IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Memory flagged with IORESOURCE_MEM_DRIVER_MANAGED is special - it won't be
part of the initial memmap of the kexec kernel and not all memory might be
accessible. Don't place any kexec images onto it.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200508084217.9160-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is the same as machine_kexec_prepare(), but is called after segments are
loaded. This way, can do processing work with already loaded relocation
segments. One such example is arm64: it has to have segments loaded in
order to create a page table, but it cannot do it during kexec time,
because at that time allocations won't be possible anymore.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Will Deacon <will@kernel.org>
Fix two pointer-to-int-cast warnings when compiling for the 32-bit parisc
platform:
kernel/kexec_file.c: In function ‘crash_prepare_elf64_headers’:
kernel/kexec_file.c:1307:19: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
phdr->p_vaddr = (Elf64_Addr)_text;
^
kernel/kexec_file.c:1324:19: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
phdr->p_vaddr = (unsigned long long) __va(mstart);
^
Signed-off-by: Helge Deller <deller@gmx.de>
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf42 ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
Systems in lockdown mode should block the kexec of untrusted kernels.
For x86 and ARM we can ensure that a kernel is trustworthy by validating
a PE signature, but this isn't possible on other architectures. On those
platforms we can use IMA digital signatures instead. Add a function to
determine whether IMA has or will verify signatures for a given event type,
and if so permit kexec_file() even if the kernel is otherwise locked down.
This is restricted to cases where CONFIG_INTEGRITY_TRUSTED_KEYRING is set
in order to prevent an attacker from loading additional keys at runtime.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: linux-integrity@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
When KEXEC_SIG is not enabled, kernel should not load images through
kexec_file systemcall if the kernel is locked down.
[Modified by David Howells to fit with modifications to the previous patch
and to return -EPERM if the kernel is locked down for consistency with
other lockdowns. Modified by Matthew Garrett to remove the IMA
integration, which will be replaced by integrating with the IMA
architecture policy patches.]
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
This is a preparatory patch for kexec_file_load() lockdown. A locked down
kernel needs to prevent unsigned kernel images from being loaded with
kexec_file_load(). Currently, the only way to force the signature
verification is compiling with KEXEC_VERIFY_SIG. This prevents loading
usigned images even when the kernel is not locked down at runtime.
This patch splits KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE.
Analogous to the MODULE_SIG and MODULE_SIG_FORCE for modules, KEXEC_SIG
turns on the signature verification but allows unsigned images to be
loaded. KEXEC_SIG_FORCE disallows images without a valid signature.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
Pull integrity updates from Mimi Zohar:
"Bug fixes, code clean up, and new features:
- IMA policy rules can be defined in terms of LSM labels, making the
IMA policy dependent on LSM policy label changes, in particular LSM
label deletions. The new environment, in which IMA-appraisal is
being used, frequently updates the LSM policy and permits LSM label
deletions.
- Prevent an mmap'ed shared file opened for write from also being
mmap'ed execute. In the long term, making this and other similar
changes at the VFS layer would be preferable.
- The IMA per policy rule template format support is needed for a
couple of new/proposed features (eg. kexec boot command line
measurement, appended signatures, and VFS provided file hashes).
- Other than the "boot-aggregate" record in the IMA measuremeent
list, all other measurements are of file data. Measuring and
storing the kexec boot command line in the IMA measurement list is
the first buffer based measurement included in the measurement
list"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
integrity: Introduce struct evm_xattr
ima: Update MAX_TEMPLATE_NAME_LEN to fit largest reasonable definition
KEXEC: Call ima_kexec_cmdline to measure the boot command line args
IMA: Define a new template field buf
IMA: Define a new hook to measure the kexec boot command line arguments
IMA: support for per policy rule template formats
integrity: Fix __integrity_init_keyring() section mismatch
ima: Use designated initializers for struct ima_event_data
ima: use the lsm policy update notifier
LSM: switch to blocking policy update notifiers
x86/ima: fix the Kconfig dependency for IMA_ARCH_POLICY
ima: Make arch_policy_entry static
ima: prevent a file already mmap'ed write to be mmap'ed execute
x86/ima: check EFI SetupMode too
During soft reboot(kexec_file_load) boot command line
arguments are not measured.
Call ima hook ima_kexec_cmdline to measure the boot command line
arguments into IMA measurement list.
- call ima_kexec_cmdline from kexec_file_load.
- move the call ima_add_kexec_buffer after the cmdline
args have been measured.
Signed-off-by: Prakhar Srivastava <prsriva02@gmail.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Most architectures do not need the memblock memory after the page
allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the
arch Kconfig.
Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the
logic makes it clear which architectures actually use memblock after
system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK
to the architectures that are still missing that option.
Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In kdump case, there exists only one dedicated memblock region as usable
memory (crashk_res). With this patch, kexec_walk_memblock() runs a given
callback function on this region.
Cosmetic change: 0 to MEMBLOCK_NONE at for_each_free_mem_range*()
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Memblock list is another source for usable system memory layout.
So move powerpc's arch_kexec_walk_mem() to common code so that other
memblock-based architectures, particularly arm64, can also utilise it.
A moved function is now renamed to kexec_walk_memblock() and integrated
into kexec_locate_mem_hole(), which will now be usable for all
architectures with no need for overriding arch_kexec_walk_mem().
With this change, arch_kexec_walk_mem() need no longer be a weak function,
and was now renamed to kexec_walk_resources().
Since powerpc doesn't support kdump in its kexec_file_load(), the current
kexec_walk_memblock() won't work for kdump either in this form, this will
be fixed in the next patch.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since s390 already knows where to locate buffers, calling
arch_kexec_mem_walk() has no sense. So we can just drop it as kbuf->mem
indicates this while all other architectures sets it to 0 initially.
This change is a preparatory work for the next patch, where all the
variant memory walks, either on system resource or memblock, will be
put in one common place so that it will satisfy all the architectures'
need.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Change this function from static to global so that arm64 can implement
its own arch_kimage_file_post_load_cleanup() later using
kexec_image_post_load_cleanup_default().
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We include kexec.h and slab.h twice in kexec_file.c. It's unnecessary.
hence just remove them.
Link: http://lkml.kernel.org/r/1537498098-19171-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code uses the sh_offset field in purgatory_info->sechdrs to
store a pointer to the current load address of the section. Depending
whether the section will be loaded or not this is either a pointer into
purgatory_info->purgatory_buf or kexec_purgatory. This is not only a
violation of the ELF standard but also makes the code very hard to
understand as you cannot tell if the memory you are using is read-only
or not.
Remove this misuse and store the offset of the section in
pugaroty_info->purgatory_buf in sh_offset.
Link: http://lkml.kernel.org/r/20180321112751.22196-10-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main loop currently uses quite a lot of variables to update the
section headers. Some of them are unnecessary. So clean them up a
little.
Link: http://lkml.kernel.org/r/20180321112751.22196-9-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To update the entry point there is an extra loop over all section
headers although this can be done in the main loop. So move it there
and eliminate the extra loop and variable to store the 'entry section
index'.
Also, in the main loop, move the usual case, i.e. non-bss section, out
of the extra if-block.
Link: http://lkml.kernel.org/r/20180321112751.22196-8-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When inspecting __kexec_load_purgatory you find that it has two tasks
1) setting up the kexec_buffer for the new kernel and,
2) setting up pi->sechdrs for the final load address.
The two tasks are independent of each other. To improve readability
split up __kexec_load_purgatory into two functions, one for each task,
and call them directly from kexec_load_purgatory.
Link: http://lkml.kernel.org/r/20180321112751.22196-7-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the relocations are applied to the purgatory only the section the
relocations are applied to is writable. The other sections, i.e. the
symtab and .rel/.rela, are in read-only kexec_purgatory. Highlight this
by marking the corresponding variables as 'const'.
While at it also change the signatures of arch_kexec_apply_relocations* to
take section pointers instead of just the index of the relocation section.
This removes the second lookup and sanity check of the sections in arch
code.
Link: http://lkml.kernel.org/r/20180321112751.22196-6-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stripped purgatory does not contain a symtab. So when looking for
symbols this is done in read-only kexec_purgatory. Highlight this by
marking the corresponding variables as 'const'.
Link: http://lkml.kernel.org/r/20180321112751.22196-5-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kexec_purgatory buffer is read-only. Thus all pointers into
kexec_purgatory are read-only, too. Point this out by explicitly
marking purgatory_info->ehdr as 'const' and update the comments in
purgatory_info.
Link: http://lkml.kernel.org/r/20180321112751.22196-4-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the purgatory is loaded several checks are done whether the ELF
file in kexec_purgatory is valid or not. These checks are incomplete.
For example they don't check for the total size of the sections defined
in the section header table or if the entry point actually points into
the purgatory.
On the other hand the purgatory, although an ELF file on its own, is
part of the kernel. Thus not trusting the purgatory means not trusting
the kernel build itself.
So remove all validity checks on the purgatory and just trust the kernel
build.
