IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pull cgroup updates from Tejun Heo:
"cgroup file type addition / removal is updated so that file types are
added and removed instead of individual files so that dynamic file
type addition / removal can be implemented by cgroup and used by
controllers. blkio controller changes which will come through block
tree are dependent on this. Other changes include res_counter cleanup
and disallowing kthread / PF_THREAD_BOUND threads to be attached to
non-root cgroups.
There's a reported bug with the file type addition / removal handling
which can lead to oops on cgroup umount. The issue is being looked
into. It shouldn't cause problems for most setups and isn't a
security concern."
Fix up trivial conflict in Documentation/feature-removal-schedule.txt
* 'for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
res_counter: Account max_usage when calling res_counter_charge_nofail()
res_counter: Merge res_counter_charge and res_counter_charge_nofail
cgroups: disallow attaching kthreadd or PF_THREAD_BOUND threads
cgroup: remove cgroup_subsys->populate()
cgroup: get rid of populate for memcg
cgroup: pass struct mem_cgroup instead of struct cgroup to socket memcg
cgroup: make css->refcnt clearing on cgroup removal optional
cgroup: use negative bias on css->refcnt to block css_tryget()
cgroup: implement cgroup_rm_cftypes()
cgroup: introduce struct cfent
cgroup: relocate __d_cgrp() and __d_cft()
cgroup: remove cgroup_add_file[s]()
cgroup: convert memcg controller to the new cftype interface
memcg: always create memsw files if CONFIG_CGROUP_MEM_RES_CTLR_SWAP
cgroup: convert all non-memcg controllers to the new cftype interface
cgroup: relocate cftype and cgroup_subsys definitions in controllers
cgroup: merge cft_release_agent cftype array into the base files array
cgroup: implement cgroup_add_cftypes() and friends
cgroup: build list of all cgroups under a given cgroupfs_root
cgroup: move cgroup_clear_directory() call out of cgroup_populate_dir()
...
Here's the driver core, and other driver subsystems, pull request for
the 3.5-rc1 merge window.
Outside of a few minor driver core changes, we ended up with the
following different subsystem and core changes as well, due to
interdependancies on the driver core:
- hyperv driver updates
- drivers/memory being created and some drivers moved into it
- extcon driver subsystem created out of the old Android staging switch
driver code
- dynamic debug updates
- printk rework, and /dev/kmsg changes
All of this has been tested in the linux-next releases for a few weeks
with no reported problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iEYEABECAAYFAk+7q28ACgkQMUfUDdst+ykXmwCfcPASzC+/bDkuqdWsqzxlWZ7+
VOQAnAriySv397St36J6Hz5bMQZwB1Yq
=SQc+
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg Kroah-Hartman:
"Here's the driver core, and other driver subsystems, pull request for
the 3.5-rc1 merge window.
Outside of a few minor driver core changes, we ended up with the
following different subsystem and core changes as well, due to
interdependancies on the driver core:
- hyperv driver updates
- drivers/memory being created and some drivers moved into it
- extcon driver subsystem created out of the old Android staging
switch driver code
- dynamic debug updates
- printk rework, and /dev/kmsg changes
All of this has been tested in the linux-next releases for a few weeks
with no reported problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
Fix up conflicts in drivers/extcon/extcon-max8997.c where git noticed
that a patch to the deleted drivers/misc/max8997-muic.c driver needs to
be applied to this one.
* tag 'driver-core-3.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (90 commits)
uio_pdrv_genirq: get irq through platform resource if not set otherwise
memory: tegra{20,30}-mc: Remove empty *_remove()
printk() - isolate KERN_CONT users from ordinary complete lines
sysfs: get rid of some lockdep false positives
Drivers: hv: util: Properly handle version negotiations.
