22103 Commits

Author SHA1 Message Date
Uladzislau Rezki (Sony)
7fa8cee003 mm: vmalloc: move vmap_init_free_space() down in vmalloc.c
A vmap_init_free_space() is a function that setups a vmap space and is
considered as part of initialization phase.  Since a main entry which is
vmalloc_init(), has been moved down in vmalloc.c it makes sense to follow
the pattern.

There is no a functional change as a result of this patch.

Link: https://lkml.kernel.org/r/20240102184633.748113-4-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kazuhito Hagio <k-hagio-ab@nec.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:18 -08:00
Uladzislau Rezki (Sony)
5b75b8e1b9 mm: vmalloc: rename adjust_va_to_fit_type() function
This patch renames the adjust_va_to_fit_type() function to va_clip() which
is shorter and more expressive.

There is no a functional change as a result of this patch.

Link: https://lkml.kernel.org/r/20240102184633.748113-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kazuhito Hagio <k-hagio-ab@nec.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:18 -08:00
Uladzislau Rezki (Sony)
38f6b9af04 mm: vmalloc: add va_alloc() helper
Patch series "Mitigate a vmap lock contention", v3.

1. Motivation

- Offload global vmap locks making it scaled to number of CPUS;

- If possible and there is an agreement, we can remove the "Per cpu kva
  allocator" to make the vmap code to be more simple;

- There were complaints from XFS folk that a vmalloc might be contented
  on their workloads.

2. Design(high level overview)

We introduce an effective vmap node logic.  A node behaves as independent
entity to serve an allocation request directly(if possible) from its pool.
That way it bypasses a global vmap space that is protected by its own
lock.

An access to pools are serialized by CPUs.  Number of nodes are equal to
number of CPUs in a system.  Please note the high threshold is bound to
128 nodes.

Pools are size segregated and populated based on system demand.  The
maximum alloc request that can be stored into a segregated storage is 256
pages.  The lazily drain path decays a pool by 25% as a first step and as
second populates it by fresh freed VAs for reuse instead of returning them
into a global space.

When a VA is obtained(alloc path), it is stored in separate nodes.  A
va->va_start address is converted into a correct node where it should be
placed and resided.  Doing so we balance VAs across the nodes as a result
an access becomes scalable.  The addr_to_node() function does a proper
address conversion to a correct node.

A vmap space is divided on segments with fixed size, it is 16 pages.  That
way any address can be associated with a segment number.  Number of
segments are equal to num_possible_cpus() but not grater then 128.  The
numeration starts from 0.  See below how it is converted:

static inline unsigned int
addr_to_node_id(unsigned long addr)
{
	return (addr / zone_size) % nr_nodes;
}

On a free path, a VA can be easily found by converting its "va_start"
address to a certain node it resides.  It is moved from "busy" data to
"lazy" data structure.  Later on, as noted earlier, the lazy kworker
decays each node pool and populates it by fresh incoming VAs.  Please
note, a VA is returned to a node that did an alloc request.

3. Test on AMD Ryzen Threadripper 3970X 32-Core Processor

sudo ./test_vmalloc.sh run_test_mask=7 nr_threads=64

<default perf>
 94.41%     0.89%  [kernel]        [k] _raw_spin_lock
 93.35%    93.07%  [kernel]        [k] native_queued_spin_lock_slowpath
 76.13%     0.28%  [kernel]        [k] __vmalloc_node_range
 72.96%     0.81%  [kernel]        [k] alloc_vmap_area
 56.94%     0.00%  [kernel]        [k] __get_vm_area_node
 41.95%     0.00%  [kernel]        [k] vmalloc
 37.15%     0.01%  [test_vmalloc]  [k] full_fit_alloc_test
 35.17%     0.00%  [kernel]        [k] ret_from_fork_asm
 35.17%     0.00%  [kernel]        [k] ret_from_fork
 35.17%     0.00%  [kernel]        [k] kthread
 35.08%     0.00%  [test_vmalloc]  [k] test_func
 34.45%     0.00%  [test_vmalloc]  [k] fix_size_alloc_test
 28.09%     0.01%  [test_vmalloc]  [k] long_busy_list_alloc_test
 23.53%     0.25%  [kernel]        [k] vfree.part.0
 21.72%     0.00%  [kernel]        [k] remove_vm_area
 20.08%     0.21%  [kernel]        [k] find_unlink_vmap_area
  2.34%     0.61%  [kernel]        [k] free_vmap_area_noflush
<default perf>
   vs
<patch-series perf>
 82.32%     0.22%  [test_vmalloc]  [k] long_busy_list_alloc_test
 63.36%     0.02%  [kernel]        [k] vmalloc
 63.34%     2.64%  [kernel]        [k] __vmalloc_node_range
 30.42%     4.46%  [kernel]        [k] vfree.part.0
 28.98%     2.51%  [kernel]        [k] __alloc_pages_bulk
 27.28%     0.19%  [kernel]        [k] __get_vm_area_node
 26.13%     1.50%  [kernel]        [k] alloc_vmap_area
 21.72%    21.67%  [kernel]        [k] clear_page_rep
 19.51%     2.43%  [kernel]        [k] _raw_spin_lock
 16.61%    16.51%  [kernel]        [k] native_queued_spin_lock_slowpath
 13.40%     2.07%  [kernel]        [k] free_unref_page
 10.62%     0.01%  [kernel]        [k] remove_vm_area
  9.02%     8.73%  [kernel]        [k] insert_vmap_area
  8.94%     0.00%  [kernel]        [k] ret_from_fork_asm
  8.94%     0.00%  [kernel]        [k] ret_from_fork
  8.94%     0.00%  [kernel]        [k] kthread
  8.29%     0.00%  [test_vmalloc]  [k] test_func
  7.81%     0.05%  [test_vmalloc]  [k] full_fit_alloc_test
  5.30%     4.73%  [kernel]        [k] purge_vmap_node
  4.47%     2.65%  [kernel]        [k] free_vmap_area_noflush
<patch-series perf>

confirms that a native_queued_spin_lock_slowpath goes down to
16.51% percent from 93.07%.

The throughput is ~12x higher:

urezki@pc638:~$ time sudo ./test_vmalloc.sh run_test_mask=7 nr_threads=64
Run the test with following parameters: run_test_mask=7 nr_threads=64
Done.
Check the kernel ring buffer to see the summary.

real    10m51.271s
user    0m0.013s
sys     0m0.187s
urezki@pc638:~$

urezki@pc638:~$ time sudo ./test_vmalloc.sh run_test_mask=7 nr_threads=64
Run the test with following parameters: run_test_mask=7 nr_threads=64
Done.
Check the kernel ring buffer to see the summary.

real    0m51.301s
user    0m0.015s
sys     0m0.040s
urezki@pc638:~$


This patch (of 11):

Currently __alloc_vmap_area() function contains an open codded logic that
finds and adjusts a VA based on allocation request.

