343 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Naoya Horiguchi
|
013567be19 |
mm: migrate: fix double call of radix_tree_replace_slot()
radix_tree_replace_slot() is called twice for head page, it's obviously a bug. Let's fix it. Link: http://lkml.kernel.org/r/20180423072101.GA12157@hori1.linux.bs1.fc.nec.co.jp Fixes: e71769ae5260 ("mm: enable thp migration for shmem thp") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Zi Yan <zi.yan@sent.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
e71769ae52 |
mm: enable thp migration for shmem thp
My testing for the latest kernel supporting thp migration showed an infinite loop in offlining the memory block that is filled with shmem thps. We can get out of the loop with a signal, but kernel should return with failure in this case. What happens in the loop is that scan_movable_pages() repeats returning the same pfn without any progress. That's because page migration always fails for shmem thps. In memory offline code, memory blocks containing unmovable pages should be prevented from being offline targets by has_unmovable_pages() inside start_isolate_page_range(). So it's possible to change migratability for non-anonymous thps to avoid the issue, but it introduces more complex and thp-specific handling in migration code, so it might not good. So this patch is suggesting to fix the issue by enabling thp migration for shmem thp. Both of anon/shmem thp are migratable so we don't need precheck about the type of thps. Link: http://lkml.kernel.org/r/20180406030706.GA2434@hori1.linux.bs1.fc.nec.co.jp Fixes: commit 72b39cfc4d75 ("mm, memory_hotplug: do not fail offlining too early") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <zi.yan@sent.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
8f175cf5c9 |
mm: fix do_pages_move status handling
Li Wang has reported that LTP move_pages04 test fails with the current tree: LTP move_pages04: TFAIL : move_pages04.c:143: status[1] is EPERM, expected EFAULT The test allocates an array of two pages, one is present while the other is not (resp. backed by zero page) and it expects EFAULT for the second page as the man page suggests. We are reporting EPERM which doesn't make any sense and this is a result of a bug from cf5f16b23ec9 ("mm: unclutter THP migration"). do_pages_move tries to handle as many pages in one batch as possible so we queue all pages with the same node target together and that corresponds to [start, i] range which is then used to update status array. add_page_for_migration will correctly notice the zero (resp. !present) page and returns with EFAULT which gets written to the status. But if this is the last page in the array we do not update start and so the last store_status after the loop will overwrite the range of the last batch with NUMA_NO_NODE (which corresponds to EPERM). Fix this by simply bailing out from the last flush if the pagelist is empty as there is clearly nothing more to do. Link: http://lkml.kernel.org/r/20180418121255.334-1-mhocko@kernel.org Fixes: cf5f16b23ec9 ("mm: unclutter THP migration") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Li Wang <liwang@redhat.com> Tested-by: Li Wang <liwang@redhat.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
b93b016313 |
page cache: use xa_lock
Remove the address_space ->tree_lock and use the xa_lock newly added to the radix_tree_root. Rename the address_space ->page_tree to ->i_pages, since we don't really care that it's a tree. [willy@infradead.org: fix nds32, fs/dax.c] Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
94723aafb9 |
mm: unclutter THP migration
THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
666feb21a0 |
mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
a49bd4d716 |
mm, numa: rework do_pages_move
Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ralph Campbell
|
07707125ae |
mm/migrate: properly preserve write attribute in special migrate entry
Use of pte_write(pte) is only valid for present pte, the common code which set the migration entry can be reach for both valid present pte and special swap entry (for device memory). Fix the code to use the mpfn value which properly handle both cases. On x86 this did not have any bad side effect because pte write bit is below PAGE_BIT_GLOBAL and thus special swap entry have it set to 0 which in turn means we were always creating read only special migration entry. So once migration did finish we always write protected the CPU page table entry (moreover this is only an issue when migrating from device memory to system memory). End effect is that CPU write access would fault again and restore write permission. This behaviour isn't too bad; it just burns CPU cycles by forcing CPU to take a second fault on write access. ie, double faulting the same address. There is no corruption or incorrect states (it behaves as a COWed page from a fork with a mapcount of 1). Link: http://lkml.kernel.org/r/20180402023506.12180-1-jglisse@redhat.com Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
