IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
xfs_bmse_shift_one() jumps around determining whether to shift or
merge, making the code flow difficult to follow. Clean it up and
use direct error returns (including XFS_WANT_CORRUPTED_RETURN) to
make the code flow better and be easier to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
After growing a filesystem, XFS can fail to allocate inodes even
though there is a large amount of space available in the filesystem
for inodes. The issue is caused by a nearly full allocation group
having enough free space in it to be considered for inode
allocation, but not enough contiguous free space to actually
allocation inodes. This situation results in successful selection
of the AG for allocation, then failure of the allocation resulting
in ENOSPC being reported to the caller.
It is caused by two possible issues. Firstly, we only consider the
lognest free extent and whether it would fit an inode chunk. If the
extent is not correctly aligned, then we can't allocate an inode
chunk in it regardless of the fact that it is large enough. This
tends to be a permanent error until space in the AG is freed.
The second issue is that we don't actually lock the AGI or AGF when
we are doing these checks, and so by the time we get to actually
allocating the inode chunk the space we thought we had in the AG may
have been allocated. This tends to be a spurious error as it
requires a race to trigger. Hence this case is ignored in this patch
as the reported problem is for permanent errors.
The first issue could be addressed by simply taking into account the
alignment when checking the longest extent. This, however, would
prevent allocation in AGs that have aligned, exact sized extents
free. However, this case should be fairly rare compared to the
number of allocations that occur near ENOSPC that would trigger this
condition.
Hence, when selecting the inode AG, take into account the inode
cluster alignment when checking the lognest free extent in the AG.
If we can't find any AGs with a contiguous free space large
enough to be aligned, drop the alignment addition and just try for
an AG that has enough contiguous free space available for an inode
chunk. This won't prevent issues from occurring, but should avoid
situations where other AGs have lots of free space but the selected
AG can't allocate due to alignment constraints.
Reported-by: Arkadiusz Miskiewicz <arekm@maven.pl>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If extsize is set and new_last_fsb is larger than 32 bits, the
roundup to extsize will overflow the align variable. Instead,
combine alignments by rounding stripe size up to extsize.
Signed-off-by: Peter Watkins <treestem@gmail.com>
Reviewed-by: Nathaniel W. Turner <nate@houseofnate.net>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
a) don't bother with ->d_time for positives - we only check it for
negatives anyway.
b) make sure to set it at unlink and rmdir time - at *that* point
soon-to-be negative dentry matches then-current directory contents
c) don't go into renaming of old alias in vfat_lookup() unless it
has the same parent (which it will, unless we are seeing corrupted
image)
[hirofumi@mail.parknet.co.jp: make change minimum, don't call d_move() for dir]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: <stable@vger.kernel.org> [3.17.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This was written when we didn't do a caching control for the fast free space
cache loading. However we started doing that a long time ago, and there is
still a small window of time that we could be caching the block group the fast
way, so if there is a caching_ctl at all on the block group just return it, the
callers all wait properly for what they want. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On block group remove if the corresponding extent map was on the
transaction->pending_chunks list, we were deleting the extent map
from that list, through remove_extent_mapping(), without any
synchronization with chunk allocation (which iterates that list
and adds new elements to it). Fix this by ensure that this is done
while the chunk mutex is held, since that's the mutex that protects
the list in the chunk allocation code path.
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On chunk allocation error (label "error_del_extent"), after adding the
extent map to the tree and to the pending chunks list, we would leave
decrementing the extent map's refcount by 2 instead of 3 (our allocation
+ tree reference + list reference).
Also, on chunk/block group removal, if the block group was on the list
pending_chunks we weren't decrementing the respective list reference.
Detected by 'rmmod btrfs':
[20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects
[20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-1+ #1
[20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20770.106130] 0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040
[20770.106132] ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0
[20770.106134] ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78
[20770.106136] Call Trace:
[20770.106142] [<ffffffff813e7a13>] dump_stack+0x45/0x56
[20770.106145] [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90
[20770.106164] [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs]
[20770.106176] [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs]
[20770.106179] [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4
[20770.106182] [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[20770.106184] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
There was a free space entry structure memeory leak if a block
group is remove while a free space entry is being trimmed, which
the following diagram explains:
CPU 1 CPU 2
btrfs_trim_block_group()
trim_no_bitmap()
remove free space entry from
block group cache's rbtree
do_trimming()
btrfs_remove_block_group()
btrfs_remove_free_space_cache()
add back free space entry to
block group's cache rbtree
btrfs_put_block_group()
(...)
btrfs_put_block_group()
kfree(bg->free_space_ctl)
kfree(bg)
The free space entry added after doing the discard of its respective
range ends up never being freed.
Detected after doing an "rmmod btrfs" after running the stress test
recently submitted for fstests:
[ 8234.642212] kmem_cache_destroy btrfs_free_space: Slab cache still has objects
[ 8234.642657] CPU: 1 PID: 32276 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-2+ #1
[ 8234.642660] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 8234.642664] 0000000000000000 ffff8801af1b3eb8 ffffffff8140c7b6 ffff8801dbedd0c0
[ 8234.642670] ffff8801af1b3ed0 ffffffff811149ce 0000000000000000 ffff8801af1b3ee0
[ 8234.642676] ffffffffa042dbe7 ffff8801af1b3ef0 ffffffffa0487422 ffff8801af1b3f78
[ 8234.642682] Call Trace:
[ 8234.642692] [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[ 8234.642699] [<ffffffff811149ce>] kmem_cache_destroy+0x4d/0x92
[ 8234.642731] [<ffffffffa042dbe7>] btrfs_destroy_cachep+0x63/0x76 [btrfs]
[ 8234.642757] [<ffffffffa0487422>] exit_btrfs_fs+0x9/0xbe7 [btrfs]
[ 8234.642762] [<ffffffff810a76a5>] SyS_delete_module+0x155/0x1c6
[ 8234.642768] [<ffffffff8122a7eb>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 8234.642773] [<ffffffff814122d2>] system_call_fastpath+0x16/0x1b
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the transaction handle doesn't have used blocks but has created new block
groups make sure we turn the fs into readonly mode too. This is because the
new block groups didn't get all their metadata persisted into the chunk and
device trees, and therefore if a subsequent transaction starts, allocates
space from the new block groups, writes data or metadata into that space,
commits successfully and then after we unmount and mount the filesystem
again, the same space can be allocated again for a new block group,
resulting in file data or metadata corruption.
Example where we don't abort the transaction when we fail to finish the
chunk allocation (add items to the chunk and device trees) and later a
future transaction where the block group is removed fails because it can't
find the chunk item in the chunk tree:
[25230.404300] WARNING: CPU: 0 PID: 7721 at fs/btrfs/super.c:260 __btrfs_abort_transaction+0x50/0xfc [btrfs]()
[25230.404301] BTRFS: Transaction aborted (error -28)
[25230.404302] Modules linked in: btrfs dm_flakey nls_utf8 fuse xor raid6_pq ntfs vfat msdos fat xfs crc32c_generic libcrc32c ext3 jbd ext2 dm_mod nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse i2c_piix4 i2ccore parport_pc parport processor button pcspkr serio_raw thermal_sys evdev microcode ext4 crc16 jbd2 mbcache sr_mod cdrom ata_generic sg sd_mod crc_t10dif crct10dif_generic crct10dif_common virtio_scsi floppy e1000 ata_piix libata virtio_pci virtio_ring scsi_mod virtio [last unloaded: btrfs]
[25230.404325] CPU: 0 PID: 7721 Comm: xfs_io Not tainted 3.17.0-rc5-btrfs-next-1+ #1
[25230.404326] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[25230.404328] 0000000000000000 ffff88004581bb08 ffffffff813e7a13 ffff88004581bb50
[25230.404330] ffff88004581bb40 ffffffff810423aa ffffffffa049386a 00000000ffffffe4
[25230.404332] ffffffffa05214c0 000000000000240c ffff88010fc8f800 ffff88004581bba8
[25230.404334] Call Trace:
[25230.404338] [<ffffffff813e7a13>] dump_stack+0x45/0x56
[25230.404342] [<ffffffff810423aa>] warn_slowpath_common+0x7f/0x98
[25230.404351] [<ffffffffa049386a>] ? __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404353] [<ffffffff8104240b>] warn_slowpath_fmt+0x48/0x50
[25230.404362] [<ffffffffa049386a>] __btrfs_abort_transaction+0x50/0xfc [btrfs]
[25230.404374] [<ffffffffa04a8c43>] btrfs_create_pending_block_groups+0x10c/0x135 [btrfs]
[25230.404387] [<ffffffffa04b77fd>] __btrfs_end_transaction+0x7e/0x2de [btrfs]
[25230.404398] [<ffffffffa04b7a6d>] btrfs_end_transaction+0x10/0x12 [btrfs]
[25230.404408] [<ffffffffa04a3d64>] btrfs_check_data_free_space+0x111/0x1f0 [btrfs]
[25230.404421] [<ffffffffa04c53bd>] __btrfs_buffered_write+0x160/0x48d [btrfs]
[25230.404425] [<ffffffff811a9268>] ? cap_inode_need_killpriv+0x2d/0x37
[25230.404429] [<ffffffff810f6501>] ? get_page+0x1a/0x2b
[25230.404441] [<ffffffffa04c7c95>] btrfs_file_write_iter+0x321/0x42f [btrfs]
[25230.404443] [<ffffffff8110f5d9>] ? handle_mm_fault+0x7f3/0x846
[25230.404446] [<ffffffff813e98c5>] ? mutex_unlock+0x16/0x18
[25230.404449] [<ffffffff81138d68>] new_sync_write+0x7c/0xa0
[25230.404450] [<ffffffff81139401>] vfs_write+0xb0/0x112
[25230.404452] [<ffffffff81139c9d>] SyS_pwrite64+0x66/0x84
[25230.404454] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
[25230.404455] ---[ end trace 5aa5684fdf47ab38 ]---
[25230.404458] BTRFS warning (device sdc): btrfs_create_pending_block_groups:9228: Aborting unused transaction(No space left).
[25288.084814] BTRFS: error (device sdc) in btrfs_free_chunk:2509: errno=-2 No such entry (Failed lookup while freeing chunk.)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Trimming is completely transactionless, and the way it operates consists
of hiding free space entries from a block group, perform the trim/discard
and then make the free space entries visible again.
Therefore while a free space entry is being trimmed, we can have free space
cache writing running in parallel (as part of a transaction commit) which
will miss the free space entry. This means that an unmount (or crash/reboot)
after that transaction commit and mount again before another transaction
starts/commits after the discard finishes, we will have some free space
that won't be used again unless the free space cache is rebuilt. After the
unmount, fsck (btrfsck, btrfs check) reports the issue like the following
example:
*** fsck.btrfs output ***
checking extents
checking free space cache
There is no free space entry for 521764864-521781248
There is no free space entry for 521764864-1103101952
cache appears valid but isnt 29360128
Checking filesystem on /dev/sdc
UUID: b4789e27-4774-4626-98e9-ae8dfbfb0fb5
found 1235681286 bytes used err is -22
(...)
Another issue caused by this race is a crash while writing bitmap entries
to the cache, because while the cache writeout task accesses the bitmaps,
the trim task can be concurrently modifying the bitmap or worse might
be freeing the bitmap. The later case results in the following crash:
[55650.804460] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
[55650.804835] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc loop parport_pc parport i2c_piix4 psmouse evdev pcspkr microcode processor i2ccore serio_raw thermal_sys button ext4 crc16 jbd2 mbcache sg sd_mod crc_t10dif sr_mod cdrom crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring virtio scsi_mod e1000 [last unloaded: btrfs]
[55650.806169] CPU: 1 PID: 31002 Comm: btrfs-transacti Tainted: G W 3.17.0-rc5-btrfs-next-1+ #1
[55650.806493] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[55650.806867] task: ffff8800b12f6410 ti: ffff880071538000 task.ti: ffff880071538000
[55650.807166] RIP: 0010:[<ffffffffa037cf45>] [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.807514] RSP: 0018:ffff88007153bc30 EFLAGS: 00010246
[55650.807687] RAX: 000000005d1ec000 RBX: ffff8800a665df08 RCX: 0000000000000400
[55650.807885] RDX: ffff88005d1ec000 RSI: 6b6b6b6b6b6b6b6b RDI: ffff88005d1ec000
[55650.808017] RBP: ffff88007153bc58 R08: 00000000ddd51536 R09: 00000000000001e0
[55650.808017] R10: 0000000000000000 R11: 0000000000000037 R12: 6b6b6b6b6b6b6b6b
[55650.808017] R13: ffff88007153bca8 R14: 6b6b6b6b6b6b6b6b R15: ffff88007153bc98
[55650.808017] FS: 0000000000000000(0000) GS:ffff88023ec80000(0000) knlGS:0000000000000000
[55650.808017] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[55650.808017] CR2: 0000000002273b88 CR3: 00000000b18f6000 CR4: 00000000000006e0
[55650.808017] Stack:
[55650.808017] ffff88020e834e00 ffff880172d68db0 0000000000000000 ffff88019257c800
[55650.808017] ffff8801d42ea720 ffff88007153bd10 ffffffffa037d2fa ffff880224e99180
[55650.808017] ffff8801469a6188 ffff880224e99140 ffff880172d68c50 00000003000000b7
[55650.808017] Call Trace:
[55650.808017] [<ffffffffa037d2fa>] __btrfs_write_out_cache+0x1ea/0x37f [btrfs]
[55650.808017] [<ffffffffa037d959>] btrfs_write_out_cache+0xa1/0xd8 [btrfs]
[55650.808017] [<ffffffffa033936b>] btrfs_write_dirty_block_groups+0x4b5/0x505 [btrfs]
[55650.808017] [<ffffffffa03aa98e>] commit_cowonly_roots+0x15e/0x1f7 [btrfs]
[55650.808017] [<ffffffff813eb9c7>] ? _raw_spin_lock+0xe/0x10
[55650.808017] [<ffffffffa0346e46>] btrfs_commit_transaction+0x411/0x882 [btrfs]
[55650.808017] [<ffffffffa03432a4>] transaction_kthread+0xf2/0x1a4 [btrfs]
[55650.808017] [<ffffffffa03431b2>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[55650.808017] [<ffffffff8105966b>] kthread+0xb7/0xbf
[55650.808017] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[55650.808017] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[55650.808017] Code: 4c 89 ef 8d 70 ff e8 d4 fc ff ff 41 8b 45 34 41 39 45 30 7d 5c 31 f6 4c 89 ef e8 80 f6 ff ff 49 8b 7d 00 4c 89 f6 b9 00 04 00 00 <f3> a5 4c 89 ef 41 8b 45 30 8d 70 ff e8 a3 fc ff ff 41 8b 45 34
[55650.808017] RIP [<ffffffffa037cf45>] write_bitmap_entries+0x65/0xbb [btrfs]
[55650.808017] RSP <ffff88007153bc30>
[55650.815725] ---[ end trace 1c032e96b149ff86 ]---
Fix this by serializing both tasks in such a way that cache writeout
doesn't wait for the trim/discard of free space entries to finish and
doesn't miss any free space entry.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our fs trim operation, which is completely transactionless (doesn't start
or joins an existing transaction) consists of visiting all block groups
and then for each one to iterate its free space entries and perform a
discard operation against the space range represented by the free space
entries. However before performing a discard, the corresponding free space
entry is removed from the free space rbtree, and when the discard completes
it is added back to the free space rbtree.
If a block group remove operation happens while the discard is ongoing (or
before it starts and after a free space entry is hidden), we end up not
waiting for the discard to complete, remove the extent map that maps
logical address to physical addresses and the corresponding chunk metadata
from the the chunk and device trees. After that and before the discard
completes, the current running transaction can finish and a new one start,
allowing for new block groups that map to the same physical addresses to
be allocated and written to.
So fix this by keeping the extent map in memory until the discard completes
so that the same physical addresses aren't reused before it completes.
If the physical locations that are under a discard operation end up being
used for a new metadata block group for example, and dirty metadata extents
are written before the discard finishes (the VM might call writepages() of
our btree inode's i_mapping for example, or an fsync log commit happens) we
end up overwriting metadata with zeroes, which leads to errors from fsck
like the following:
checking extents
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
owner ref check failed [833912832 16384]
Errors found in extent allocation tree or chunk allocation
checking free space cache
checking fs roots
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
root 5 root dir 256 error
root 5 inode 260 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 262 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 263 errors 2001, no inode item, link count wrong
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
There's a race between adding a block group to the list of the unused
block groups and removing an unused block group (cleaner kthread) that
leads to freeing extents that are in use or a crash during transaction
commmit. Basically the cleaner kthread, when executing
btrfs_delete_unused_bgs(), might catch the newly added block group to
the list fs_info->unused_bgs and clear the range representing the whole
group from fs_info->freed_extents[] before the task that added the block
group to the list (running update_block_group()) marked the last freed
extent as dirty in fs_info->freed_extents (pinned_extents).
That is:
CPU 1 CPU 2
btrfs_delete_unused_bgs()
update_block_group()
add block group to
fs_info->unused_bgs
got block group from the list
clear_extent_bits for the whole
block group range in freed_extents[]
set_extent_dirty for the
range covering the freed
extent in freed_extents[]
(fs_info->pinned_extents)
block group deleted, and a new block
group with the same logical address is
created
reserve space from the new block group
for new data or metadata - the reserved
space overlaps the range specified by
CPU 1 for set_extent_dirty()
commit transaction
find all ranges marked as dirty in
fs_info->pinned_extents, clear them
and add them to the free space cache
Alternatively, if CPU 2 doesn't create a new block group with the same
logical address, we get a crash/BUG_ON at transaction commit when unpining
extent ranges because we can't find a block group for the range marked as
dirty by CPU 1. Sample trace:
[ 2163.426462] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
[ 2163.426640] Modules linked in: btrfs xor raid6_pq dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio crc32c_generic libcrc32c dm_mod nfsd auth_rpc
gss oid_registry nfs_acl nfs lockd fscache sunrpc loop psmouse parport_pc parport i2c_piix4 processor thermal_sys i2ccore evdev button pcspkr microcode serio_raw ext4 crc16 jbd2 mbcache
sg sr_mod cdrom sd_mod crc_t10dif crct10dif_generic crct10dif_common ata_generic virtio_scsi floppy ata_piix libata e1000 scsi_mod virtio_pci virtio_ring virtio
[ 2163.428209] CPU: 0 PID: 11858 Comm: btrfs-transacti Tainted: G W 3.17.0-rc5-btrfs-next-1+ #1
[ 2163.428519] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2163.428875] task: ffff88009f2c0650 ti: ffff8801356bc000 task.ti: ffff8801356bc000
[ 2163.429157] RIP: 0010:[<ffffffffa037728e>] [<ffffffffa037728e>] unpin_extent_range.isra.58+0x62/0x192 [btrfs]
[ 2163.429562] RSP: 0018:ffff8801356bfda8 EFLAGS: 00010246
[ 2163.429802] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 2163.429990] RDX: 0000000041bfffff RSI: 0000000001c00000 RDI: ffff880024307080
[ 2163.430042] RBP: ffff8801356bfde8 R08: 0000000000000068 R09: ffff88003734f118
[ 2163.430042] R10: ffff8801356bfcb8 R11: fffffffffffffb69 R12: ffff8800243070d0
[ 2163.430042] R13: 0000000083c04000 R14: ffff8800751b0f00 R15: ffff880024307000
[ 2163.430042] FS: 0000000000000000(0000) GS:ffff88013f400000(0000) knlGS:0000000000000000
[ 2163.430042] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2163.430042] CR2: 00007ff10eb43fc0 CR3: 0000000004cb8000 CR4: 00000000000006f0
[ 2163.430042] Stack:
[ 2163.430042] ffff8800243070d0 0000000083c08000 0000000083c07fff ffff88012d6bc800
[ 2163.430042] ffff8800243070d0 ffff8800751b0f18 ffff8800751b0f00 0000000000000000
[ 2163.430042] ffff8801356bfe18 ffffffffa037a481 0000000083c04000 0000000083c07fff
[ 2163.430042] Call Trace:
[ 2163.430042] [<ffffffffa037a481>] btrfs_finish_extent_commit+0xac/0xbf [btrfs]
[ 2163.430042] [<ffffffffa038c06d>] btrfs_commit_transaction+0x6ee/0x882 [btrfs]
[ 2163.430042] [<ffffffffa03881f1>] transaction_kthread+0xf2/0x1a4 [btrfs]
[ 2163.430042] [<ffffffffa03880ff>] ? btrfs_cleanup_transaction+0x3d8/0x3d8 [btrfs]
[ 2163.430042] [<ffffffff8105966b>] kthread+0xb7/0xbf
[ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
[ 2163.430042] [<ffffffff813ebeac>] ret_from_fork+0x7c/0xb0
[ 2163.430042] [<ffffffff810595b4>] ? __kthread_parkme+0x67/0x67
So fix this by making update_block_group() first set the range as dirty
in pinned_extents before adding the block group to the unused_bgs list.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we grab a block group, for example in btrfs_trim_fs(), we will be holding
a reference on it but the block group can be removed after we got it (via
btrfs_remove_block_group), which means it will no longer be part of the
rbtree.
However, btrfs_remove_block_group() was only calling rb_erase() which leaves
the block group's rb_node left and right child pointers with the same content
they had before calling rb_erase. This was dangerous because a call to
next_block_group() would access the node's left and right child pointers (via
rb_next), which can be no longer valid.
Fix this by clearing a block group's node after removing it from the tree,
and have next_block_group() do a tree search to get the next block group
instead of using rb_next() if our block group was removed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The commit c404e0dc (Btrfs: fix use-after-free in the finishing
procedure of the device replace) fixed a use-after-free problem
which happened when removing the source device at the end of device
replace, but at that time, btrfs didn't support device replace
on raid56, so we didn't fix the problem on the raid56 profile.
Currently, we implemented device replace for raid56, so we need
kick that problem out before we enable that function for raid56.
The fix method is very simple, we just increase the bio per-cpu
counter before we submit a raid56 io, and decrease the counter
when the raid56 io ends.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
This function reused the code of parity scrub, and we just write
the right parity or corrected parity into the target device before
the parity scrub end.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.
Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
The implementation is:
- Read and check all the data with checksum in the same stripe.
All the data which has checksum is COW data, and we are sure
that it is not changed though we don't lock the stripe. because
the space of that data just can be reclaimed after the current
transction is committed, and then the fs can use it to store the
other data, but when doing scrub, we hold the current transaction,
that is that data can not be recovered, it is safe that read and check
it out of the stripe lock.
- Lock the stripe
- Read out all the data without checksum and parity
The data without checksum and the parity may be changed if we don't
lock the stripe, so we need read it in the stripe lock context.
- Check the parity
- Re-calculate the new parity and write back it if the old parity
is not right
- Unlock the stripe
If we can not read out the data or the data we read is corrupted,
we will try to repair it. If the repair fails. we will mark the
horizontal sub-stripe(pages on the same horizontal) as corrupted
sub-stripe, and we will skip the parity check and repair of that
horizontal sub-stripe.
And in order to skip the horizontal sub-stripe that has no data, we
introduce a bitmap. If there is some data on the horizontal sub-stripe,
we will the relative bit to 1, and when we check and repair the
parity, we will skip those horizontal sub-stripes that the relative
bits is 0.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
We will introduce new operation type later, if we still use integer
variant as bool variant to record the operation type, we would add new
variant and increase the size of raid bio structure. It is not good,
by this patch, we define different number for different operation,
and we can just use a variant to record the operation type.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
This patch implement the RAID5/6 common data repair function, the
implementation is similar to the scrub on the other RAID such as
RAID1, the differentia is that we don't read the data from the
mirror, we use the data repair function of RAID5/6.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Because we will reuse bbio and raid_map during the scrub later, it is
better that we don't change any variant of bbio and don't free it at
the end of IO request. So we introduced similar variants into the raid
bio, and don't access those bbio's variants any more.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
stripe_index's value was set again in latter line:
stripe_index = 0;
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
bbio_ret in this condition is always !NULL because previous code
already have a check-and-skip:
4908 if (!bbio_ret)
4909 goto out;
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
It is ridiculous practice to scan inode block by block, this technique
applicable only for old indirect files. This takes significant amount
of time for really large files. Let's reuse ext4_fiemap which already
traverse inode-tree in most optimal meaner.
TESTCASE:
ftruncate64(fd, 0);
ftruncate64(fd, 1ULL << 40);
/* lseek will spin very long time */
lseek64(fd, 0, SEEK_DATA);
lseek64(fd, 0, SEEK_HOLE);
Original report: https://lkml.org/lkml/2014/10/16/620
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently ext4_inline_data_fiemap ignores requested arguments (start
and len) which may lead endless loop if start != 0. Also fix incorrect
extent length determination.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
ext4_da_convert_inline_data_to_extent() invokes
grab_cache_page_write_begin(). grab_cache_page_write_begin performs
memory allocation, so fs-reentrance should be prohibited because we
are inside journal transaction.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If there are many inodes that have data blocks in victim segment,
it takes long time to find a inode in gc_inode list.
Let's use radix_tree to reduce lookup time.
Signed-off-by: Changman Lee <cm224.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
When inspecting the pivot_root and the current mount expiry logic I
realized that pivot_root fails to clear like mount move does.
Add the missing line in case someone does the interesting feat of
moving an expirable submount. This gives a strong guarantee that root
of the filesystem tree will never expire.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Clear MNT_LOCKED in the callers of copy_tree except copy_mnt_ns, and
collect_mounts. In copy_mnt_ns it is necessary to create an exact
copy of a mount tree, so not clearing MNT_LOCKED is important.
Similarly collect_mounts is used to take a snapshot of the mount tree
for audit logging purposes and auditing using a faithful copy of the
tree is important.
This becomes particularly significant when we start setting MNT_LOCKED
on rootfs to prevent it from being unmounted.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Forced unmount affects not just the mount namespace but the underlying
superblock as well. Restrict forced unmount to the global root user
for now. Otherwise it becomes possible a user in a less privileged
mount namespace to force the shutdown of a superblock of a filesystem
in a more privileged mount namespace, allowing a DOS attack on root.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that remount is properly enforcing the rule that you can't remove
nodev at least sandstorm.io is breaking when performing a remount.
It turns out that there is an easy intuitive solution implicitly
add nodev on remount when nodev was implicitly added on mount.
Tested-by: Cedric Bosdonnat <cbosdonnat@suse.com>
Tested-by: Richard Weinberger <richard@nod.at>
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
When we're enabling journal features, we cannot use the predicate
jbd2_journal_has_csum_v2or3() because we haven't yet set the sb
feature flag fields! Moreover, we just finished loading the shash
driver, so the test is unnecessary; calculate the seed always.
Without this patch, we fail to initialize the checksum seed the first
time we turn on journal_checksum, which means that all journal blocks
written during that first mount are corrupt. Transactions written
after the second mount will be fine, since the feature flag will be
set in the journal superblock. xfstests generic/{034,321,322} are the
regression tests.
(This is important for 3.18.)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.coM>
Reported-by: Eric Whitney <enwlinux@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
We've already made fi and sbi for inode. Let's avoid duplicated work.
Signed-off-by: Changman Lee <cm224.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Fix the wrong error number in error path of f2fs_write_begin.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
My static checker complains that if "len == remaining" then it means we
have truncated the last character off the version string.
The intent of the code is that we print as many versions as we can
without truncating a version. Then we put a newline at the end. If the
newline can't fit we return -EINVAL.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
fs/xfs/libxfs/xfs_bmap.c:5591:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
CC: Brian Foster <bfoster@redhat.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
fs/xfs/xfs_file.c:919:1-6: WARNING: end returns can be simpified and declaration on line 902 can be dropped
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
fs/xfs/libxfs/xfs_ialloc.c:1141:1-6: WARNING: end returns can be simpified
Simplify a trivial if-return sequence. Possibly combine with a
preceding function call.
Generated by: scripts/coccinelle/misc/simple_return.cocci
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The functions xfs_blkdev_put() and xfs_qm_dqrele() test whether
their argument is NULL and then return immediately. Thus the test
around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Don Bailey noticed that our page zeroing for compression at end-io time
isn't complete. This reworks a patch from Linus to push the zeroing
into the zlib and lzo specific functions instead of trying to handle the
corners inside btrfs_decompress_buf2page
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reported-by: Don A. Bailey <donb@securitymouse.com>
cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Little cleanup to distinguish each phase easily
Signed-off-by: Changman Lee <cm224.lee@samsung.com>
[Jaegeuk Kim: modify indentation for code readability]
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>