Introduce a va_alloc() helper that adjusts found VA only.  There is no a
functional change as a result of this patch.

Link: https://lkml.kernel.org/r/20240102184633.748113-1-urezki@gmail.com
Link: https://lkml.kernel.org/r/20240102184633.748113-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Kazuhito Hagio <k-hagio-ab@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:18 -08:00
Oscar Salvador
05bb6f4e82 mm,page_owner: filter out stacks by a threshold
We want to be able to filter out the stacks based on a threshold we can
can tune.  By writing to 'count_threshold' file, we can adjust the
threshold value.

Link: https://lkml.kernel.org/r/20240215215907.20121-7-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:17 -08:00
Oscar Salvador
765973a098 mm,page_owner: display all stacks and their count
This patch adds a new directory called 'page_owner_stacks' under
/sys/kernel/debug/, with a file called 'show_stacks' in it.  Reading from
that file will show all stacks that were added by page_owner followed by
their counting, giving us a clear overview of stack <-> count
relationship.

E.g:

  prep_new_page+0xa9/0x120
  get_page_from_freelist+0x801/0x2210
  __alloc_pages+0x18b/0x350
  alloc_pages_mpol+0x91/0x1f0
  folio_alloc+0x14/0x50
  filemap_alloc_folio+0xb2/0x100
  __filemap_get_folio+0x14a/0x490
  ext4_write_begin+0xbd/0x4b0 [ext4]
  generic_perform_write+0xc1/0x1e0
  ext4_buffered_write_iter+0x68/0xe0 [ext4]
  ext4_file_write_iter+0x70/0x740 [ext4]
  vfs_write+0x33d/0x420
  ksys_write+0xa5/0xe0
  do_syscall_64+0x80/0x160
  entry_SYSCALL_64_after_hwframe+0x6e/0x76
 stack_count: 4578

The seq stack_{start,next} functions will iterate through the list
stack_list in order to print all stacks.

Link: https://lkml.kernel.org/r/20240215215907.20121-6-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:17 -08:00
Oscar Salvador
217b2119b9 mm,page_owner: implement the tracking of the stacks count
Implement {inc,dec}_stack_record_count() which increments or decrements on
respective allocation and free operations, via __reset_page_owner() (free
operation) and __set_page_owner() (alloc operation).

Newly allocated stack_record structs will be added to the list stack_list
via add_stack_record_to_list().  Modifications on the list are protected
via a spinlock with irqs disabled, since this code can also be reached
from IRQ context.

Link: https://lkml.kernel.org/r/20240215215907.20121-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:17 -08:00
Oscar Salvador
4bedfb314b mm,page_owner: maintain own list of stack_records structs
page_owner needs to increment a stack_record refcount when a new
allocation occurs, and decrement it on a free operation.  In order to do
that, we need to have a way to get a stack_record from a handle. 
Implement __stack_depot_get_stack_record() which just does that, and make
it public so page_owner can use it.

Also, traversing all stackdepot buckets comes with its own complexity,
plus we would have to implement a way to mark only those stack_records
that were originated from page_owner, as those are the ones we are
interested in.  For that reason, page_owner maintains its own list of
stack_records, because traversing that list is faster than traversing all
buckets while keeping at the same time a low complexity.

For now, add to stack_list only the stack_records of dummy_handle and
failure_handle, and set their refcount of 1.

Further patches will add code to increment or decrement stack_records
count on allocation and free operation.

Link: https://lkml.kernel.org/r/20240215215907.20121-4-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:48:17 -08:00
Andrew Morton
1f1183c4c0 merge mm-hotfixes-stable into mm-nonmm-stable to pick up stackdepot changes 2024-02-23 17:28:43 -08:00
Aneesh Kumar K.V (IBM)
720da1e593 mm/debug_vm_pgtable: fix BUG_ON with pud advanced test
Architectures like powerpc add debug checks to ensure we find only devmap
PUD pte entries.  These debug checks are only done with CONFIG_DEBUG_VM. 
This patch marks the ptes used for PUD advanced test devmap pte entries so
that we don't hit on debug checks on architecture like ppc64 as below.

WARNING: CPU: 2 PID: 1 at arch/powerpc/mm/book3s64/radix_pgtable.c:1382 radix__pud_hugepage_update+0x38/0x138
....
NIP [c0000000000a7004] radix__pud_hugepage_update+0x38/0x138
LR [c0000000000a77a8] radix__pudp_huge_get_and_clear+0x28/0x60
Call Trace:
[c000000004a2f950] [c000000004a2f9a0] 0xc000000004a2f9a0 (unreliable)
[c000000004a2f980] [000d34c100000000] 0xd34c100000000
[c000000004a2f9a0] [c00000000206ba98] pud_advanced_tests+0x118/0x334
[c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48
[c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388

Also

 kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:202!
 ....

 NIP [c000000000096510] pudp_huge_get_and_clear_full+0x98/0x174
 LR [c00000000206bb34] pud_advanced_tests+0x1b4/0x334
 Call Trace:
 [c000000004a2f950] [000d34c100000000] 0xd34c100000000 (unreliable)
 [c000000004a2f9a0] [c00000000206bb34] pud_advanced_tests+0x1b4/0x334
 [c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48
 [c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388

Link: https://lkml.kernel.org/r/20240129060022.68044-1-aneesh.kumar@kernel.org
Fixes: 27af67f35631 ("powerpc/book3s64/mm: enable transparent pud hugepage")
Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:27:13 -08:00
Nhat Pham
3a75cb05d5 mm: cachestat: fix folio read-after-free in cache walk
In cachestat, we access the folio from the page cache's xarray to compute
its page offset, and check for its dirty and writeback flags.  However, we
do not hold a reference to the folio before performing these actions,
which means the folio can concurrently be released and reused as another
folio/page/slab.

Get around this altogether by just using xarray's existing machinery for
the folio page offsets and dirty/writeback states.

This changes behavior for tmpfs files to now always report zeroes in their
dirty and writeback counters.  This is okay as tmpfs doesn't follow
conventional writeback cache behavior: its pages get "cleaned" during
swapout, after which they're no longer resident etc.

Link: https://lkml.kernel.org/r/20240220153409.GA216065@cmpxchg.org
Fixes: cf264e1329fb ("cachestat: implement cachestat syscall")
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>	[6.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:27:13 -08:00
Byungchul Park
2774f256e7 mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index
With numa balancing on, when a numa system is running where a numa node
doesn't have its local memory so it has no managed zones, the following
oops has been observed.  It's because wakeup_kswapd() is called with a
wrong zone index, -1.  Fixed it by checking the index before calling
wakeup_kswapd().