09a913a7a9 |
sched/numa: avoid trapping faults and attempting migration of file-backed dirty pages
change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dominik Brodowski
|
7addf44388 |
mm: add kernel_move_pages() helper, move compat syscall to mm/migrate.c
Move compat_sys_move_pages() to mm/migrate.c and make it call a newly introduced helper -- kernel_move_pages() -- instead of the syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
||
Michal Hocko
|
ab5ac90aec |
mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
f55e1014f9 |
Revert "mm, thp: Do not make pmd/pud dirty without a reason"
This reverts commit 152e93af3cfe2d29d8136cc0a02a8612507136ee. It was a nice cleanup in theory, but as Nicolai Stange points out, we do need to make the page dirty for the copy-on-write case even when we didn't end up making it writable, since the dirty bit is what we use to check that we've gone through a COW cycle. Reported-by: Michal Hocko <mhocko@kernel.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
152e93af3c |
mm, thp: Do not make pmd/pud dirty without a reason
Currently we make page table entries dirty all the time regardless of access type and don't even consider if the mapping is write-protected. The reasoning is that we don't really need dirty tracking on THP and making the entry dirty upfront may save some time on first write to the page. Unfortunately, such approach may result in false-positive can_follow_write_pmd() for huge zero page or read-only shmem file. Let's only make page dirty only if we about to write to the page anyway (as we do for small pages). I've restructured the code to make entry dirty inside maybe_p[mu]d_mkwrite(). It also takes into account if the vma is write-protected. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
4645b9fe84 |
mm/mmu_notifier: avoid call to invalidate_range() in range_end()
This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Mark Hairgrove
|
e20d103b6c |
mm/migrate: fix indexing bug (off by one) and avoid out of bound access
Index was incremented before last use and thus the second array could dereference to an invalid address (not mentioning the fact that it did not properly clear the entry we intended to clear). Link: http://lkml.kernel.org/r/1506973525-16491-1-git-send-email-jglisse@redhat.com Fixes: 8315ada7f095bf ("mm/migrate: allow migrate_vma() to alloc new page on empty entry") Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
6b368cd4a4 |
mm/hmm: avoid bloating arch that do not make use of HMM
This moves all new code including new page migration helper behind kernel Kconfig option so that there is no codee bloat for arch or user that do not want to use HMM or any of its associated features. arm allyesconfig (without all the patchset, then with and this patch): text data bss dec hex filename 83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux 83722364 46511131 27582964 157816459 968168b vmlinux [jglisse@redhat.com: struct hmm is only use by HMM mirror functionality] Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com [sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)] Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
df6ad69838 |
mm/device-public-memory: device memory cache coherent with CPU
Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8315ada7f0 |
mm/migrate: allow migrate_vma() to alloc new page on empty entry
This allows callers of migrate_vma() to allocate new page for empty CPU page table entry (pte_none or back by zero page). This is only for anonymous memory and it won't allow new page to be instanced if the userfaultfd is armed. This is useful to device driver that want to migrate a range of virtual address and would rather allocate new memory than having to fault later on. Link: http://lkml.kernel.org/r/20170817000548.32038-18-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
a5430dda8a |
mm/migrate: support un-addressable ZONE_DEVICE page in migration
Allow to unmap and restore special swap entry of un-addressable ZONE_DEVICE memory. Link: http://lkml.kernel.org/r/20170817000548.32038-17-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8c3328f1f3 |
mm/migrate: migrate_vma() unmap page from vma while collecting pages
Common case for migration of virtual address range is page are map only once inside the vma in which migration is taking place. Because we already walk the CPU page table for that range we can directly do the unmap there and setup special migration swap entry. Link: http://lkml.kernel.org/r/20170817000548.32038-16-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8763cb45ab |
