10 Commits

Author SHA1 Message Date
Thomas Gleixner
d94d71cb45 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation 51 franklin street fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 67 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:30:28 +02:00
Alexander Graf
5deb8e7ad8 KVM: PPC: Make shared struct aka magic page guest endian
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.

When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.

Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.

For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.

For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:21 +02:00
Paul Mackerras
09548fdaf3 KVM: PPC: Use load_fp/vr_state rather than load_up_fpu/altivec
The load_up_fpu and load_up_altivec functions were never intended to
be called from C, and do things like modifying the MSR value in their
callers' stack frames, which are assumed to be interrupt frames.  In
addition, on 32-bit Book S they require the MMU to be off.

This makes KVM use the new load_fp_state() and load_vr_state() functions
instead of load_up_fpu/altivec.  This means we can remove the assembler
glue in book3s_rmhandlers.S, and potentially fixes a bug on Book E,
where load_up_fpu was called directly from C.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:14:59 +01:00
Aneesh Kumar K.V
9975f5e369 kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLE
This help ups to select the relevant code in the kernel code
when we later move HV and PR bits as seperate modules. The patch
also makes the config options for PR KVM selectable

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:18:28 +02:00
Paul Mackerras
28c483b62f KVM: PPC: Book3S PR: Fix VSX handling
This fixes various issues in how we were handling the VSX registers
that exist on POWER7 machines.  First, we were running off the end
of the current->thread.fpr[] array.  Ultimately this was because the
vcpu->arch.vsr[] array is sized to be able to store both the FP
registers and the extra VSX registers (i.e. 64 entries), but PR KVM
only uses it for the extra VSX registers (i.e. 32 entries).

Secondly, calling load_up_vsx() from C code is a really bad idea,
because it jumps to fast_exception_return at the end, rather than
returning with a blr instruction.  This was causing it to jump off
to a random location with random register contents, since it was using
the largely uninitialized stack frame created by kvmppc_load_up_vsx.

In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx,
since giveup_fpu and load_up_fpu handle the extra VSX registers as well
as the standard FP registers on machines with VSX.  Also, since VSX
instructions can access the VMX registers and the FP registers as well
as the extra VSX registers, we have to load up the FP and VMX registers
before we can turn on the MSR_VSX bit for the guest.  Conversely, if
we save away any of the VSX or FP registers, we have to turn off MSR_VSX
for the guest.

To handle all this, it is more convenient for a single call to
kvmppc_giveup_ext() to handle all the state saving that needs to be done,
so we make it take a set of MSR bits rather than just one, and the switch
statement becomes a series of if statements.  Similarly kvmppc_handle_ext
needs to be able to load up more than one set of registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:02 +01:00
Paul Gortmaker
4b16f8e2d6 powerpc: various straight conversions from module.h --> export.h
All these files were including module.h just for the basic
EXPORT_SYMBOL infrastructure.  We can shift them off to the
export.h header which is a way smaller footprint and thus
realize some compile time gains.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:30:44 -04:00
Paul Mackerras
0214394760 KVM: PPC: book3s_pr: Simplify transitions between virtual and real mode
This simplifies the way that the book3s_pr makes the transition to
real mode when entering the guest.  We now call kvmppc_entry_trampoline
(renamed from kvmppc_rmcall) in the base kernel using a normal function
call instead of doing an indirect call through a pointer in the vcpu.
If kvm is a module, the module loader takes care of generating a
trampoline as it does for other calls to functions outside the module.

kvmppc_entry_trampoline then disables interrupts and jumps to
kvmppc_handler_trampoline_enter in real mode using an rfi[d].
That then uses the link register as the address to return to
(potentially in module space) when the guest exits.

This also simplifies the way that we call the Linux interrupt handler
when we exit the guest due to an external, decrementer or performance
monitor interrupt.  Instead of turning on the MMU, then deciding that
we need to call the Linux handler and turning the MMU back off again,
we now go straight to the handler at the point where we would turn the
MMU on.  The handler will then return to the virtual-mode code
(potentially in the module).

Along the way, this moves the setting and clearing of the HID5 DCBZ32
bit into real-mode interrupts-off code, and also makes sure that
we clear the MSR[RI] bit before loading values into SRR0/1.

The net result is that we no longer need any code addresses to be
stored in vcpu->arch.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:29 +03:00
Paul Mackerras
de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00
Alexander Graf
a22a2daccf KVM: PPC: Resolve real-mode handlers through function exports
Up until now, Book3S KVM had variables stored in the kernel that a kernel module
or the kvm code in the kernel could read from to figure out where some real mode
helper functions are located.

This is all unnecessary. The high bits of the EA get ignore in real mode, so we
can just use the pointer as is. Also, it's a lot easier on relocations when we
use the normal way of resolving the address to a function, instead of jumping
through hoops.

This patch fixes compilation with CONFIG_RELOCATABLE=y.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:29 +03:00
Alexander Graf
2191d657c9 KVM: PPC: Name generic 64-bit code generic
We have quite some code that can be used by Book3S_32 and Book3S_64 alike,
so let's call it "Book3S" instead of "Book3S_64", so we can later on
use it from the 32 bit port too.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:18:14 +03:00