> BUG: unable to handle page fault for address: 00000000000033f3
> #PF: supervisor read access in kernel mode
> #PF: error_code(0x0000) - not-present page
> PGD 0 P4D 0
> Oops: 0000 [#1] PREEMPT SMP NOPTI
> CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255
> Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
>    rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
> RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812)
> Code: (omitted)
> RSP: 0000:ffffc90004257d58 EFLAGS: 00010286
> RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003
> RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480
> RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff
> R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003
> R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940
> FS:  00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000
> CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> PKRU: 55555554
> Call Trace:
>  <TASK>
> ? __die
> ? page_fault_oops
> ? __pte_offset_map_lock
> ? exc_page_fault
> ? asm_exc_page_fault
> ? wakeup_kswapd
> migrate_misplaced_page
> __handle_mm_fault
> handle_mm_fault
> do_user_addr_fault
> exc_page_fault
> asm_exc_page_fault
> RIP: 0033:0x55b897ba0808
> Code: (omitted)
> RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287
> RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0
> RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0
> RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075
> R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
> R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000
>  </TASK>

Link: https://lkml.kernel.org/r/20240216111502.79759-1-byungchul@sk.com
Signed-off-by: Byungchul Park <byungchul@sk.com>
Reported-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Fixes: c574bbe917036 ("NUMA balancing: optimize page placement for memory tiering system")
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:27:13 -08:00
Marco Elver
711d349174 kasan: revert eviction of stack traces in generic mode
This partially reverts commits cc478e0b6bdf, 63b85ac56a64, 08d7c94d9635,
a414d4286f34, and 773688a6cb24 to make use of variable-sized stack depot
records, since eviction of stack entries from stack depot forces fixed-
sized stack records.  Care was taken to retain the code cleanups by the
above commits.

Eviction was added to generic KASAN as a response to alleviating the
additional memory usage from fixed-sized stack records, but this still
uses more memory than previously.

With the re-introduction of variable-sized records for stack depot, we can
just switch back to non-evictable stack records again, and return back to
the previous performance and memory usage baseline.

Before (observed after a KASAN kernel boot):

  pools: 597
  refcounted_allocations: 17547
  refcounted_frees: 6477
  refcounted_in_use: 11070
  freelist_size: 3497
  persistent_count: 12163
  persistent_bytes: 1717008

After:

  pools: 319
  refcounted_allocations: 0
  refcounted_frees: 0
  refcounted_in_use: 0
  freelist_size: 0
  persistent_count: 29397
  persistent_bytes: 5183536

As can be seen from the counters, with a generic KASAN config, refcounted
allocations and evictions are no longer used.  Due to using variable-sized
records, I observe a reduction of 278 stack depot pools (saving 4448 KiB)
with my test setup.

Link: https://lkml.kernel.org/r/20240129100708.39460-2-elver@google.com
Fixes: cc478e0b6bdf ("kasan: avoid resetting aux_lock")
Fixes: 63b85ac56a64 ("kasan: stop leaking stack trace handles")
Fixes: 08d7c94d9635 ("kasan: memset free track in qlink_free")
Fixes: a414d4286f34 ("kasan: handle concurrent kasan_record_aux_stack calls")
Fixes: 773688a6cb24 ("kasan: use stack_depot_put for Generic mode")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23 17:27:12 -08:00
Nathan Chancellor
2947a4567f treewide: update LLVM Bugzilla links
LLVM moved their issue tracker from their own Bugzilla instance to GitHub
issues.  While all of the links are still valid, they may not necessarily
show the most up to date information around the issues, as all updates
will occur on GitHub, not Bugzilla.

Another complication is that the Bugzilla issue number is not always the
same as the GitHub issue number.  Thankfully, LLVM maintains this mapping
through two shortlinks:

  https://llvm.org/bz<num> -> https://bugs.llvm.org/show_bug.cgi?id=<num>
  https://llvm.org/pr<num> -> https://github.com/llvm/llvm-project/issues/<mapped_num>

Switch all "https://bugs.llvm.org/show_bug.cgi?id=<num>" links to the
"https://llvm.org/pr<num>" shortlink so that the links show the most up to
date information.  Each migrated issue links back to the Bugzilla entry,
so there should be no loss of fidelity of information here.

Link: https://lkml.kernel.org/r/20240109-update-llvm-links-v1-3-eb09b59db071@kernel.org
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Fangrui Song <maskray@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Mykola Lysenko <mykolal@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:38:51 -08:00
Lokesh Gidra
867a43a34f userfaultfd: use per-vma locks in userfaultfd operations
All userfaultfd operations, except write-protect, opportunistically use
per-vma locks to lock vmas.  On failure, attempt again inside mmap_lock
critical section.

Write-protect operation requires mmap_lock as it iterates over multiple
vmas.

Link: https://lkml.kernel.org/r/20240215182756.3448972-5-lokeshgidra@google.com
Signed-off-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:20 -08:00
Lokesh Gidra
5e4c24a57b userfaultfd: protect mmap_changing with rw_sem in userfaulfd_ctx
Increments and loads to mmap_changing are always in mmap_lock critical
section.  This ensures that if userspace requests event notification for
non-cooperative operations (e.g.  mremap), userfaultfd operations don't
occur concurrently.

This can be achieved by using a separate read-write semaphore in
userfaultfd_ctx such that increments are done in write-mode and loads in
read-mode, thereby eliminating the dependency on mmap_lock for this
purpose.

This is a preparatory step before we replace mmap_lock usage with per-vma
locks in fill/move ioctls.

Link: https://lkml.kernel.org/r/20240215182756.3448972-3-lokeshgidra@google.com
Signed-off-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:20 -08:00
Juntong Deng
952237b5a9 kasan: increase the number of bits to shift when recording extra timestamps
In 5d4c6ac94694 ("kasan: record and report more information") I thought
that printk only displays a maximum of 99999 seconds, but actually printk
can display a larger number of seconds.

So increase the number of bits to shift when recording the extra timestamp
(44 bits), without affecting the precision, shift it right by 9 bits,
discarding all bits that do not affect the microsecond part (nanoseconds
will not be shown).

Currently the maximum time that can be displayed is 9007199.254740s,
because

11111111111111111111111111111111111111111111 (44 bits) << 9
= 11111111111111111111111111111111111111111111000000000
= 9007199.254740

Link: https://lkml.kernel.org/r/AM6PR03MB58481629F2F28CE007412139994D2@AM6PR03MB5848.eurprd03.prod.outlook.com
Fixes: 5d4c6ac94694 ("kasan: record and report more information")
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:20 -08:00
Matthew Wilcox (Oracle)
059ab7be09 rmap: replace two calls to compound_order with folio_order
Removes two unnecessary conversions from folio to page.  Should be no
difference in behaviour.

Link: https://lkml.kernel.org/r/20240215205307.674707-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:20 -08:00
Mathieu Desnoyers
8690bbcf3b Introduce cpu_dcache_is_aliasing() across all architectures
Introduce a generic way to query whether the data cache is virtually
aliased on all architectures. Its purpose is to ensure that subsystems
which are incompatible with virtually aliased data caches (e.g. FS_DAX)
can reliably query this.

For data cache aliasing, there are three scenarios dependending on the
architecture. Here is a breakdown based on my understanding:

A) The data cache is always aliasing:

* arc
* csky
* m68k (note: shared memory mappings are incoherent ? SHMLBA is missing there.)
* sh
* parisc

B) The data cache aliasing is statically known or depends on querying CPU
   state at runtime:

* arm (cache_is_vivt() || cache_is_vipt_aliasing())
* mips (cpu_has_dc_aliases)
* nios2 (NIOS2_DCACHE_SIZE > PAGE_SIZE)
* sparc32 (vac_cache_size > PAGE_SIZE)
* sparc64 (L1DCACHE_SIZE > PAGE_SIZE)
* xtensa (DCACHE_WAY_SIZE > PAGE_SIZE)

C) The data cache is never aliasing:

* alpha
* arm64 (aarch64)
* hexagon
* loongarch (but with incoherent write buffers, which are disabled since
             commit d23b7795 ("LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE"))
* microblaze
* openrisc
* powerpc
* riscv
* s390
* um
* x86

Require architectures in A) and B) to select ARCH_HAS_CPU_CACHE_ALIASING and
implement "cpu_dcache_is_aliasing()".

Architectures in C) don't select ARCH_HAS_CPU_CACHE_ALIASING, and thus
cpu_dcache_is_aliasing() simply evaluates to "false".

Note that this leaves "cpu_icache_is_aliasing()" to be implemented as future
work. This would be useful to gate features like XIP on architectures
which have aliasing CPU dcache-icache but not CPU dcache-dcache.

Use "cpu_dcache" and "cpu_cache" rather than just "dcache" and "cache"
to clarify that we really mean "CPU data cache" and "CPU cache" to
eliminate any possible confusion with VFS "dentry cache" and "page
cache".

Link: https://lore.kernel.org/lkml/20030910210416.GA24258@mail.jlokier.co.uk/
Link: https://lkml.kernel.org/r/20240215144633.96437-9-mathieu.desnoyers@efficios.com
Fixes: d92576f1167c ("dax: does not work correctly with virtual aliasing caches")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michael Sclafani <dm-devel@lists.linux.dev>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:19 -08:00
Ryan Roberts
c6ec76a2eb mm: add pte_batch_hint() to reduce scanning in folio_pte_batch()
Some architectures (e.g.  arm64) can tell from looking at a pte, if some
follow-on ptes also map contiguous physical memory with the same pgprot. 
(for arm64, these are contpte mappings).

Take advantage of this knowledge to optimize folio_pte_batch() so that it
can skip these ptes when scanning to create a batch.  By default, if an
arch does not opt-in, folio_pte_batch() returns a compile-time 1, so the
changes are optimized out and the behaviour is as before.

arm64 will opt-in to providing this hint in the next patch, which will
greatly reduce the cost of ptep_get() when scanning a range of contptes.

Link: https://lkml.kernel.org/r/20240215103205.2607016-16-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:18 -08:00
Ryan Roberts
2bdba9868a mm: thp: batch-collapse PMD with set_ptes()
Refactor __split_huge_pmd_locked() so that a present PMD can be collapsed
to PTEs in a single batch using set_ptes().

This should improve performance a little bit, but the real motivation is
to remove the need for the arm64 backend to have to fold the contpte
entries.  Instead, since the ptes are set as a batch, the contpte blocks
can be initially set up pre-folded (once the arm64 contpte support is
added in the next few patches).  This leads to noticeable performance
improvement during split.

Link: https://lkml.kernel.org/r/20240215103205.2607016-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
10ebac4f95 mm/memory: optimize unmap/zap with PTE-mapped THP
Similar to how we optimized fork(), let's implement PTE batching when
consecutive (present) PTEs map consecutive pages of the same large folio.

Most infrastructure we need for batching (mmu gather, rmap) is already
there.  We only have to add get_and_clear_full_ptes() and
clear_full_ptes().  Similarly, extend zap_install_uffd_wp_if_needed() to
process a PTE range.

We won't bother sanity-checking the mapcount of all subpages, but only
check the mapcount of the first subpage we process.  If there is a real
problem hiding somewhere, we can trigger it simply by using small folios,
or when we zap single pages of a large folio.  Ideally, we had that check
in rmap code (including for delayed rmap), but then we cannot print the
PTE.  Let's keep it simple for now.  If we ever have a cheap
folio_mapcount(), we might just want to check for underflows there.

To keep small folios as fast as possible force inlining of a specialized
variant using __always_inline with nr=1.

Link: https://lkml.kernel.org/r/20240214204435.167852-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
e61abd4490 mm/mmu_gather: improve cond_resched() handling with large folios and expensive page freeing
In tlb_batch_pages_flush(), we can end up freeing up to 512 pages or now
up to 256 folio fragments that span more than one page, before we
conditionally reschedule.

It's a pain that we have to handle cond_resched() in
tlb_batch_pages_flush() manually and cannot simply handle it in
release_pages() -- release_pages() can be called from atomic context. 
Well, in a perfect world we wouldn't have to make our code more
complicated at all.

With page poisoning and init_on_free, we might now run into soft lockups
when we free a lot of rather large folio fragments, because page freeing
time then depends on the actual memory size we are freeing instead of on
the number of folios that are involved.

In the absolute (unlikely) worst case, on arm64 with 64k we will be able
to free up to 256 folio fragments that each span 512 MiB: zeroing out 128
GiB does sound like it might take a while.  But instead of ignoring this
unlikely case, let's just handle it.

So, let's teach tlb_batch_pages_flush() that there are some configurations
where page freeing is horribly slow, and let's reschedule more frequently
-- similarly like we did for now before we had large folio fragments in
there.  Avoid yet another loop over all encoded pages in the common case
by handling that separately.

Note that with page poisoning/zeroing, we might now end up freeing only a
single folio fragment at a time that might exceed the old 512 pages limit:
but if we cannot even free a single MAX_ORDER page on a system without
running into soft lockups, something else is already completely bogus. 
Freeing a PMD-mapped THP would similarly cause trouble.

In theory, we might even free 511 order-0 pages + a single MAX_ORDER page,
effectively having to zero out 8703 pages on arm64 with 64k, translating
to ~544 MiB of memory: however, if 512 MiB doesn't result in soft lockups,
544 MiB is unlikely to result in soft lockups, so we won't care about that
for the time being.

In the future, we might want to detect if handling cond_resched() is
required at all, and just not do any of that with full preemption enabled.

Link: https://lkml.kernel.org/r/20240214204435.167852-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
d7f861b9c4 mm/mmu_gather: add __tlb_remove_folio_pages()
Add __tlb_remove_folio_pages(), which will remove multiple consecutive
pages that belong to the same large folio, instead of only a single page. 
We'll be using this function when optimizing unmapping/zapping of large
folios that are mapped by PTEs.

We're using the remaining spare bit in an encoded_page to indicate that
the next enoced page in an array contains actually shifted "nr_pages". 
Teach swap/freeing code about putting multiple folio references, and
delayed rmap handling to remove page ranges of a folio.

This extension allows for still gathering almost as many small folios as
we used to (-1, because we have to prepare for a possibly bigger next
entry), but still allows for gathering consecutive pages that belong to
the same large folio.

Note that we don't pass the folio pointer, because it is not required for
now.  Further, we don't support page_size != PAGE_SIZE, it won't be
required for simple PTE batching.

We have to provide a separate s390 implementation, but it's fairly
straight forward.

Another, more invasive and likely more expensive, approach would be to use
folio+range or a PFN range instead of page+nr_pages.  But, we should do
that consistently for the whole mmu_gather.  For now, let's keep it simple
and add "nr_pages" only.

Note that it is now possible to gather significantly more pages: In the
past, we were able to gather ~10000 pages, now we can also gather ~5000
folio fragments that span multiple pages.  A folio fragment on x86-64 can
span up to 512 pages (2 MiB THP) and on arm64 with 64k in theory 8192
pages (512 MiB THP).  Gathering more memory is not considered something we
should worry about, especially because these are already corner cases.

While we can gather more total memory, we won't free more folio fragments.
As long as page freeing time primarily only depends on the number of
involved folios, there is no effective change for !preempt configurations.
However, we'll adjust tlb_batch_pages_flush() separately to handle corner
cases where page freeing time grows proportionally with the actual memory
size.

Link: https://lkml.kernel.org/r/20240214204435.167852-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
da510964c0 mm/mmu_gather: define ENCODED_PAGE_FLAG_DELAY_RMAP
Nowadays, encoded pages are only used in mmu_gather handling.  Let's
update the documentation, and define ENCODED_PAGE_BIT_DELAY_RMAP.  While
at it, rename ENCODE_PAGE_BITS to ENCODED_PAGE_BITS.

If encoded page pointers would ever be used in other context again, we'd
likely want to change the defines to reflect their context (e.g.,
ENCODED_PAGE_FLAG_MMU_GATHER_DELAY_RMAP).  For now, let's keep it simple.

This is a preparation for using the remaining spare bit to indicate that
the next item in an array of encoded pages is a "nr_pages" argument and
not an encoded page.

Link: https://lkml.kernel.org/r/20240214204435.167852-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
c30d6bc8d0 mm/mmu_gather: pass "delay_rmap" instead of encoded page to __tlb_remove_page_size()
We have two bits available in the encoded page pointer to store additional
information.  Currently, we use one bit to request delay of the rmap
removal until after a TLB flush.

We want to make use of the remaining bit internally for batching of
multiple pages of the same folio, specifying that the next encoded page
pointer in an array is actually "nr_pages".  So pass page + delay_rmap
flag instead of an encoded page, to handle the encoding internally.

Link: https://lkml.kernel.org/r/20240214204435.167852-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
2b42a7e531 mm/memory: factor out zapping folio pte into zap_present_folio_pte()
Let's prepare for further changes by factoring it out into a separate
function.

Link: https://lkml.kernel.org/r/20240214204435.167852-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
d11838ed63 mm/memory: further separate anon and pagecache folio handling in zap_present_pte()
We don't need up-to-date accessed-dirty information for anon folios and
can simply work with the ptent we already have.  Also, we know the RSS
counter we want to update.

We can safely move arch_check_zapped_pte() + tlb_remove_tlb_entry() +
zap_install_uffd_wp_if_needed() after updating the folio and RSS.

While at it, only call zap_install_uffd_wp_if_needed() if there is even
any chance that pte_install_uffd_wp_if_needed() would do *something*. 
That is, just don't bother if uffd-wp does not apply.

Link: https://lkml.kernel.org/r/20240214204435.167852-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
0cf18e839f mm/memory: handle !page case in zap_present_pte() separately
We don't need uptodate accessed/dirty bits, so in theory we could replace
ptep_get_and_clear_full() by an optimized ptep_clear_full() function. 
Let's rely on the provided pte.

Further, there is no scenario where we would have to insert uffd-wp
markers when zapping something that is not a normal page (i.e., zeropage).
Add a sanity check to make sure this remains true.

should_zap_folio() no longer has to handle NULL pointers.  This change
replaces 2/3 "!page/!folio" checks by a single "!page" one.

Note that arch_check_zapped_pte() on x86-64 checks the HW-dirty bit to
detect shadow stack entries.  But for shadow stack entries, the HW dirty
bit (in combination with non-writable PTEs) is set by software.  So for
the arch_check_zapped_pte() check, we don't have to sync against HW
setting the HW dirty bit concurrently, it is always set.

Link: https://lkml.kernel.org/r/20240214204435.167852-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
789753e17c mm/memory: factor out zapping of present pte into zap_present_pte()
Patch series "mm/memory: optimize unmap/zap with PTE-mapped THP", v3.

This series is based on [1].  Similar to what we did with fork(), let's
implement PTE batching during unmap/zap when processing PTE-mapped THPs.

We collect consecutive PTEs that map consecutive pages of the same large
folio, making sure that the other PTE bits are compatible, and (a) adjust
the refcount only once per batch, (b) call rmap handling functions only
once per batch, (c) perform batch PTE setting/updates and (d) perform TLB
entry removal once per batch.

Ryan was previously working on this in the context of cont-pte for arm64,
int latest iteration [2] with a focus on arm6 with cont-pte only.  This
series implements the optimization for all architectures, independent of
such PTE bits, teaches MMU gather/TLB code to be fully aware of such
large-folio-pages batches as well, and amkes use of our new rmap batching
function when removing the rmap.

To achieve that, we have to enlighten MMU gather / page freeing code
(i.e., everything that consumes encoded_page) to process unmapping of
consecutive pages that all belong to the same large folio.  I'm being very
careful to not degrade order-0 performance, and it looks like I managed to
achieve that.

While this series should -- similar to [1] -- be beneficial for adding
cont-pte support on arm64[2], it's one of the requirements for maintaining
a total mapcount[3] for large folios with minimal added overhead and
further changes[4] that build up on top of the total mapcount.

Independent of all that, this series results in a speedup during munmap()
and similar unmapping (process teardown, MADV_DONTNEED on larger ranges)
with PTE-mapped THP, which is the default with THPs that are smaller than
a PMD (for example, 16KiB to 1024KiB mTHPs for anonymous memory[5]).

On an Intel Xeon Silver 4210R CPU, munmap'ing a 1GiB VMA backed by
PTE-mapped folios of the same size (stddev < 1%) results in the following
runtimes for munmap() in seconds (shorter is better):

Folio Size | mm-unstable |      New | Change
---------------------------------------------
      4KiB |    0.058110 | 0.057715 |   - 1%
     16KiB |    0.044198 | 0.035469 |   -20%
     32KiB |    0.034216 | 0.023522 |   -31%
     64KiB |    0.029207 | 0.018434 |   -37%
    128KiB |    0.026579 | 0.014026 |   -47%
    256KiB |    0.025130 | 0.011756 |   -53%
    512KiB |    0.024292 | 0.010703 |   -56%
   1024KiB |    0.023812 | 0.010294 |   -57%
   2048KiB |    0.023785 | 0.009910 |   -58%

[1] https://lkml.kernel.org/r/20240129124649.189745-1-david@redhat.com
[2] https://lkml.kernel.org/r/20231218105100.172635-1-ryan.roberts@arm.com
[3] https://lkml.kernel.org/r/20230809083256.699513-1-david@redhat.com
[4] https://lkml.kernel.org/r/20231124132626.235350-1-david@redhat.com
[5] https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com


This patch (of 10):

Let's prepare for further changes by factoring out processing of present
PTEs.

Link: https://lkml.kernel.org/r/20240214204435.167852-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240214204435.167852-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
Baolin Wang
1883e8ac96 mm: compaction: limit the suitable target page order to be less than cc->order
It can not improve the fragmentation if we isolate the target free pages
exceeding cc->order, especially when the cc->order is less than
pageblock_order.  For example, suppose the pageblock_order is MAX_ORDER
(size is 4M) and cc->order is 2M THP size, we should not isolate other 2M
free pages to be the migration target, which can not improve the
fragmentation.

Moreover this is also applicable for large folio compaction.

Link: https://lkml.kernel.org/r/afcd9377351c259df7a25a388a4a0d5862b986f4.1705928395.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:16 -08:00
Anshuman Khandual
ce70cfb145 mm/hugetlb: move page order check inside hugetlb_cma_reserve()
All platforms could benefit from page order check against MAX_PAGE_ORDER
before allocating a CMA area for gigantic hugetlb pages.  Let's move this
check from individual platforms to generic hugetlb.

Link: https://lkml.kernel.org/r/20240209054221.1403364-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:59 -08:00
Kinsey Ho
4acef5694e mm/mglru: improve swappiness handling
The reclaimable number of anon pages used to set initial reclaim priority
is only based on get_swappiness().  Use can_reclaim_anon_pages() to
include NUMA node demotion.

Also move the swappiness handling of when !__GFP_IO in
try_to_shrink_lruvec() into isolate_folios().

Link: https://lkml.kernel.org/r/20240214060538.3524462-6-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Kinsey Ho
cc25bbe10a mm/mglru: improve struct lru_gen_mm_walk
Rename max_seq to seq in struct lru_gen_mm_walk to keep consistent with
struct lru_gen_mm_state.  Note that seq is not always up to date with
max_seq from lru_gen_folio.

No functional changes.

Link: https://lkml.kernel.org/r/20240214060538.3524462-5-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Kinsey Ho
2d823764fa mm/mglru: improve reset_mm_stats()
struct lruvec* is already a field of struct lru_gen_mm_walk.  Remove the
parameter struct lruvec* into functions that already have access to struct
lru_gen_mm_walk*.

Also, we do not need to handle reset histogram stats when
!should_walk_mmu().  Remove the call to reset_mm_stats() in
iterate_mm_list_nowalk().

Link: https://lkml.kernel.org/r/20240214060538.3524462-4-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Kinsey Ho
51973cc9e5 mm/mglru: improve should_run_aging()
scan_control *sc does not need to be passed into should_run_aging(), as it
provides only the reclaim priority.  This can be moved to
get_nr_to_scan().

Refactor should_run_aging() and get_nr_to_scan() to improve code
readability.  No functional changes.

Link: https://lkml.kernel.org/r/20240214060538.3524462-3-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Kinsey Ho
1ce2292c14 mm/mglru: drop unused parameter
Patch series "mm/mglru: code cleanup and refactoring"

This provides MGLRU code cleanup and refactoring for better readability.


This patch (of 5):

struct scan_control *sc is currently passed into try_to_inc_max_seq() and
run_aging().  This parameter is not used.

Drop the unused parameter struct scan_control *sc. No functional change.

Link: https://lkml.kernel.org/r/20240214060538.3524462-1-kinseyho@google.com
Link: https://lkml.kernel.org/r/20240214060538.3524462-2-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Arnd Bergmann
e10aea105e kasan/test: avoid gcc warning for intentional overflow
The out-of-bounds test allocates an object that is three bytes too short
in order to validate the bounds checking.  Starting with gcc-14, this
causes a compile-time warning as gcc has grown smart enough to understand
the sizeof() logic:

mm/kasan/kasan_test.c: In function 'kmalloc_oob_16':
mm/kasan/kasan_test.c:443:14: error: allocation of insufficient size '13' for type 'struct <anonymous>' with size '16' [-Werror=alloc-size]
  443 |         ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
      |              ^

Hide the actual computation behind a RELOC_HIDE() that ensures
the compiler misses the intentional bug.

Link: https://lkml.kernel.org/r/20240212111609.869266-1-arnd@kernel.org
Fixes: 3f15801cdc23 ("lib: add kasan test module")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:58 -08:00
Chengming Zhou
f576a1e80c mm/zswap: optimize and cleanup the invalidation of duplicate entry
We may encounter duplicate entry in the zswap_store():

1. swap slot that freed to per-cpu swap cache, doesn't invalidate
   the zswap entry, then got reused. This has been fixed.

2. !exclusive load mode, swapin folio will leave its zswap entry
   on the tree, then swapout again. This has been removed.

3. one folio can be dirtied again after zswap_store(), so need to
   zswap_store() again. This should be handled correctly.

So we must invalidate the old duplicate entry before inserting the
new one, which actually doesn't have to be done at the beginning
of zswap_store().

The good point is that we don't need to lock the tree twice in the normal
store success path.  And cleanup the loop as we are here.

Note we still need to invalidate the old duplicate entry when store failed
or zswap is disabled , otherwise the new data in swapfile could be
overwrite by the old data in zswap pool when lru writeback.

Link: https://lkml.kernel.org/r/20240209044112.3883835-1-chengming.zhou@linux.dev
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:57 -08:00
Kefeng Wang
3e40b3f417 mm: compaction: refactor compact_node()
Refactor compact_node() to handle both proactive and synchronous compact
memory, which cleanups code a bit.

Link: https://lkml.kernel.org/r/20240208013607.1731817-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:57 -08:00
Anshuman Khandual
b9ad003af1 mm/cma: add sysfs file 'release_pages_success'
This adds the following new sysfs file tracking the number of successfully
released pages from a given CMA heap area.  This file will be available
via CONFIG_CMA_SYSFS and help in determining active CMA pages available on
the CMA heap area.  This adds a new 'nr_pages_released' (CONFIG_CMA_SYSFS)
into 'struct cma' which gets updated during cma_release().

/sys/kernel/mm/cma/<cma-heap-area>/release_pages_success

After this change, an user will be able to find active CMA pages available
in a given CMA heap area via the following method.

Active pages = alloc_pages_success - release_pages_success

That's valuable information for both software designers, and system admins
as it allows them to tune the number of CMA pages available in the system.
This increases user visibility for allocated CMA area and its
utilization.

Link: https://lkml.kernel.org/r/20240206045731.472759-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:57 -08:00
Li Zhijian
601e793a74 mm/demotion: print demotion targets
Currently, when a demotion occurs, it will prioritize selecting a node
from the preferred targets as the destination node for the demotion.  If
the preferred node does not meet the requirements, it will try from all
the lower memory tier nodes until it finds a suitable demotion destination
node or ultimately fails.

However, the demotion target information isn't exposed to the users,
especially the preferred target information, which relies on more factors.
This makes it hard for users to understand the exact demotion behavior.

Rather than having a new sysfs interface to expose this information,
printing directly to kernel messages, just like the current page
allocation fallback order does.

A dmesg example with this patch is as follows:
[    0.704860] Demotion targets for Node 0: null
[    0.705456] Demotion targets for Node 1: null
// node 2 is onlined
[   32.259775] Demotion targets for Node 0: perferred: 2, fallback: 2
[   32.261290] Demotion targets for Node 1: perferred: 2, fallback: 2
[   32.262726] Demotion targets for Node 2: null
// node 3 is onlined
[   42.448809] Demotion targets for Node 0: perferred: 2, fallback: 2-3
[   42.450704] Demotion targets for Node 1: perferred: 2, fallback: 2-3
[   42.452556] Demotion targets for Node 2: perferred: 3, fallback: 3
[   42.454136] Demotion targets for Node 3: null
// node 4 is onlined
[   52.676833] Demotion targets for Node 0: perferred: 2, fallback: 2-4
[   52.678735] Demotion targets for Node 1: perferred: 2, fallback: 2-4
[   52.680493] Demotion targets for Node 2: perferred: 4, fallback: 3-4
[   52.682154] Demotion targets for Node 3: null
[   52.683405] Demotion targets for Node 4: null
// node 5 is onlined
[   62.931902] Demotion targets for Node 0: perferred: 2, fallback: 2-5
[   62.938266] Demotion targets for Node 1: perferred: 5, fallback: 2-5
[   62.943515] Demotion targets for Node 2: perferred: 4, fallback: 3-4
[   62.947471] Demotion targets for Node 3: null
[   62.949908] Demotion targets for Node 4: null
[   62.952137] Demotion targets for Node 5: perferred: 3, fallback: 3-4

Regarding this requirement, we have previously discussed [1].  The initial
proposal involved introducing a new sysfs interface.  However, due to
concerns about potential changes and compatibility issues with the
interface in the future, a consensus was not reached with the community. 
Therefore, this time, we are directly printing out the information.

[1] https://lore.kernel.org/all/d1d5add8-8f4a-4578-8bf0-2cbe79b09989@fujitsu.com/

Link: https://lkml.kernel.org/r/20240206020151.605516-1-lizhijian@fujitsu.com
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
SeongJae Park
6a080670d6 mm/damon/sysfs: handle 'state' file inputs for every sampling interval if possible
DAMON sysfs interface need to access kdamond-touching data for some of
kdamond user commands.  It uses ->after_aggregation() kdamond callback to
safely access the data in the case.  It had to use the aggregation
interval callback because that was the only callback that users can access
complete monitoring results.

Since patch series "mm/damon: provide pseudo-moving sum based access
rate", which starts from commit 78fbfb155d20 ("mm/damon/core: define and
use a dedicated function for region access rate update"), DAMON provides
good-to-use quality moitoring results for every sampling interval.  It
aims to help users who need to quickly retrieve the monitoring results. 
When the aggregation interval is set too long and therefore waiting for
the aggregation interval can degrade user experience, or when the access
pattern is expected to be significantly changed[1] could be such cases.

However, because DAMON sysfs interface is still handling the commands per
aggregation interval, the end user cannot get the benefit.  Update DAMON
sysfs interface to handle kdamond commands for every sampling interval if
applicable.  Specifically, all kdamond data accessing commands except
'commit' command are applicable.

[1] https://lore.kernel.org/r/20240129121316.GA9706@cuiyangpei

Link: https://lkml.kernel.org/r/20240206025158.203097-1-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: xiongping1 <xiongping1@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
Baolin Wang
831bc31a5e mm: hugetlb: improve the handling of hugetlb allocation failure for freed or in-use hugetlb
alloc_and_dissolve_hugetlb_folio() preallocates a new hugetlb page before
it takes hugetlb_lock.  In 3 out of 4 cases the page is not really used
and therefore the newly allocated page is just freed right away.  This is
wasteful and it might cause pre-mature failures in those cases.

Address that by moving the allocation down to the only case (hugetlb page
is really in the free pages pool).  We need to drop hugetlb_lock to do so
and therefore need to recheck the page state after regaining it.

The patch is more of a cleanup than an actual fix to an existing problem. 
There are no known reports about pre-mature failures.

Link: https://lkml.kernel.org/r/62890fd60b1ecd5bf1cdc476c973f60fe37aa0cb.1707181934.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
Paul Gofman
055267feae mm/migrate: preserve exact soft-dirty state
pte_mkdirty() sets both _PAGE_DIRTY and _PAGE_SOFT_DIRTY bits.  The
_PAGE_SOFT_DIRTY can get set even if it wasn't set on original page before
migration.  This makes non-soft-dirty pages soft-dirty just because of
migration/compaction.  Clear the _PAGE_SOFT_DIRTY flag if it wasn't set on
original page.

By definition of soft-dirty feature, there can be spurious soft-dirty
pages because of kernel's internal activity such as VMA merging or
migration/compaction.  This patch is eliminating the spurious soft-dirty
pages because of migration/compaction.

Link: https://lkml.kernel.org/r/20240206084838.34560-1-usama.anjum@collabora.com
Signed-off-by: Paul Gofman <pgofman@codeweavers.com>
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Cc: Michał Mirosław <emmir@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
Chengming Zhou
a230c20e63 mm/zswap: zswap entry doesn't need refcount anymore
Since we don't need to leave zswap entry on the zswap tree anymore,
we should remove it from tree once we find it from the tree.

Then after using it, we can directly free it, no concurrent path
can find it from tree. Only the shrinker can see it from lru list,
which will also double check under tree lock, so no race problem.

So we don't need refcount in zswap entry anymore and don't need to
take the spinlock for the second time to invalidate it.

The side effect is that zswap_entry_free() maybe not happen in tree
spinlock, but it's ok since nothing need to be protected by the lock.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-6-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:55 -08:00
Chengming Zhou
c2e2ba7702 mm/zswap: only support zswap_exclusive_loads_enabled
The !zswap_exclusive_loads_enabled mode will leave compressed copy in
the zswap tree and lru list after the folio swapin.

There are some disadvantages in this mode:
1. It's a waste of memory since there are two copies of data, one is
   folio, the other one is compressed data in zswap. And it's unlikely
   the compressed data is useful in the near future.

2. If that folio is dirtied, the compressed data must be not useful,
   but we don't know and don't invalidate the trashy memory in zswap.

3. It's not reclaimable from zswap shrinker since zswap_writeback_entry()
   will always return -EEXIST and terminate the shrinking process.

On the other hand, the only downside of zswap_exclusive_loads_enabled
is a little more cpu usage/latency when compression, and the same if
the folio is removed from swapcache or dirtied.

More explanation by Johannes on why we should consider exclusive load
as the default for zswap:

  Caching "swapout work" is helpful when the system is thrashing. Then
  recently swapped in pages might get swapped out again very soon. It
  certainly makes sense with conventional swap, because keeping a clean
  copy on the disk saves IO work and doesn't cost any additional memory.

  But with zswap, it's different. It saves some compression work on a
  thrashing page. But the act of keeping compressed memory contributes
  to a higher rate of thrashing. And that can cause IO in other places
  like zswap writeback and file memory.

And the A/B test results of the kernel build in tmpfs with limited memory
can support this theory:

			!exclusive	exclusive
real                       63.80         63.01
user                       1063.83       1061.32
sys                        290.31        266.15

workingset_refault_anon    2383084.40    1976397.40
workingset_refault_file    44134.00      45689.40
workingset_activate_anon   837878.00     728441.20
workingset_activate_file   4710.00       4085.20
workingset_restore_anon    732622.60     639428.40
workingset_restore_file    1007.00       926.80
workingset_nodereclaim     0.00          0.00
pgscan                     14343003.40   12409570.20
pgscan_kswapd              0.00          0.00
pgscan_direct              14343003.40   12409570.20
pgscan_khugepaged          0.00          0.00

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-5-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Chengming Zhou
3b631bd065 mm/zswap: remove duplicate_entry debug value
cat /sys/kernel/debug/zswap/duplicate_entry
2086447

When testing, the duplicate_entry value is very high, but no warning
message in the kernel log.  From the comment of duplicate_entry "Duplicate
store was encountered (rare)", it seems something goes wrong.

Actually it's incremented in the beginning of zswap_store(), which found
its zswap entry has already on the tree.  And this is a normal case, since
the folio could leave zswap entry on the tree after swapin, later it's
dirtied and swapout/zswap_store again, found its original zswap entry.

So duplicate_entry should be only incremented in the real bug case, which
already have "WARN_ON(1)", it looks redundant to count bug case, so this
patch just remove it.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-4-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Chengming Zhou
b49547ade3 mm/zswap: stop lru list shrinking when encounter warm region
When the shrinker encounter an existing folio in swap cache, it means we
are shrinking into the warmer region.  We should terminate shrinking if
we're in the dynamic shrinker context.

This patch add LRU_STOP to support this, to avoid overshrinking.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-3-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Chengming Zhou
0827a1fb14 mm/zswap: invalidate zswap entry when swap entry free
During testing I found there are some times the zswap_writeback_entry()
return -ENOMEM, which is not we expected:

bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[-12]: 1563
@[0]: 277221

The reason is that __read_swap_cache_async() return NULL because
swapcache_prepare() failed.  The reason is that we won't invalidate zswap
entry when swap entry freed to the per-cpu pool, these zswap entries are
still on the zswap tree and lru list.

This patch moves the invalidation ahead to when swap entry freed to the
per-cpu pool, since there is no any benefit to leave trashy zswap entry on
the tree and lru list.

With this patch:
bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[0]: 259744

Note: large folio can't have zswap entry for now, so don't bother
to add zswap entry invalidation in the large folio swap free path.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-2-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00
Chengming Zhou
f9c0f1c32c mm/zswap: add more comments in shrink_memcg_cb()
Patch series "mm/zswap: optimize zswap lru list", v2.

This series is motivated when observe the zswap lru list shrinking, noted
there are some unexpected cases in zswap_writeback_entry().

bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'

There are some -ENOMEM because when the swap entry is freed to per-cpu
swap pool, it doesn't invalidate/drop zswap entry.  Then the shrinker
encounter these trashy zswap entries, it can't be reclaimed and return
-ENOMEM.

So move the invalidation ahead to when swap entry freed to the per-cpu
swap pool, since there is no any benefit to leave trashy zswap entries on
the zswap tree and lru list.

Another case is -EEXIST, which is seen more in the case of
!zswap_exclusive_loads_enabled, in which case the swapin folio will leave
compressed copy on the tree and lru list.  And it can't be reclaimed until
the folio is removed from swapcache.

Changing to zswap_exclusive_loads_enabled mode will invalidate when folio
swapin, which has its own drawback if that folio is still clean in
swapcache and swapout again, we need to compress it again.  Please see the
commit for details on why we choose exclusive load as the default for
zswap.

Another optimization for -EEXIST is that we add LRU_STOP to support
terminating the shrinking process to avoid evicting warmer region.

Testing using kernel build in tmpfs, one 50GB swapfile and
zswap shrinker_enabled, with memory.max set to 2GB.

                mm-unstable   zswap-optimize
real               63.90s       63.25s
user             1064.05s     1063.40s
sys               292.32s      270.94s

The main optimization is in sys cpu, about 7% improvement.


This patch (of 6):

Add more comments in shrink_memcg_cb() to describe the deref dance which
is implemented to fix race problem between lru writeback and swapoff, and
the reason why we rotate the entry at the beginning.

Also fix the stale comments in zswap_writeback_entry(), and add more
comments to state that we only deref the tree after we get the swapcache
reference.

Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-0-99d4084260a0@bytedance.com
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-1-99d4084260a0@bytedance.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:54 -08:00