mm/migrate: new memory migration helper for use with device memory
This patch add a new memory migration helpers, which migrate memory backing a range of virtual address of a process to different memory (which can be allocated through special allocator). It differs from numa migration by working on a range of virtual address and thus by doing migration in chunk that can be large enough to use DMA engine or special copy offloading engine. Expected users are any one with heterogeneous memory where different memory have different characteristics (latency, bandwidth, ...). As an example IBM platform with CAPI bus can make use of this feature to migrate between regular memory and CAPI device memory. New CPU architecture with a pool of high performance memory not manage as cache but presented as regular memory (while being faster and with lower latency than DDR) will also be prime user of this patch. Migration to private device memory will be useful for device that have large pool of such like GPU, NVidia plans to use HMM for that. Link: http://lkml.kernel.org/r/20170817000548.32038-15-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
2916ecc0f9 |
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY
Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
e8db67eb0d |
mm: migrate: move_pages() supports thp migration
This patch enables thp migration for move_pages(2). Link: http://lkml.kernel.org/r/20170717193955.20207-10-zi.yan@sent.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zi Yan
|
616b837153 |
mm: thp: enable thp migration in generic path
Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
197e7e5213 |
Sanitize 'move_pages()' permission checks
The 'move_paghes()' system call was introduced long long ago with the same permission checks as for sending a signal (except using CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability). That turns out to not be a great choice - while the system call really only moves physical page allocations around (and you need other capabilities to do a lot of it), you can check the return value to map out some the virtual address choices and defeat ASLR of a binary that still shares your uid. So change the access checks to the more common 'ptrace_may_access()' model instead. This tightens the access checks for the uid, and also effectively changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that anybody really _uses_ this legacy system call any more (we hav ebetter NUMA placement models these days), so I expect nobody to notice. Famous last words. Reported-by: Otto Ebeling <otto.ebeling@iki.fi> Acked-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nadav Amit
|
a9b802500e |
Revert "mm: numa: defer TLB flush for THP migration as long as possible"
While deferring TLB flushes is a good practice, the reverted patch caused pending TLB flushes to be checked while the page-table lock is not taken. As a result, in architectures with weak memory model (PPC), Linux may miss a memory-barrier, miss the fact TLB flushes are pending, and cause (in theory) a memory corruption. Since the alternative of using smp_mb__after_unlock_lock() was considered a bit open-coded, and the performance impact is expected to be small, the previous patch is reverted. This reverts b0943d61b8fa ("mm: numa: defer TLB flush for THP migration as long as possible"). Link: http://lkml.kernel.org/r/20170802000818.4760-4-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Will Deacon
|
f4e177d126 |
mm/migrate.c: stabilise page count when migrating transparent hugepages
When migrating a transparent hugepage, migrate_misplaced_transhuge_page guards itself against a concurrent fastgup of the page by checking that the page count is equal to 2 before and after installing the new pmd. If the page count changes, then the pmd is reverted back to the original entry, however there is a small window where the new (possibly writable) pmd is installed and the underlying page could be written by userspace. Restoring the old pmd could therefore result in loss of data. This patch fixes the problem by freezing the page count whilst updating the page tables, which protects against a concurrent fastgup without the need to restore the old pmd in the failure case (since the page count can no longer change under our feet). Link: http://lkml.kernel.org/r/1497349722-6731-4-git-send-email-will.deacon@arm.com Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
c3114a84f7 |
mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
Currently hugepage migrated by soft-offline (i.e. due to correctable memory errors) is contained as a hugepage, which means many non-error pages in it are unreusable, i.e. wasted. This patch solves this issue by dissolving source hugepages into buddy. As done in previous patch, PageHWPoison is set only on a head page of the error hugepage. Then in dissoliving we move the PageHWPoison flag to the raw error page so that all healthy subpages return back to buddy. [arnd@arndb.de: fix warnings: replace some macros with inline functions] Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
