapsed.

[ paulmck: Fix kerneldoc issue raised by Stephen Rothwell. ]

Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
cdfa0f6fa6 rcu/kvfree: Add debug to check grace periods
This commit adds debugging checks to verify that the required RCU
grace period has elapsed for each kvfree_rcu_bulk_data structure that
arrives at the kvfree_rcu_bulk() function.  These checks make use
of that structure's ->gp_snap field, which has been upgraded from an
unsigned long to an rcu_gp_oldstate structure.  This upgrade reduces
the chances of false positives to nearly zero, even on 32-bit systems,
for which this structure carries 64 bits of state.

Cc: Ziwei Dai <ziwei.dai@unisoc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-09 17:26:21 -07:00
5dfb75e842 Merge tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux
Pull RCU updates from Joel Fernandes:

 - Updates and additions to MAINTAINERS files, with Boqun being added to
   the RCU entry and Zqiang being added as an RCU reviewer.

   I have also transitioned from reviewer to maintainer; however, Paul
   will be taking over sending RCU pull-requests for the next merge
   window.

 - Resolution of hotplug warning in nohz code, achieved by fixing
   cpu_is_hotpluggable() through interaction with the nohz subsystem.

   Tick dependency modifications by Zqiang, focusing on fixing usage of
   the TICK_DEP_BIT_RCU_EXP bitmask.

 - Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n
   kernels, fixed by Zqiang.

 - Improvements to rcu-tasks stall reporting by Neeraj.

 - Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for
   increased robustness, affecting several components like mac802154,
   drbd, vmw_vmci, tracing, and more.

   A report by Eric Dumazet showed that the API could be unknowingly
   used in an atomic context, so we'd rather make sure they know what
   they're asking for by being explicit:

      https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/

 - Documentation updates, including corrections to spelling,
   clarifications in comments, and improvements to the srcu_size_state
   comments.

 - Better srcu_struct cache locality for readers, by adjusting the size
   of srcu_struct in support of SRCU usage by Christoph Hellwig.

 - Teach lockdep to detect deadlocks between srcu_read_lock() vs
   synchronize_srcu() contributed by Boqun.

   Previously lockdep could not detect such deadlocks, now it can.

 - Integration of rcutorture and rcu-related tools, targeted for v6.4
   from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis
   module parameter, and more

 - Miscellaneous changes, various code cleanups and comment improvements

* tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits)
  checkpatch: Error out if deprecated RCU API used
  mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep()
  rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
  ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep()
  net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep()
  net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
  lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
  tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
  misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
  drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
  rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
  rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
  rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
  rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
  rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
  rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
  rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
  rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
  rcu/trace: use strscpy() to instead of strncpy()
  tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
  ...
2023-04-24 12:16:14 -07:00
5da7cb193d rcu/kvfree: Avoid freeing new kfree_rcu() memory after old grace period
Memory passed to kvfree_rcu() that is to be freed is tracked by a
per-CPU kfree_rcu_cpu structure, which in turn contains pointers
to kvfree_rcu_bulk_data structures that contain pointers to memory
that has not yet been handed to RCU, along with an kfree_rcu_cpu_work
structure that tracks the memory that has already been handed to RCU.
These structures track three categories of memory: (1) Memory for
kfree(), (2) Memory for kvfree(), and (3) Memory for both that arrived
during an OOM episode.  The first two categories are tracked in a
cache-friendly manner involving a dynamically allocated page of pointers
(the aforementioned kvfree_rcu_bulk_data structures), while the third
uses a simple (but decidedly cache-unfriendly) linked list through the
rcu_head structures in each block of memory.

On a given CPU, these three categories are handled as a unit, with that
CPU's kfree_rcu_cpu_work structure having one pointer for each of the
three categories.  Clearly, new memory for a given category cannot be
placed in the corresponding kfree_rcu_cpu_work structure until any old
memory has had its grace period elapse and thus has been removed.  And
the kfree_rcu_monitor() function does in fact check for this.