Drivers: hv: Get rid of an unnecessary check in vmbus_prep_negotiate_resp()
memory: tegra{20,30}-mc: Use dev_err_ratelimited()
driver core: Add dev_*_ratelimited() family
Driver Core: don't oops with unregistered driver in driver_find_device()
printk() - restore prefix/timestamp printing for multi-newline strings
printk: add stub for prepend_timestamp()
ARM: tegra30: Make MC optional in Kconfig
ARM: tegra20: Make MC optional in Kconfig
ARM: tegra30: MC: Remove unnecessary BUG*()
ARM: tegra20: MC: Remove unnecessary BUG*()
printk: correctly align __log_buf
ARM: tegra30: Add Tegra Memory Controller(MC) driver
ARM: tegra20: Add Tegra Memory Controller(MC) driver
printk() - restore timestamp printing at console output
printk() - do not merge continuation lines of different threads
...
This series sanitizes the interface to unmap_vma(). The crazy interface
annoyed me no end when I was looking at unmap_single_vma(), which we can
spend quite a lot of time in (especially with loads that have a lot of
small fork/exec's: shell scripts etc).
Moving the nr_accounted calculations to where they belong at least
clarifies things a little. I hope to come back to look at the
performance of this later, but if/when I get back to it I at least don't
have to see the crazy interfaces any more.
* vm-cleanups:
vm: remove 'nr_accounted' calculations from the unmap_vmas() interfaces
vm: simplify unmap_vmas() calling convention
Occasionally, testing memcg's move_charge_at_immigrate on rc7 shows
a flurry of hundreds of warnings at kernel/res_counter.c:96, where
res_counter_uncharge_locked() does WARN_ON(counter->usage < val).
The first trace of each flurry implicates __mem_cgroup_cancel_charge()
of mc.precharge, and an audit of mc.precharge handling points to
mem_cgroup_move_charge_pte_range()'s THP handling in commit 12724850e8
("memcg: avoid THP split in task migration").
Checking !mc.precharge is good everywhere else, when a single page is to
be charged; but here the "mc.precharge -= HPAGE_PMD_NR" likely to
follow, is liable to result in underflow (a lot can change since the
precharge was estimated).
Simply check against HPAGE_PMD_NR: there's probably a better
alternative, trying precharge for more, splitting if unsuccessful; but
this one-liner is safer for now - no kernel/res_counter.c:96 warnings
seen in 26 hours.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I found some kernel messages such as:
SLUB raid5-md127: kmem_cache_destroy called for cache that still has objects.
Pid: 6143, comm: mdadm Tainted: G O 3.4.0-rc6+ #75
Call Trace:
kmem_cache_destroy+0x328/0x400
free_conf+0x2d/0xf0 [raid456]
stop+0x41/0x60 [raid456]
md_stop+0x1a/0x60 [md_mod]
do_md_stop+0x74/0x470 [md_mod]
md_ioctl+0xff/0x11f0 [md_mod]
blkdev_ioctl+0xd8/0x7a0
block_ioctl+0x3b/0x40
do_vfs_ioctl+0x96/0x560
sys_ioctl+0x91/0xa0
system_call_fastpath+0x16/0x1b
Then using kmemleak I found these messages:
unreferenced object 0xffff8800b6db7380 (size 112):
comm "mdadm", pid 5783, jiffies 4294810749 (age 90.589s)
hex dump (first 32 bytes):
01 01 db b6 ad 4e ad de ff ff ff ff ff ff ff ff .....N..........
ff ff ff ff ff ff ff ff 98 40 4a 82 ff ff ff ff .........@J.....
backtrace:
kmemleak_alloc+0x21/0x50
kmem_cache_alloc+0xeb/0x1b0
kmem_cache_open+0x2f1/0x430
kmem_cache_create+0x158/0x320
setup_conf+0x649/0x770 [raid456]
run+0x68b/0x840 [raid456]
md_run+0x529/0x940 [md_mod]
do_md_run+0x18/0xc0 [md_mod]
md_ioctl+0xba8/0x11f0 [md_mod]
blkdev_ioctl+0xd8/0x7a0
block_ioctl+0x3b/0x40
do_vfs_ioctl+0x96/0x560
sys_ioctl+0x91/0xa0
system_call_fastpath+0x16/0x1b
This bug was introduced by commit a8364d5555 ("slub: only IPI CPUs that
have per cpu obj to flush"), which did not include checks for per cpu
partial pages being present on a cpu.
Signed-off-by: majianpeng <majianpeng@gmail.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Why is there less MemFree than there used to be? It perturbed a test,
so I've just been bisecting linux-next, and now find the offender went
upstream yesterday.
Commit 93278814d3 "mm: fix division by 0 in percpu_pagelist_fraction()"
mistakenly initialized percpu_pagelist_fraction to the sysctl's minimum 8,
which leaves 1/8th of memory on percpu lists (on each cpu??); but most of
us expect it to be left unset at 0 (and it's not then used as a divisor).
MemTotal: 8061476kB 8061476kB 8061476kB 8061476kB 8061476kB 8061476kB
Repetitive test with percpu_pagelist_fraction 8:
MemFree: 6948420kB 6237172kB 6949696kB 6840692kB 6949048kB 6862984kB
Same test with percpu_pagelist_fraction back to 0:
MemFree: 7945000kB 7944908kB 7948568kB 7949060kB 7948796kB 7948812kB
Signed-off-by: Hugh Dickins <hughd@google.com>
[ We really should fix the crazy sysctl interface too, but that's a
separate thing - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton.
* emailed from Andrew Morton <akpm@linux-foundation.org>: (8 patches)
MAINTAINERS: add maintainer for LED subsystem
mm: nobootmem: fix sign extend problem in __free_pages_memory()
drivers/leds: correct __devexit annotations
memcg: free spare array to avoid memory leak
namespaces, pid_ns: fix leakage on fork() failure
hugetlb: prevent BUG_ON in hugetlb_fault() -> hugetlb_cow()
mm: fix division by 0 in percpu_pagelist_fraction()
proc/pid/pagemap: correctly report non-present ptes and holes between vmas
Systems with 8 TBytes of memory or greater can hit a problem where only
the the first 8 TB of memory shows up. This is due to "int i" being
smaller than "unsigned long start_aligned", causing the high bits to be
dropped.
The fix is to change `i' to unsigned long to match start_aligned
and end_aligned.
Thanks to Jack Steiner for assistance tracking this down.
Signed-off-by: Russ Anderson <rja@sgi.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Gavin Shan <shangw@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the last event is unregistered, there is no need to keep the spare
array anymore. So free it to avoid memory leak.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 66aebce747 ("hugetlb: fix race condition in hugetlb_fault()")
added code to avoid a race condition by elevating the page refcount in
hugetlb_fault() while calling hugetlb_cow().
However, one code path in hugetlb_cow() includes an assertion that the
page count is 1, whereas it may now also have the value 2 in this path.
The consensus is that this BUG_ON has served its purpose, so rather than
extending it to cover both cases, we just remove it.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [3.0.29+, 3.2.16+, 3.3.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu_pagelist_fraction_sysctl_handler() has only considered -EINVAL as
a possible error from proc_dointvec_minmax().
If any other error is returned, it would proceed to divide by zero since
percpu_pagelist_fraction wasn't getting initialized at any point. For
example, writing 0 bytes into the proc file would trigger the issue.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak tracks the percpu allocations via a specific API and the
originally allocated areas must be removed from kmemleak (via
kmemleak_free). The code was already doing this for SMP systems.
Reported-by: Sami Liedes <sami.liedes@iki.fi>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
pcpu_embed_first_chunk() allocates memory for each node, copies percpu
data and frees unused portions of it before proceeding to the next
group. This assumes that allocations for different nodes doesn't
overlap; however, depending on memory topology, the bootmem allocator
may end up allocating memory from a different node than the requested
one which may overlap with the portion freed from one of the previous
percpu areas. This leads to percpu groups for different nodes
overlapping which is a serious bug.
This patch separates out copy & partial free from the allocation loop
such that all allocations are complete before partial frees happen.
This also fixes overlapping frees which could happen on allocation
failure path - out_free_areas path frees whole groups but the groups
could have portions freed at that point.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Reported-by: "Pavel V. Panteleev" <pp_84@mail.ru>
Tested-by: "Pavel V. Panteleev" <pp_84@mail.ru>
LKML-Reference: <E1SNhwY-0007ui-V7.pp_84-mail-ru@f220.mail.ru>
Pull two percpu fixes from Tejun Heo:
"One adds missing KERN_CONT on split printk()s and the other makes
the percpu allocator avoid using PMD_SIZE as atom_size on x86_32.
Using PMD_SIZE led to vmalloc area exhaustion on certain
configurations (x86_32 android) and the only cost of using PAGE_SIZE
instead is static percpu area not being aligned to large page
mapping."
* 'for-3.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu, x86: don't use PMD_SIZE as embedded atom_size on 32bit
percpu: use KERN_CONT in pcpu_dump_alloc_info()
The VM accounting makes no sense at this level, and half of the callers
didn't ever actually use the end result. The only time we want to
unaccount the memory is when we actually remove the vma, so do the
accounting at that point instead.
This simplifies the interfaces (no need to pass down that silly page
counter to functions that really don't care), and also makes it much
more obvious what is actually going on: we do vm_[un]acct_memory() when
adding or removing the vma, not on random page walking.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the callers want to pass in 'zap_details', and it doesn't even
make sense for the case of actually unmapping vma's. So remove the
argument, and clean up the interface.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge fixes from Andrew Morton:
"13 fixes. The acerhdf patches aren't (really) fixes. But they've
been stuck in my tree for up to two years, sent to Matthew multiple
times and the developers are unhappy."
* emailed from Andrew Morton <akpm@linux-foundation.org>: (13 patches)
mm: fix NULL ptr dereference in move_pages
mm: fix NULL ptr dereference in migrate_pages
revert "proc: clear_refs: do not clear reserved pages"
drivers/rtc/rtc-ds1307.c: fix BUG shown with lock debugging enabled
arch/arm/mach-ux500/mbox-db5500.c: world-writable sysfs fifo file
hugetlbfs: lockdep annotate root inode properly
acerhdf: lowered default temp fanon/fanoff values
acerhdf: add support for new hardware
acerhdf: add support for Aspire 1410 BIOS v1.3314
fs/buffer.c: remove BUG() in possible but rare condition
mm: fix up the vmscan stat in vmstat
epoll: clear the tfile_check_list on -ELOOP
mm/hugetlb: fix warning in alloc_huge_page/dequeue_huge_page_vma
Commit 3268c63 ("mm: fix move/migrate_pages() race on task struct") has
added an odd construct where 'mm' is checked for being NULL, and if it is,
it would get dereferenced anyways by mput()ing it.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "pgsteal" stat is confusing because it counts both direct reclaim as
well as background reclaim. However, we have "kswapd_steal" which also
counts background reclaim value.
This patch fixes it and also makes it match the existng "pgscan_" stats.
Test:
pgsteal_kswapd_dma32 447623
pgsteal_kswapd_normal 42272677
pgsteal_kswapd_movable 0
pgsteal_direct_dma32 2801
pgsteal_direct_normal 44353270
pgsteal_direct_movable 0
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a gcc warning (and bug?) introduced in cc9a6c877 ("cpuset: mm: reduce
large amounts of memory barrier related damage v3")
Local variable "page" can be uninitialized if the nodemask from vma policy
does not intersects with nodemask from cpuset. Even if it doesn't happens
it is better to initialize this variable explicitly than to introduce
a kernel oops in a weird corner case.
mm/hugetlb.c: In function `alloc_huge_page':
mm/hugetlb.c:1135:5: warning: `page' may be used uninitialized in this function
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the callsites actually need the page_cgroup descriptor
themselves, so just pass the page and do the look up in there.
We already had two bugs (6568d4a 'mm: memcg: update the correct soft
limit tree during migration' and 'memcg: fix Bad page state after
replace_page_cache') where the passed page and pc were not referring
to the same page frame.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comments above __alloc_bootmem_node() claim that the code will
first try the allocation using 'goal' and if that fails it will
try again but with the 'goal' requirement dropped.
Unfortunately, this is not what the code does, so fix it to do so.
This is important for nobootmem conversions to architectures such
as sparc where MAX_DMA_ADDRESS is infinity.
On such architectures all of the allocations done by generic spots,
such as the sparse-vmemmap implementation, will pass in:
__pa(MAX_DMA_ADDRESS)
as the goal, and with the limit given as "-1" this will always fail
unless we add the appropriate fallback logic here.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel reports a BUG_ON(slot == NULL) in radix_tree_tag_set() on s390
3.0.13: called from __set_page_dirty_nobuffers() when page_remove_rmap()
tries to transfer dirty flag from s390 storage key to struct page and
radix_tree.
That would be because of reclaim's shrink_page_list() calling
add_to_swap() on this page at the same time: first PageSwapCache is set
(causing page_mapping(page) to appear as &swapper_space), then
page->private set, then tree_lock taken, then page inserted into
radix_tree - so there's an interval before taking the lock when the
radix_tree slot is empty.
We could fix this by moving __add_to_swap_cache()'s spin_lock_irq up
before the SetPageSwapCache. But a better fix is simply to do what's
five years overdue: Ken Chen introduced __set_page_dirty_no_writeback()
(if !PageDirty TestSetPageDirty) for tmpfs to skip all the radix_tree
overhead, and swap is just the same - it ignores the radix_tree tag, and
does not participate in dirty page accounting, so should be using
__set_page_dirty_no_writeback() too.
s390 testing now confirms that this does indeed fix the problem.
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ken Chen <kenchen@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This continues the theme started with vm_brk() and vm_munmap():
vm_mmap() does the same thing as do_mmap(), but additionally does the
required VM locking.
This uninlines (and rewrites it to be clearer) do_mmap(), which sadly
duplicates it in mm/mmap.c and mm/nommu.c. But that way we don't have
to export our internal do_mmap_pgoff() function.
Some day we hopefully don't have to export do_mmap() either, if all
modular users can become the simpler vm_mmap() instead. We're actually
very close to that already, with the notable exception of the (broken)
use in i810, and a couple of stragglers in binfmt_elf.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Like the vm_brk() function, this is the same as "do_munmap()", except it
does the VM locking for the caller.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It does the same thing as "do_brk()", except it handles the VM locking
too.
It turns out that all external callers want that anyway, so we can make
do_brk() static to just mm/mmap.c while at it.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 24aa07882b ("memblock, x86: Replace memblock_x86_reserve/
free_range() with generic ones") replaced x86 specific memblock
operations with the generic ones; unfortunately, it lost zero length
operation handling in the process making the kernel panic if somebody
tries to reserve zero length area.
There isn't much to be gained by being cranky to zero length operations
and panicking is almost the worst response. Drop the BUG_ON() in
memblock_reserve() and update memblock_add_region/isolate_range() so
that all zero length operations are handled as noops.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Reported-by: Valere Monseur <valere.monseur@ymail.com>
Bisected-by: Joseph Freeman <jfree143dev@gmail.com>
Tested-by: Joseph Freeman <jfree143dev@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=43098
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My 9ce70c0240 "memcg: fix deadlock by inverting lrucare nesting" put a
nasty little bug into v3.3's version of mem_cgroup_replace_page_cache(),
sometimes used for FUSE. Replacing __mem_cgroup_commit_charge_lrucare()
by __mem_cgroup_commit_charge(), I used the "pc" pointer set up earlier:
but it's for oldpage, and needs now to be for newpage. Once oldpage was
freed, its PageCgroupUsed bit (cleared above but set again here) caused
"Bad page state" messages - and perhaps worse, being missed from newpage.
(I didn't find this by using FUSE, but in reusing the function for tmpfs.)
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org [v3.3 only]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit c38446cc65.
Before the commit, the code makes senses to me but not after the commit.
The "nr_reclaimed" is the number of pages reclaimed by scanning through
the memcg's lru lists. The "nr_to_reclaim" is the target value for the
whole function. For example, we like to early break the reclaim if
reclaimed 32 pages under direct reclaim (not DEF_PRIORITY).
After the reverted commit, the target "nr_to_reclaim" is decremented each
time by "nr_reclaimed" but we still use it to compare the "nr_reclaimed".
It just doesn't make sense to me...
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The race is as follows:
Suppose a multi-threaded task forks a new process (on cpu A), thus
bumping up the ref count on all the pages. While the fork is occurring
(and thus we have marked all the PTEs as read-only), another thread in
the original process (on cpu B) tries to write to a huge page, taking an
access violation from the write-protect and calling hugetlb_cow(). Now,
suppose the fork() fails. It will undo the COW and decrement the ref
count on the pages, so the ref count on the huge page drops back to 1.
Meanwhile hugetlb_cow() also decrements the ref count by one on the
original page, since the original address space doesn't need it any
more, having copied a new page to replace the original page. This
leaves the ref count at zero, and when we call unlock_page(), we panic.
fork on CPU A fault on CPU B
============= ==============
...
down_write(&parent->mmap_sem);
down_write_nested(&child->mmap_sem);
...
while duplicating vmas
if error
break;
...
up_write(&child->mmap_sem);
up_write(&parent->mmap_sem); ...
down_read(&parent->mmap_sem);
...
lock_page(page);
handle COW
page_mapcount(old_page) == 2
alloc and prepare new_page
...
handle error
page_remove_rmap(page);
put_page(page);
...
fold new_page into pte
page_remove_rmap(page);
put_page(page);
...
oops ==> unlock_page(page);
up_read(&parent->mmap_sem);
The solution is to take an extra reference to the page while we are
holding the lock on it.
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should use the accessor res_counter_read_u64 for that.
Although a purely cosmetic change is sometimes better delayed, to avoid
conflicting with other people's work, we are starting to have people
touching this code as well, and reproducing the open code behavior
because that's the standard =)
Time to fix it, then.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last man standing justifying the need for populate() is the
sock memcg initialization functions. Now that we are able to pass
a struct mem_cgroup instead of a struct cgroup to the socket
initialization, there is nothing that stops us from initializing
everything in create().
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
CC: Li Zefan <lizefan@huawei.com>
CC: Johannes Weiner <hannes@cmpxchg.org>
CC: Michal Hocko <mhocko@suse.cz>
The only reason cgroup was used, was to be consistent with the populate()
interface. Now that we're getting rid of it, not only we no longer need
it, but we also *can't* call it this way.
Since we will no longer rely on populate(), this will be called from
create(). During create, the association between struct mem_cgroup
and struct cgroup does not yet exist, since cgroup internals hasn't
yet initialized its bookkeeping. This means we would not be able
to draw the memcg pointer from the cgroup pointer in these
functions, which is highly undesirable.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
CC: Li Zefan <lizefan@huawei.com>
CC: Johannes Weiner <hannes@cmpxchg.org>
CC: Michal Hocko <mhocko@suse.cz>
Currently, cgroup removal tries to drain all css references. If there
are active css references, the removal logic waits and retries
->pre_detroy() until either all refs drop to zero or removal is
cancelled.
This semantics is unusual and adds non-trivial complexity to cgroup
core and IMHO is fundamentally misguided in that it couples internal
implementation details (references to internal data structure) with
externally visible operation (rmdir). To userland, this is a behavior
peculiarity which is unnecessary and difficult to expect (css refs is
otherwise invisible from userland), and, to policy implementations,
this is an unnecessary restriction (e.g. blkcg wants to hold css refs
for caching purposes but can't as that becomes visible as rmdir hang).
Unfortunately, memcg currently depends on ->pre_destroy() retrials and
cgroup removal vetoing and can't be immmediately switched to the new
behavior. This patch introduces the new behavior of not waiting for
css refs to drain and maintains the old behavior for subsystems which
have __DEPRECATED_clear_css_refs set.
Once, memcg is updated, we can drop the code paths for the old
behavior as proposed in the following patch. Note that the following
patch is incorrect in that dput work item is in cgroup and may lose
some of dputs when multiples css's are released back-to-back, and
__css_put() triggers check_for_release() when refcnt reaches 0 instead
of 1; however, it shows what part can be removed.
http://thread.gmane.org/gmane.linux.kernel.containers/22559/focus=75251
Note that, in not-too-distant future, cgroup core will start emitting
warning messages for subsys which require the old behavior, so please
get moving.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Convert memcg to use the new cftype based interface. kmem support
abuses ->populate() for mem_cgroup_sockets_init() so it can't be
removed at the moment.
tcp_memcontrol is updated so that tcp_files[] is registered via a
__initcall. This change also allows removing the forward declaration
of tcp_files[]. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Greg Thelen <gthelen@google.com>
Instead of conditioning creation of memsw files on do_swap_account,
always create the files if compiled-in and fail read/write attempts
with -EOPNOTSUPP if !do_swap_account.
This is suggested by KAMEZAWA to simplify memcg file creation so that
it can use cgroup->subsys_cftypes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
pcpu_dump_alloc_info() was printing continued lines without KERN_CONT.
Use it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Kay Sievers <kay.sievers@vrfy.org>
Merge third batch of patches from Andrew Morton:
- Some MM stragglers
- core SMP library cleanups (on_each_cpu_mask)
- Some IPI optimisations
- kexec
- kdump
- IPMI
- the radix-tree iterator work
- various other misc bits.
"That'll do for -rc1. I still have ~10 patches for 3.4, will send
those along when they've baked a little more."
* emailed from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
backlight: fix typo in tosa_lcd.c
crc32: add help text for the algorithm select option
mm: move hugepage test examples to tools/testing/selftests/vm
mm: move slabinfo.c to tools/vm
mm: move page-types.c from Documentation to tools/vm
selftests/Makefile: make `run_tests' depend on `all'
selftests: launch individual selftests from the main Makefile
radix-tree: use iterators in find_get_pages* functions
radix-tree: rewrite gang lookup using iterator
radix-tree: introduce bit-optimized iterator
fs/proc/namespaces.c: prevent crash when ns_entries[] is empty
nbd: rename the nbd_device variable from lo to nbd
pidns: add reboot_pid_ns() to handle the reboot syscall
sysctl: use bitmap library functions
ipmi: use locks on watchdog timeout set on reboot
ipmi: simplify locking
ipmi: fix message handling during panics
ipmi: use a tasklet for handling received messages
ipmi: increase KCS timeouts
ipmi: decrease the IPMI message transaction time in interrupt mode
...
Replace radix_tree_gang_lookup_slot() and
radix_tree_gang_lookup_tag_slot() in page-cache lookup functions with
brand-new radix-tree direct iterating. This avoids the double-scanning
and pointer copying.
Iterator don't stop after nr_pages page-get fails in a row, it continue
lookup till the radix-tree end. Thus we can safely remove these restart
conditions.
Unfortunately, old implementation didn't forbid nr_pages == 0, this corner
case does not fit into new code, so the patch adds an extra check at the
beginning.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calculate a cpumask of CPUs with per-cpu pages in any zone and only send
an IPI requesting CPUs to drain these pages to the buddy allocator if they
actually have pages when asked to flush.
This patch saves 85%+ of IPIs asking to drain per-cpu pages in case of
severe memory pressure that leads to OOM since in these cases multiple,
possibly concurrent, allocation requests end up in the direct reclaim code
path so when the per-cpu pages end up reclaimed on first allocation
failure for most of the proceeding allocation attempts until the memory
pressure is off (possibly via the OOM killer) there are no per-cpu pages
on most CPUs (and there can easily be hundreds of them).
This also has the side effect of shortening the average latency of direct
reclaim by 1 or more order of magnitude since waiting for all the CPUs to
ACK the IPI takes a long time.
Tested by running "hackbench 400" on a 8 CPU x86 VM and observing the
difference between the number of direct reclaim attempts that end up in
drain_all_pages() and those were more then 1/2 of the online CPU had any
per-cpu page in them, using the vmstat counters introduced in the next
patch in the series and using proc/interrupts.
In the test sceanrio, this was seen to save around 3600 global
IPIs after trigerring an OOM on a concurrent workload:
$ cat /proc/vmstat | tail -n 2
pcp_global_drain 0
pcp_global_ipi_saved 0
$ cat /proc/interrupts | grep CAL
CAL: 1 2 1 2
2 2 2 2 Function call interrupts
$ hackbench 400
[OOM messages snipped]
$ cat /proc/vmstat | tail -n 2
pcp_global_drain 3647
pcp_global_ipi_saved 3642
$ cat /proc/interrupts | grep CAL
CAL: 6 13 6 3
3 3 1 2 7 Function call interrupts
Please note that if the global drain is removed from the direct reclaim
path as a patch from Mel Gorman currently suggests this should be replaced
with an on_each_cpu_cond invocation.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: Michal Nazarewicz <mina86@mina86.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
flush_all() is called for each kmem_cache_destroy(). So every cache being
destroyed dynamically ends up sending an IPI to each CPU in the system,
regardless if the cache has ever been used there.
For example, if you close the Infinband ipath driver char device file, the
close file ops calls kmem_cache_destroy(). So running some infiniband
config tool on one a single CPU dedicated to system tasks might interrupt
the rest of the 127 CPUs dedicated to some CPU intensive or latency
sensitive task.
I suspect there is a good chance that every line in the output of "git
grep kmem_cache_destroy linux/ | grep '\->'" has a similar scenario.
This patch attempts to rectify this issue by sending an IPI to flush the
per cpu objects back to the free lists only to CPUs that seem to have such
objects.
The check which CPU to IPI is racy but we don't care since asking a CPU
without per cpu objects to flush does no damage and as far as I can tell
the flush_all by itself is racy against allocs on remote CPUs anyway, so
if you required the flush_all to be determinstic, you had to arrange for
locking regardless.
Without this patch the following artificial test case:
$ cd /sys/kernel/slab
$ for DIR in *; do cat $DIR/alloc_calls > /dev/null; done
produces 166 IPIs on an cpuset isolated CPU. With it it produces none.
The code path of memory allocation failure for CPUMASK_OFFSTACK=y
config was tested using fault injection framework.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Sasha Levin <levinsasha928@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Avi Kivity <avi@redhat.com>
Cc: Michal Nazarewicz <mina86@mina86.org>
Cc: Kosaki Motohiro <kosaki.motohiro@gmail.com>
Cc: Milton Miller <miltonm@bga.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most system calls taking flags first check that the flags passed in are
valid, and that helps userspace to detect when new flags are supported.
But swapon never did so: start checking now, to help if we ever want to
support more swap_flags in future.
It's difficult to get stray bits set in an int, and swapon is not widely
used, so this is most unlikely to break any userspace; but we can just
revert if it turns out to do so.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size of coredump files is limited by RLIMIT_CORE, however, allocating
large amounts of memory results in three negative consequences:
- the coredumping process may be chosen for oom kill and quickly deplete
all memory reserves in oom conditions preventing further progress from
being made or tasks from exiting,
- the coredumping process may cause other processes to be oom killed
without fault of their own as the result of a SIGSEGV, for example, in
the coredumping process, or
- the coredumping process may result in a livelock while writing to the
dump file if it needs memory to allocate while other threads are in
the exit path waiting on the coredumper to complete.
This is fixed by implying __GFP_NORETRY in the page allocator for
coredumping processes when reclaim has failed so the allocations fail and
the process continues to exit.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_unstable() should be called before pmd_offset_map() in the
locations where the mmap_sem is held for reading.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Holepunching filesystems ext4 and xfs are using truncate_inode_pages_range
but forgetting to unmap pages first (ocfs2 remembers). This is not really
a bug, since races already require truncate_inode_page() to handle that
case once the page is locked; but it can be very inefficient if the file
being punched happens to be mapped into many vmas.
Provide a drop-in replacement truncate_pagecache_range() which does the
unmapping pass first, handling the awkward mismatch between arguments to
truncate_inode_pages_range() and arguments to unmap_mapping_range().
Note that holepunching does not unmap privately COWed pages in the range:
POSIX requires that we do so when truncating, but it's hard to justify,
difficult to implement without an i_size cutoff, and no filesystem is
attempting to implement it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Ben Myers <bpm@sgi.com>
Cc: Alex Elder <elder@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull SLAB changes from Pekka Enberg:
"There's the new kmalloc_array() API, minor fixes and performance
improvements, but quite honestly, nothing terribly exciting."
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
mm: SLAB Out-of-memory diagnostics
slab: introduce kmalloc_array()
slub: per cpu partial statistics change
slub: include include for prefetch
slub: Do not hold slub_lock when calling sysfs_slab_add()
slub: prefetch next freelist pointer in slab_alloc()
slab, cleanup: remove unneeded return