383321ab85 |
mm/hugetlb/migration: use set_huge_pte_at instead of set_pte_at
Patch series "HugeTLB migration support for PPC64", v2. This patch (of 9): The right interface to use to set a hugetlb pte entry is set_huge_pte_at. Use that instead of set_pte_at. Link: http://lkml.kernel.org/r/1494926612-23928-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
e4b8222271 |
mm: make rmap_one boolean function
rmap_one's return value controls whether rmap_work should contine to scan other ptes or not so it's target for changing to boolean. Return true if the scan should be continued. Otherwise, return false to stop the scanning. This patch makes rmap_one's return value to boolean. Link: http://lkml.kernel.org/r/1489555493-14659-10-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
d44d363f65 |
mm: don't assume anonymous pages have SwapBacked flag
There are a few places the code assumes anonymous pages should have SwapBacked flag set. MADV_FREE pages are anonymous pages but we are going to add them to LRU_INACTIVE_FILE list and clear SwapBacked flag for them. The assumption doesn't hold any more, so fix them. Link: http://lkml.kernel.org/r/3945232c0df3dd6c4ef001976f35a95f18dcb407.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
15038d0de9 |
mm: remove unnecessary reclaimability check from NUMA balancing target
NUMA balancing already checks the watermarks of the target node to decide whether it's a suitable balancing target. Whether the node is reclaimable or not is irrelevant when we don't intend to reclaim. Link: http://lkml.kernel.org/r/20170228214007.5621-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rabin Vincent
|
fc280fe871 |
mm: prevent NR_ISOLATE_* stats from going negative
Commit 6afcf8ef0ca0 ("mm, compaction: fix NR_ISOLATED_* stats for pfn based migration") moved the dec_node_page_state() call (along with the page_is_file_cache() call) to after putback_lru_page(). But page_is_file_cache() can change after putback_lru_page() is called, so it should be called before putback_lru_page(), as it was before that patch, to prevent NR_ISOLATE_* stats from going negative. Without this fix, non-CONFIG_SMP kernels end up hanging in the while(too_many_isolated()) { congestion_wait() } loop in shrink_active_list() due to the negative stats. Mem-Info: active_anon:32567 inactive_anon:121 isolated_anon:1 active_file:6066 inactive_file:6639 isolated_file:4294967295 ^^^^^^^^^^ unevictable:0 dirty:115 writeback:0 unstable:0 slab_reclaimable:2086 slab_unreclaimable:3167 mapped:3398 shmem:18366 pagetables:1145 bounce:0 free:1798 free_pcp:13 free_cma:0 Fixes: 6afcf8ef0ca0 ("mm, compaction: fix NR_ISOLATED_* stats for pfn based migration") Link: http://lkml.kernel.org/r/1492683865-27549-1-git-send-email-rabin.vincent@axis.com Signed-off-by: Rabin Vincent <rabinv@axis.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Ming Ling <ming.ling@spreadtrum.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
4b0ece6fa0 |
mm: migrate: fix remove_migration_pte() for ksm pages
I found that calling page migration for ksm pages causes the following bug: page:ffffea0004d51180 count:2 mapcount:2 mapping:ffff88013c785141 index:0x913 flags: 0x57ffffc0040068(uptodate|lru|active|swapbacked) raw: 0057ffffc0040068 ffff88013c785141 0000000000000913 0000000200000001 raw: ffffea0004d5f9e0 ffffea0004d53f60 0000000000000000 ffff88007d81b800 page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) page->mem_cgroup:ffff88007d81b800 ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/rmap.c:1086! invalid opcode: 0000 [#1] SMP Modules linked in: ppdev parport_pc virtio_balloon i2c_piix4 pcspkr parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi ata_piix 8139too libata virtio_blk 8139cp crc32c_intel mii virtio_pci virtio_ring serio_raw virtio floppy dm_mirror dm_region_hash dm_log dm_mod CPU: 0 PID: 3162 Comm: bash Not tainted 4.11.0-rc2-mm1+ #1 Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011 RIP: 0010:do_page_add_anon_rmap+0x1ba/0x260 RSP: 0018:ffffc90002473b30 EFLAGS: 00010282 RAX: 0000000000000021 RBX: ffffea0004d51180 RCX: 0000000000000006 RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff88007dc0dfe0 RBP: ffffc90002473b58 R08: 00000000fffffffe R09: 00000000000001c1 R10: 0000000000000005 R11: 00000000000001c0 R12: ffff880139ab3d80 R13: 0000000000000000 R14: 0000700000000200 R15: 0000160000000000 FS: 00007f5195f50740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd450287000 CR3: 000000007a08e000 CR4: 00000000001406f0 Call Trace: page_add_anon_rmap+0x18/0x20 remove_migration_pte+0x220/0x2c0 