Except that the kfree_rcu_monitor() function checks these pointers one
at a time.  This means that if the previous kfree_rcu() memory passed
to RCU had only category 1 and the current one has only category 2, the
kfree_rcu_monitor() function will send that current category-2 memory
along immediately.  This can result in memory being freed too soon,
that is, out from under unsuspecting RCU readers.

To see this, consider the following sequence of events, in which:

o	Task A on CPU 0 calls rcu_read_lock(), then uses "from_cset",
	then is preempted.

o	CPU 1 calls kfree_rcu(cset, rcu_head) in order to free "from_cset"
	after a later grace period.  Except that "from_cset" is freed
	right after the previous grace period ended, so that "from_cset"
	is immediately freed.  Task A resumes and references "from_cset"'s
	member, after which nothing good happens.

In full detail:

CPU 0					CPU 1
----------------------			----------------------
count_memcg_event_mm()
|rcu_read_lock()  <---
|mem_cgroup_from_task()
 |// css_set_ptr is the "from_cset" mentioned on CPU 1
 |css_set_ptr = rcu_dereference((task)->cgroups)
 |// Hard irq comes, current task is scheduled out.

					cgroup_attach_task()
					|cgroup_migrate()
					|cgroup_migrate_execute()
					|css_set_move_task(task, from_cset, to_cset, true)
					|cgroup_move_task(task, to_cset)
					|rcu_assign_pointer(.., to_cset)
					|...
					|cgroup_migrate_finish()
					|put_css_set_locked(from_cset)
					|from_cset->refcount return 0
					|kfree_rcu(cset, rcu_head) // free from_cset after new gp
					|add_ptr_to_bulk_krc_lock()
					|schedule_delayed_work(&krcp->monitor_work, ..)

					kfree_rcu_monitor()
					|krcp->bulk_head[0]'s work attached to krwp->bulk_head_free[]
					|queue_rcu_work(system_wq, &krwp->rcu_work)
					|if rwork->rcu.work is not in WORK_STRUCT_PENDING_BIT state,
					|call_rcu(&rwork->rcu, rcu_work_rcufn) <--- request new gp

					// There is a perious call_rcu(.., rcu_work_rcufn)
					// gp end, rcu_work_rcufn() is called.
					rcu_work_rcufn()
					|__queue_work(.., rwork->wq, &rwork->work);

					|kfree_rcu_work()
					|krwp->bulk_head_free[0] bulk is freed before new gp end!!!
					|The "from_cset" is freed before new gp end.

// the task resumes some time later.
 |css_set_ptr->subsys[(subsys_id) <--- Caused kernel crash, because css_set_ptr is freed.

This commit therefore causes kfree_rcu_monitor() to refrain from moving
kfree_rcu() memory to the kfree_rcu_cpu_work structure until the RCU
grace period has completed for all three categories.

v2: Use helper function instead of inserted code block at kfree_rcu_monitor().

Fixes: 34c8817455 ("rcu: Support kfree_bulk() interface in kfree_rcu()")
Fixes: 5f3c8d6204 ("rcu/tree: Maintain separate array for vmalloc ptrs")
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Ziwei Dai <ziwei.dai@unisoc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-04-06 10:04:23 -07:00
8ae9985774 Merge branches 'rcu/staging-core', 'rcu/staging-docs' and 'rcu/staging-kfree', remote-tracking branches 'paul/srcu-cf.2023.04.04a', 'fbq/rcu/lockdep.2023.03.27a' and 'fbq/rcu/rcutorture.2023.03.20a' into rcu/staging 2023-04-05 13:50:37 +00:00
936c7e19c6 rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
The kfree_rcu() and kvfree_rcu() macros' single-argument forms are
deprecated.  Therefore switch to the new kfree_rcu_mightsleep() and
kvfree_rcu_mightsleep() variants. The goal is to avoid accidental use
of the single-argument forms, which can introduce functionality bugs in
atomic contexts and latency bugs in non-atomic contexts.

Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:48:04 +00:00
3c1566bca3 rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
For kernels built with CONFIG_PREEMPT_RCU=y, the following scenario can
result in a NULL-pointer dereference:

           CPU1                                           CPU2
rcu_preempt_deferred_qs_irqrestore                rcu_print_task_exp_stall
  if (special.b.blocked)                            READ_ONCE(rnp->exp_tasks) != NULL
    raw_spin_lock_rcu_node
    np = rcu_next_node_entry(t, rnp)
    if (&t->rcu_node_entry == rnp->exp_tasks)
      WRITE_ONCE(rnp->exp_tasks, np)
      ....
      raw_spin_unlock_irqrestore_rcu_node
                                                    raw_spin_lock_irqsave_rcu_node
                                                    t = list_entry(rnp->exp_tasks->prev,
                                                        struct task_struct, rcu_node_entry)
                                                    (if rnp->exp_tasks is NULL, this
                                                       will dereference a NULL pointer)

The problem is that CPU2 accesses the rcu_node structure's->exp_tasks
field without holding the rcu_node structure's ->lock and CPU2 did
not observe CPU1's change to rcu_node structure's ->exp_tasks in time.
Therefore, if CPU1 sets rcu_node structure's->exp_tasks pointer to NULL,
then CPU2 might dereference that NULL pointer.

This commit therefore holds the rcu_node structure's ->lock while
accessing that structure's->exp_tasks field.

[ paulmck: Apply Frederic Weisbecker feedback. ]

Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:44 +00:00
7a29fb4a47 rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:

  # cd /sys/kernel/tracing/
  # echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
  # echo 1 > events/kprobes/enable

This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().

Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack:     [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack:      [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
 dump_backtrace+0xf8/0x108
 show_stack+0x20/0x30
 dump_stack_lvl+0x68/0x84
 dump_stack+0x1c/0x38
 panic+0x214/0x404
 add_taint+0x0/0xf8
 panic_bad_stack+0x144/0x160
 handle_bad_stack+0x38/0x58
 __bad_stack+0x78/0x7c
 __rcu_irq_enter_check_tick+0x0/0x1b8
 arm64_enter_el1_dbg.isra.0+0x14/0x20
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 arm64_enter_el1_dbg.isra.0+0x14/0x20
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 arm64_enter_el1_dbg.isra.0+0x14/0x20
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 [...]
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 arm64_enter_el1_dbg.isra.0+0x14/0x20
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 arm64_enter_el1_dbg.isra.0+0x14/0x20
 el1_dbg+0x2c/0x90
 el1h_64_sync_handler+0xcc/0xe8
 el1h_64_sync+0x64/0x68
 __rcu_irq_enter_check_tick+0x0/0x1b8
 el1_interrupt+0x28/0x60
 el1h_64_irq_handler+0x18/0x28
 el1h_64_irq+0x64/0x68
 __ftrace_set_clr_event_nolock+0x98/0x198
 __ftrace_set_clr_event+0x58/0x80
 system_enable_write+0x144/0x178
 vfs_write+0x174/0x738
 ksys_write+0xd0/0x188
 __arm64_sys_write+0x4c/0x60
 invoke_syscall+0x64/0x180
 el0_svc_common.constprop.0+0x84/0x160
 do_el0_svc+0x48/0xe8
 el0_svc+0x34/0xd0
 el0t_64_sync_handler+0xb8/0xc0
 el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none

Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/all/20221119040049.795065-1-zhengyejian1@huawei.com/
Fixes: aaf2bc50df ("rcu: Abstract out rcu_irq_enter_check_tick() from rcu_nmi_enter()")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:44 +00:00
a4533cc0a5 rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
The call to synchronize_srcu() from rcu_tasks_postscan() can be stalled
by a task getting stuck in do_exit() between that function's calls to
exit_tasks_rcu_start() and exit_tasks_rcu_finish().   To ease diagnosis
of this situation, print a stall warning message every rcu_task_stall_info
period when rcu_tasks_postscan() is stalled.

[ paulmck: Adjust to handle CONFIG_SMP=n. ]

Acked-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/rcu/20230111212736.GA1062057@paulmck-ThinkPad-P17-Gen-1/
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:44 +00:00
7ea91307ad rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
According to the commit log of the patch that added it to the kernel,
start_poll_synchronize_rcu_expedited() can be invoked very early, as
in long before rcu_init() has been invoked.  But before rcu_init(),
the rcu_data structure's ->mynode field has not yet been initialized.
This means that the start_poll_synchronize_rcu_expedited() function's
attempt to set the CPU's leaf rcu_node structure's ->exp_seq_poll_rq
field will result in a segmentation fault.

This commit therefore causes start_poll_synchronize_rcu_expedited() to
set ->exp_seq_poll_rq only after rcu_init() has initialized all CPUs'
rcu_data structures' ->mynode fields.  It also removes the check from
the rcu_init() function so that start_poll_synchronize_rcu_expedited(
is unconditionally invoked.  Yes, this might result in an unnecessary
boot-time grace period, but this is down in the noise.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:44 +00:00
46103fe01b rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
The rcu_accelerate_cbs() function is invoked by rcu_report_qs_rdp()
only if there is a grace period in progress that is still blocked
by at least one CPU on this rcu_node structure.  This means that
rcu_accelerate_cbs() should never return the value true, and thus that
this function should never set the needwake variable and in turn never
invoke rcu_gp_kthread_wake().

This commit therefore removes the needwake variable and the invocation
of rcu_gp_kthread_wake() in favor of a WARN_ON_ONCE() on the call to
rcu_accelerate_cbs().  The purpose of this new WARN_ON_ONCE() is to
detect situations where the system's opinion differs from ours.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:44 +00:00
2450b78e0b rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
The lazy_rcu_shrink_count() shrinker function is registered even in
kernels built with CONFIG_RCU_LAZY=n, in which case this function
uselessly consumes cycles learning that no CPU has any lazy callbacks
queued.

This commit therefore registers this shrinker function only in the kernels
built with CONFIG_RCU_LAZY=y, where it might actually do something useful.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:43 +00:00
e22abe180c rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
For kernels built with CONFIG_NO_HZ_FULL=y, the following scenario can result
in the scheduling-clock interrupt remaining enabled on a holdout CPU after
its quiescent state has been reported:

	CPU1                                                 CPU2
rcu_report_exp_cpu_mult                          synchronize_rcu_expedited_wait
   acquires rnp->lock                               mask = rnp->expmask;
                                                    for_each_leaf_node_cpu_mask(rnp, cpu, mask)
   rnp->expmask = rnp->expmask & ~mask;                rdp = per_cpu_ptr(&rcu_data, cpu1);
   for_each_leaf_node_cpu_mask(rnp, cpu, mask)
      rdp = per_cpu_ptr(&rcu_data, cpu1);
      if (!rdp->rcu_forced_tick_exp)
             continue;                                 rdp->rcu_forced_tick_exp = true;
                                                       tick_dep_set_cpu(cpu1, TICK_DEP_BIT_RCU_EXP);

The problem is that CPU2's sampling of rnp->expmask is obsolete by the
time it invokes tick_dep_set_cpu(), and CPU1 is not guaranteed to see
CPU2's store to ->rcu_forced_tick_exp in time to clear it.  And even if
CPU1 does see that store, it might invoke tick_dep_clear_cpu() before
CPU2 got around to executing its tick_dep_set_cpu(), which would still
leave the victim CPU with its scheduler-clock tick running.

Either way, an nohz_full real-time application running on the victim
CPU would have its latency needlessly degraded.

Note that expedited RCU grace periods look at context-tracking
information, and so if the CPU is executing in nohz_full usermode
throughout, that CPU cannot be victimized in this manner.

This commit therefore causes synchronize_rcu_expedited_wait to hold
the rcu_node structure's ->lock when checking for holdout CPUs, setting
TICK_DEP_BIT_RCU_EXP, and invoking tick_dep_set_cpu(), thus preventing
this race.

Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:43 +00:00
e035e8876e rcu: Remove CONFIG_SRCU
Now that all references to CONFIG_SRCU have been removed, it is time to
remove CONFIG_SRCU itself.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Petr Mladek <pmladek@suse.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:41 +00:00