Link: http://lkml.kernel.org/r/20180321112751.22196-3-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the previous patches, commonly-used routines, exclude_mem_range() and
prepare_elf64_headers(), were carved out. Now place them in kexec
common code. A prefix "crash_" is given to each of their names to avoid
possible name collisions.
Link: http://lkml.kernel.org/r/20180306102303.9063-8-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kexec_file, x86, powerpc: refactoring for other
architecutres", v2.
This is a preparatory patchset for adding kexec_file support on arm64.
It was originally included in a arm64 patch set[1], but Philipp is also
working on their kexec_file support on s390[2] and some changes are now
conflicting.
So these common parts were extracted and put into a separate patch set
for better integration. What's more, my original patch#4 was split into
a few small chunks for easier review after Dave's comment.
As such, the resulting code is basically identical with my original, and
the only *visible* differences are:
- renaming of _kexec_kernel_image_probe() and _kimage_file_post_load_cleanup()
- change one of types of arguments at prepare_elf64_headers()
Those, unfortunately, require a couple of trivial changes on the rest
(#1, #6 to #13) of my arm64 kexec_file patch set[1].
Patch #1 allows making a use of purgatory optional, particularly useful
for arm64.
Patch #2 commonalizes arch_kexec_kernel_{image_probe, image_load,
verify_sig}() and arch_kimage_file_post_load_cleanup() across
architectures.
Patches #3-#7 are also intended to generalize parse_elf64_headers(),
along with exclude_mem_range(), to be made best re-use of.
[1] http://lists.infradead.org/pipermail/linux-arm-kernel/2018-February/561182.html
[2] http://lkml.iu.edu//hypermail/linux/kernel/1802.1/02596.html
This patch (of 7):
On arm64, crash dump kernel's usable memory is protected by *unmapping*
it from kernel virtual space unlike other architectures where the region
is just made read-only. It is highly unlikely that the region is
accidentally corrupted and this observation rationalizes that digest
check code can also be dropped from purgatory. The resulting code is so
simple as it doesn't require a bit ugly re-linking/relocation stuff,
i.e. arch_kexec_apply_relocations_add().
Please see:
http://lists.infradead.org/pipermail/linux-arm-kernel/2017-December/545428.html
All that the purgatory does is to shuffle arguments and jump into a new
kernel, while we still need to have some space for a hash value
(purgatory_sha256_digest) which is never checked against.
As such, it doesn't make sense to have trampline code between old kernel
and new kernel on arm64.
This patch introduces a new configuration, ARCH_HAS_KEXEC_PURGATORY, and
allows related code to be compiled in only if necessary.
[takahiro.akashi@linaro.org: fix trivial screwup]
Link: http://lkml.kernel.org/r/20180309093346.GF25863@linaro.org
Link: http://lkml.kernel.org/r/20180306102303.9063-2-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preperation for a new function that will need additional resource
information during the resource walk, update the resource walk callback to
pass the resource structure. Since the current callback start and end
arguments are pulled from the resource structure, the callback functions
can obtain them from the resource structure directly.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20171020143059.3291-10-brijesh.singh@amd.com
Defining kexec_purgatory as a zero-length char array upsets compile time
size checking. Since this is built on a per-arch basis, define it as an
unsized char array (like is done for other similar things, e.g. linker
sections). This silences the warning generated by the future
CONFIG_FORTIFY_SOURCE, which did not like the memcmp() of a "0 byte"
array. This drops the __weak and uses an extern instead, since both
users define kexec_purgatory.
Link: http://lkml.kernel.org/r/1497903987-21002-4-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently vmcoreinfo data is updated at boot time subsys_initcall(), it
has the risk of being modified by some wrong code during system is
running.
As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on,
when using "crash", "makedumpfile", etc utility to parse this vmcore, we
probably will get "Segmentation fault" or other unexpected errors.
E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the
system; 3) trigger kdump, then we obviously will fail to recognize the
crash context correctly due to the corrupted vmcoreinfo.
Now except for vmcoreinfo, all the crash data is well
protected(including the cpu note which is fully updated in the crash
path, thus its correctness is guaranteed). Given that vmcoreinfo data
is a large chunk prepared for kdump, we better protect it as well.
To solve this, we relocate and copy vmcoreinfo_data to the crash memory
when kdump is loading via kexec syscalls. Because the whole crash
memory will be protected by existing arch_kexec_protect_crashkres()
mechanism, we naturally protect vmcoreinfo_data from write(even read)
access under kernel direct mapping after kdump is loaded.
Since kdump is usually loaded at the very early stage after boot, we can
trust the correctness of the vmcoreinfo data copied.
On the other hand, we still need to operate the vmcoreinfo safe copy
when crash happens to generate vmcoreinfo_note again, we rely on vmap()
to map out a new kernel virtual address and update to use this new one
instead in the following crash_save_vmcoreinfo().
BTW, we do not touch vmcoreinfo_note, because it will be fully updated
using the protected vmcoreinfo_data after crash which is surely correct
just like the cpu crash note.
Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Young <dyoung@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The purgatory code defines global variables which are referenced via a
symbol lookup in the kexec code (core and arch).
A recent commit addressing sparse warnings made these static and thereby
broke kexec_file.
Why did this happen? Simply because the whole machinery is undocumented and
lacks any form of forward declarations. The variable names are unspecific
and lack a prefix, so adding forward declarations creates shadow variables
in the core code. Aside of that the code relies on magic constants and
duplicate struct definitions with no way to ensure that these things stay
in sync. The section placement of the purgatory variables happened by
chance and not by design.
Unbreak kexec and cleanup the mess:
- Add proper forward declarations and document the usage
- Use common struct definition
- Use the proper common defines instead of magic constants
- Add a purgatory_ prefix to have a proper name space
- Use ARRAY_SIZE() instead of a homebrewn reimplementation
- Add proper sections to the purgatory variables [ From Mike ]
Fixes: 72042a8c7b01 ("x86/purgatory: Make functions and variables static")
Reported-by: Mike Galbraith <<efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicholas Mc Guire <der.herr@hofr.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Tobin C. Harding" <me@tobin.cc>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1703101315140.3681@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The TPM PCRs are only reset on a hard reboot. In order to validate a
TPM's quote after a soft reboot (eg. kexec -e), the IMA measurement
list of the running kernel must be saved and restored on boot.
This patch uses the kexec buffer passing mechanism to pass the
serialized IMA binary_runtime_measurements to the next kernel.
Link: http://lkml.kernel.org/r/1480554346-29071-7-git-send-email-zohar@linux.vnet.ibm.com
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Dmitry Kasatkin <dmitry.kasatkin@gmail.com>
Cc: Andreas Steffen <andreas.steffen@strongswan.org>
Cc: Josh Sklar <sklar@linux.vnet.ibm.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kexec_locate_mem_hole will be used by the PowerPC kexec_file_load
implementation to find free memory for the purgatory stack.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This is done to simplify the kexec_add_buffer argument list.
Adapt all callers to set up a kexec_buf to pass to kexec_add_buffer.
In addition, change the type of kexec_buf.buffer from char * to void *.
There is no particular reason for it to be a char *, and the change
allows us to get rid of 3 existing casts to char * in the code.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Allow architectures to specify a different memory walking function for
kexec_add_buffer. x86 uses iomem to track reserved memory ranges, but
PowerPC uses the memblock subsystem.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If kexec_apply_relocations fails, kexec_load_purgatory frees pi->sechdrs
and pi->purgatory_buf. This is redundant, because in case of error
kimage_file_prepare_segments calls kimage_file_post_load_cleanup, which
will also free those buffers.
This causes two warnings like the following, one for pi->sechdrs and the
other for pi->purgatory_buf:
kexec-bzImage64: Loading purgatory failed
------------[ cut here ]------------
WARNING: CPU: 1 PID: 2119 at mm/vmalloc.c:1490 __vunmap+0xc1/0xd0
Trying to vfree() nonexistent vm area (ffffc90000e91000)
Modules linked in:
CPU: 1 PID: 2119 Comm: kexec Not tainted 4.8.0-rc3+ #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
dump_stack+0x4d/0x65
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
? find_vmap_area+0x19/0x70
? kimage_file_post_load_cleanup+0x47/0xb0
__vunmap+0xc1/0xd0
vfree+0x2e/0x70
kimage_file_post_load_cleanup+0x5e/0xb0
SyS_kexec_file_load+0x448/0x680
? putname+0x54/0x60
? do_sys_open+0x190/0x1f0
entry_SYSCALL_64_fastpath+0x13/0x8f
---[ end trace 158bb74f5950ca2b ]---
Fix by setting pi->sechdrs an pi->purgatory_buf to NULL, since vfree
won't try to free a NULL pointer.
Link: http://lkml.kernel.org/r/1472083546-23683-1-git-send-email-bauerman@linux.vnet.ibm.com
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the cases that some kernel (module) path stamps the crash reserved
memory(already mapped by the kernel) where has been loaded the second
kernel data, the kdump kernel will probably fail to boot when panic
happens (or even not happens) leaving the culprit at large, this is
unacceptable.
The patch introduces a mechanism for detecting such cases:
1) After each crash kexec loading, it simply marks the reserved memory
regions readonly since we no longer access it after that. When someone
stamps the region, the first kernel will panic and trigger the kdump.
The weak arch_kexec_protect_crashkres() is introduced to do the actual
protection.
2) To allow multiple loading, once 1) was done we also need to remark
the reserved memory to readwrite each time a system call related to
kdump is made. The weak arch_kexec_unprotect_crashkres() is introduced
to do the actual protection.
The architecture can make its specific implementation by overriding
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres().
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Minfei Huang <mhuang@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull security layer updates from James Morris:
"There are a bunch of fixes to the TPM, IMA, and Keys code, with minor
fixes scattered across the subsystem.
IMA now requires signed policy, and that policy is also now measured
and appraised"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (67 commits)
X.509: Make algo identifiers text instead of enum
akcipher: Move the RSA DER encoding check to the crypto layer
crypto: Add hash param to pkcs1pad
sign-file: fix build with CMS support disabled
MAINTAINERS: update tpmdd urls
MODSIGN: linux/string.h should be #included to get memcpy()
certs: Fix misaligned data in extra certificate list
X.509: Handle midnight alternative notation in GeneralizedTime
X.509: Support leap seconds
Handle ISO 8601 leap seconds and encodings of midnight in mktime64()
X.509: Fix leap year handling again
PKCS#7: fix unitialized boolean 'want'
firmware: change kernel read fail to dev_dbg()
KEYS: Use the symbol value for list size, updated by scripts/insert-sys-cert
KEYS: Reserve an extra certificate symbol for inserting without recompiling
modsign: hide openssl output in silent builds
tpm_tis: fix build warning with tpm_tis_resume
ima: require signed IMA policy
ima: measure and appraise the IMA policy itself
ima: load policy using path
...
Replace copy_file_from_fd() with kernel_read_file_from_fd().
Two new identifiers named READING_KEXEC_IMAGE and READING_KEXEC_INITRAMFS
are defined for measuring, appraising or auditing the kexec image and
initramfs.
Changelog v3:
- return -EBADF, not -ENOEXEC
- identifier change
- split patch, moving copy_file_from_fd() to a separate patch
- split patch, moving IMA changes to a separate patch
v0:
- use kstat file size type loff_t, not size_t
- Calculate the file hash from the in memory buffer - Dave Young
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Acked-by: Dave Young <dyoung@redhat.com>
Change the callers of walk_iomem_res() scanning for the
following resources by name to use walk_iomem_res_desc()
instead.
"ACPI Tables"
"ACPI Non-volatile Storage"
"Persistent Memory (legacy)"
"Crash kernel"
Note, the caller of walk_iomem_res() with "GART" will be removed
in a later patch.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Young <dyoung@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chun-Yi <joeyli.kernel@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Lee, Chun-Yi <joeyli.kernel@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Minfei Huang <mnfhuang@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Takao Indoh <indou.takao@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: kexec@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: linux-mm <linux-mm@kvack.org>
Cc: linux-nvdimm@lists.01.org
Link: http://lkml.kernel.org/r/1453841853-11383-15-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the stuff currently only used by the kexec file code within
CONFIG_KEXEC_FILE (and CONFIG_KEXEC_VERIFY_SIG).
Also move internal "struct kexec_sha_region" and "struct kexec_buf" into
"kexec_internal.h".
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kexec output message misses the prefix "kexec", when Dave Young split the
kexec code. Now, we use file name as the output message prefix.
Currently, the format of output message:
[ 140.290795] SYSC_kexec_load: hello, world
[ 140.291534] kexec: sanity_check_segment_list: hello, world
Ideally, the format of output message:
[ 30.791503] kexec: SYSC_kexec_load, Hello, world
[ 79.182752] kexec_core: sanity_check_segment_list, Hello, world
Remove the custom prefix "kexec" in output message.
Signed-off-by: Minfei Huang <mnfhuang@gmail.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split kexec_file syscall related code to another file kernel/kexec_file.c
so that the #ifdef CONFIG_KEXEC_FILE in kexec.c can be dropped.
Sharing variables and functions are moved to kernel/kexec_internal.h per
suggestion from Vivek and Petr.
[akpm@linux-foundation.org: fix bisectability]
[akpm@linux-foundation.org: declare the various arch_kexec functions]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>