rmap_walk_ksm+0x143/0x220 rmap_walk+0x55/0x60 remove_migration_ptes+0x53/0x80 migrate_pages+0x8ed/0xb60 soft_offline_page+0x309/0x8d0 store_soft_offline_page+0xaf/0xf0 dev_attr_store+0x18/0x30 sysfs_kf_write+0x3a/0x50 kernfs_fop_write+0xff/0x180 __vfs_write+0x37/0x160 vfs_write+0xb2/0x1b0 SyS_write+0x55/0xc0 do_syscall_64+0x67/0x180 entry_SYSCALL64_slow_path+0x25/0x25 RIP: 0033:0x7f51956339e0 RSP: 002b:00007ffcfa0dffc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007f51956339e0 RDX: 000000000000000c RSI: 00007f5195f53000 RDI: 0000000000000001 RBP: 00007f5195f53000 R08: 000000000000000a R09: 00007f5195f50740 R10: 000000000000000b R11: 0000000000000246 R12: 00007f5195907400 R13: 000000000000000c R14: 0000000000000001 R15: 0000000000000000 Code: fe ff ff 48 81 c2 00 02 00 00 48 89 55 d8 e8 2e c3 fd ff 48 8b 55 d8 e9 42 ff ff ff 48 c7 c6 e0 52 a1 81 48 89 df e8 46 ad fe ff <0f> 0b 48 83 e8 01 e9 7f fe ff ff 48 83 e8 01 e9 96 fe ff ff 48 RIP: do_page_add_anon_rmap+0x1ba/0x260 RSP: ffffc90002473b30 ---[ end trace a679d00f4af2df48 ]--- Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception The problem is in the following lines: new = page - pvmw.page->index + linear_page_index(vma, pvmw.address); The 'new' is calculated with 'page' which is given by the caller as a destination page and some offset adjustment for thp. But this doesn't properly work for ksm pages because pvmw.page->index doesn't change for each address but linear_page_index() changes, which means that 'new' points to different pages for each addresses backed by the ksm page. As a result, we try to set totally unrelated pages as destination pages, and that causes kernel crash. This patch fixes the miscalculation and makes ksm page migration work fine. Fixes: 3fe87967c536 ("mm: convert remove_migration_pte() to use page_vma_mapped_walk()") Link: http://lkml.kernel.org/r/1489717683-29905-1-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
6e84f31522 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kirill A. Shutemov
|
3fe87967c5 |
mm: convert remove_migration_pte() to use page_vma_mapped_walk()
remove_migration_pte() also can easily be converted to page_vma_mapped_walk(). [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170129173858.45174-13-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
9e5bcd610f |
mm/migration: make isolate_movable_page() return int type
Patch series "HWPOISON: soft offlining for non-lru movable page", v6. After Minchan's commit bda807d44454 ("mm: migrate: support non-lru movable page migration"), some type of non-lru page like zsmalloc and virtio-balloon page also support migration. Therefore, we can: 1) soft offlining no-lru movable pages, which means when memory corrected errors occur on a non-lru movable page, we can stop to use it by migrating data onto another page and disable the original (maybe half-broken) one. 2) enable memory hotplug for non-lru movable pages, i.e. we may offline blocks, which include such pages, by using non-lru page migration. This patchset is heavily dependent on non-lru movable page migration. This patch (of 4): Change the return type of isolate_movable_page() from bool to int. It will return 0 when isolate movable page successfully, and return -EBUSY when it isolates failed. There is no functional change within this patch but prepare for later patch. [xieyisheng1@huawei.com: v6] Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nicholas Piggin
|
6326fec112 |
mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
A page is not added to the swap cache without being swap backed, so PageSwapBacked mappings can use PG_owner_priv_1 for PageSwapCache. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
6d75f366b9 |
lib: radix-tree: check accounting of existing slot replacement users
The bug in khugepaged fixed earlier in this series shows that radix tree slot replacement is fragile; and it will become more so when not only NULL<->!NULL transitions need to be caught but transitions from and to exceptional entries as well. We need checks. Re-implement radix_tree_replace_slot() on top of the sanity-checked __radix_tree_replace(). This requires existing callers to also pass the radix tree root, but it'll warn us when somebody replaces slots with contents that need proper accounting (transitions between NULL entries, real entries, exceptional entries) and where a replacement through the slot pointer would corrupt the radix tree node counts. Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ming Ling
|
6afcf8ef0c |
mm, compaction: fix NR_ISOLATED_* stats for pfn based migration
Since commit bda807d44454 ("mm: migrate: support non-lru movable page migration") isolate_migratepages_block) can isolate !PageLRU pages which would acct_isolated account as NR_ISOLATED_*. Accounting these non-lru pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide heuristics based on those counters such as pgdat_reclaimable_pages resp. too_many_isolated which would lead to unexpected stalls during the direct reclaim without any good reason. Note that __alloc_contig_migrate_range can isolate a lot of pages at once. On mobile devices such as 512M ram android Phone, it may use a big zram swap. In some cases zram(zsmalloc) uses too many non-lru but migratedable pages, such as: MemTotal: 468148 kB Normal free:5620kB Free swap:4736kB Total swap:409596kB ZRAM: 164616kB(zsmalloc non-lru pages) active_anon:60700kB inactive_anon:60744kB active_file:34420kB inactive_file:37532kB Fix this by only accounting lru pages to NR_ISOLATED_* in isolate_migratepages_block right after they were isolated and we still know they were on LRU. Drop acct_isolated because it is called after the fact and we've lost that information. Batching per-cpu counter doesn't make much improvement anyway. Also make sure that we uncharge only LRU pages when putting them back on the LRU in putback_movable_pages resp. when unmap_and_move migrates the page. [mhocko@suse.com: replace acct_isolated() with direct counting] Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration") Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org Signed-off-by: Ming Ling <ming.ling@spreadtrum.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
6d2329f887 |
mm: vm_page_prot: update with WRITE_ONCE/READ_ONCE
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated concurrently and this prevents the risk of reading intermediate values. Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Vorlicek <janvorli@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
2516035499 |
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be accounted for on both zones and nodes because of the reclaim retry logic, compaction retry logic and highmem calculations all depending on per-zone stats. Many lowmem allocations are immune from OOM kill due to a check in __alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit 03668b3ceb0c ("oom: avoid oom killer for lowmem allocations"). The exception is costly high-order allocations or allocations that cannot fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem allocations then it would fall through to __alloc_pages_direct_compact. This patch will blindly retry reclaim for zone-constrained allocations in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal but without per-zone stats there are not many alternatives. The impact it that zone-constrained allocations may delay before considering the OOM killer. As there is no guarantee enough memory can ever be freed to satisfy compaction, this patch avoids retrying compaction for zone-contrained allocations. In combination, that means that the per-node stats can be used when deciding whether to continue reclaim using a rough approximation. While it is possible this will make the wrong decision on occasion, it will not infinite loop as the number of reclaim attempts is capped by MAX_RECLAIM_RETRIES. The final step is calculating the number of dirtyable highmem pages. As those calculations only care about the global count of file pages in highmem. This patch uses a global counter used instead of per-zone stats as it is sufficient. In combination, this allows the per-zone LRU and dirty state counters to be removed. [mgorman@techsingularity.net: fix acct_highmem_file_pages()] Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested by: Michal Hocko <mhocko@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4b9d0fab71 |
mm: rename NR_ANON_PAGES to NR_ANON_MAPPED
NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_PAGES is the number of mapped anon pages. This is unhelpful naming as it's easy to confuse NR_FILE_MAPPED and NR_ANON_PAGES for mapped pages. This patch renames NR_ANON_PAGES so we have NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_MAPPED is the number of mapped anon pages. Link: http://lkml.kernel.org/r/1467970510-21195-19-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1010245964 |
mm: introduce do_set_pmd()
With postponed page table allocation we have chance to setup huge pages. do_set_pte() calls do_set_pmd() if following criteria met: - page is compound; - pmd entry in pmd_none(); - vma has suitable size and alignment; Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
dd78fedde4 |
rmap: support file thp
Naive approach: on mapping/unmapping the page as compound we update ->_mapcount on each 4k page. That's not efficient, but it's not obvious how we can optimize this. We can look into optimization later. PG_double_map optimization doesn't work for file pages since lifecycle of file pages is different comparing to anon pages: file page can be mapped again at any time. Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |