IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
List iteration takes more code than anything else which means embedded
list_head should be the first element of the structure.
Space savings:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-18 (-18)
Function old new delta
close_pdeo 228 227 -1
proc_reg_release 86 82 -4
proc_entry_rundown 143 139 -4
proc_reg_open 298 289 -9
Link: http://lkml.kernel.org/r/20191004234753.GB30246@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull vfs mount infrastructure updates from Al Viro:
"The rest of core infrastructure; no new syscalls in that pile, but the
old parts are switched to new infrastructure. At that point
conversions of individual filesystems can happen independently; some
are done here (afs, cgroup, procfs, etc.), there's also a large series
outside of that pile dealing with NFS (quite a bit of option-parsing
stuff is getting used there - it's one of the most convoluted
filesystems in terms of mount-related logics), but NFS bits are the
next cycle fodder.
It got seriously simplified since the last cycle; documentation is
probably the weakest bit at the moment - I considered dropping the
commit introducing Documentation/filesystems/mount_api.txt (cutting
the size increase by quarter ;-), but decided that it would be better
to fix it up after -rc1 instead.
That pile allows to do followup work in independent branches, which
should make life much easier for the next cycle. fs/super.c size
increase is unpleasant; there's a followup series that allows to
shrink it considerably, but I decided to leave that until the next
cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
afs: Use fs_context to pass parameters over automount
afs: Add fs_context support
vfs: Add some logging to the core users of the fs_context log
vfs: Implement logging through fs_context
vfs: Provide documentation for new mount API
vfs: Remove kern_mount_data()
hugetlbfs: Convert to fs_context
cpuset: Use fs_context
kernfs, sysfs, cgroup, intel_rdt: Support fs_context
cgroup: store a reference to cgroup_ns into cgroup_fs_context
cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
cgroup_do_mount(): massage calling conventions
cgroup: stash cgroup_root reference into cgroup_fs_context
cgroup2: switch to option-by-option parsing
cgroup1: switch to option-by-option parsing
cgroup: take options parsing into ->parse_monolithic()
cgroup: fold cgroup1_mount() into cgroup1_get_tree()
cgroup: start switching to fs_context
ipc: Convert mqueue fs to fs_context
proc: Add fs_context support to procfs
...
Pull security subsystem updates from James Morris:
- Extend LSM stacking to allow sharing of cred, file, ipc, inode, and
task blobs. This paves the way for more full-featured LSMs to be
merged, and is specifically aimed at LandLock and SARA LSMs. This
work is from Casey and Kees.
- There's a new LSM from Micah Morton: "SafeSetID gates the setid
family of syscalls to restrict UID/GID transitions from a given
UID/GID to only those approved by a system-wide whitelist." This
feature is currently shipping in ChromeOS.
* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (62 commits)
keys: fix missing __user in KEYCTL_PKEY_QUERY
LSM: Update list of SECURITYFS users in Kconfig
LSM: Ignore "security=" when "lsm=" is specified
LSM: Update function documentation for cap_capable
security: mark expected switch fall-throughs and add a missing break
tomoyo: Bump version.
LSM: fix return value check in safesetid_init_securityfs()
LSM: SafeSetID: add selftest
LSM: SafeSetID: remove unused include
LSM: SafeSetID: 'depend' on CONFIG_SECURITY
LSM: Add 'name' field for SafeSetID in DEFINE_LSM
LSM: add SafeSetID module that gates setid calls
LSM: add SafeSetID module that gates setid calls
tomoyo: Allow multiple use_group lines.
tomoyo: Coding style fix.
tomoyo: Swicth from cred->security to task_struct->security.
security: keys: annotate implicit fall throughs
security: keys: annotate implicit fall throughs
security: keys: annotate implicit fall through
capabilities:: annotate implicit fall through
...
Add fs_context support to procfs.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move proc_fill_super() to fs/proc/root.c as that's where the other
superblock stuff is.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Back in 2007 I made what turned out to be a rather serious
mistake in the implementation of the Smack security module.
The SELinux module used an interface in /proc to manipulate
the security context on processes. Rather than use a similar
interface, I used the same interface. The AppArmor team did
likewise. Now /proc/.../attr/current will tell you the
security "context" of the process, but it will be different
depending on the security module you're using.
This patch provides a subdirectory in /proc/.../attr for
Smack. Smack user space can use the "current" file in
this subdirectory and never have to worry about getting
SELinux attributes by mistake. Programs that use the
old interface will continue to work (or fail, as the case
may be) as before.
The proposed S.A.R.A security module is dependent on
the mechanism to create its own attr subdirectory.
The original implementation is by Kees Cook.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
24074a35c5 ("proc: Make inline name size calculation automatic")
started to put PDE allocations into kmalloc-256 which is unnecessary as
~40 character names are very rare.
Put allocation back into kmalloc-192 cache for 64-bit non-debug builds.
Put BUILD_BUG_ON to know when PDE size has gotten out of control.
[adobriyan@gmail.com: fix BUILD_BUG_ON breakage on powerpc64]
Link: http://lkml.kernel.org/r/20180703191602.GA25521@avx2
Link: http://lkml.kernel.org/r/20180617215732.GA24688@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The /proc/pid/smaps_rollup file is currently implemented via the
m_start/m_next/m_stop seq_file iterators shared with the other maps files,
that iterate over vma's. However, the rollup file doesn't print anything
for each vma, only accumulate the stats.
There are some issues with the current code as reported in [1] - the
accumulated stats can get skewed if seq_file start()/stop() op is called
multiple times, if show() is called multiple times, and after seeks to
non-zero position.
Patch [1] fixed those within existing design, but I believe it is
fundamentally wrong to expose the vma iterators to the seq_file mechanism
when smaps_rollup shows logically a single set of values for the whole
address space.
This patch thus refactors the code to provide a single "value" at offset
0, with vma iteration to gather the stats done internally. This fixes the
situations where results are skewed, and simplifies the code, especially
in show_smap(), at the expense of somewhat less code reuse.
[1] https://marc.info/?l=linux-mm&m=151927723128134&w=2
[vbabka@suse.c: use seq_file infrastructure]
Link: http://lkml.kernel.org/r/bf4525b0-fd5b-4c4c-2cb3-adee3dd95a48@suse.cz
Link: http://lkml.kernel.org/r/20180723111933.15443-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Daniel Colascione <dancol@google.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanups and refactor of /proc/pid/smaps*".
The recent regression in /proc/pid/smaps made me look more into the code.
Especially the issues with smaps_rollup reported in [1] as explained in
Patch 4, which fixes them by refactoring the code. Patches 2 and 3 are
preparations for that. Patch 1 is me realizing that there's a lot of
boilerplate left from times where we tried (unsuccessfuly) to mark thread
stacks in the output.
Originally I had also plans to rework the translation from
/proc/pid/*maps* file offsets to the internal structures. Now the offset
means "vma number", which is not really stable (vma's can come and go
between read() calls) and there's an extra caching of last vma's address.
My idea was that offsets would be interpreted directly as addresses, which
would also allow meaningful seeks (see the ugly seek_to_smaps_entry() in
tools/testing/selftests/vm/mlock2.h). However loff_t is (signed) long
long so that might be insufficient somewhere for the unsigned long
addresses.
So the result is fixed issues with skewed /proc/pid/smaps_rollup results,
simpler smaps code, and a lot of unused code removed.
[1] https://marc.info/?l=linux-mm&m=151927723128134&w=2
This patch (of 4):
Commit b76437579d ("procfs: mark thread stack correctly in
proc/<pid>/maps") introduced differences between /proc/PID/maps and
/proc/PID/task/TID/maps to mark thread stacks properly, and this was
also done for smaps and numa_maps. However it didn't work properly and
was ultimately removed by commit b18cb64ead ("fs/proc: Stop trying to
report thread stacks").
Now the is_pid parameter for the related show_*() functions is unused
and we can remove it together with wrapper functions and ops structures
that differ for PID and TID cases only in this parameter.
Link: http://lkml.kernel.org/r/20180723111933.15443-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Colascione <dancol@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull AFS updates from Al Viro:
"Assorted AFS stuff - ended up in vfs.git since most of that consists
of David's AFS-related followups to Christoph's procfs series"
* 'afs-proc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
afs: Optimise callback breaking by not repeating volume lookup
afs: Display manually added cells in dynamic root mount
afs: Enable IPv6 DNS lookups
afs: Show all of a server's addresses in /proc/fs/afs/servers
afs: Handle CONFIG_PROC_FS=n
proc: Make inline name size calculation automatic
afs: Implement network namespacing
afs: Mark afs_net::ws_cell as __rcu and set using rcu functions
afs: Fix a Sparse warning in xdr_decode_AFSFetchStatus()
proc: Add a way to make network proc files writable
afs: Rearrange fs/afs/proc.c to remove remaining predeclarations.
afs: Rearrange fs/afs/proc.c to move the show routines up
afs: Rearrange fs/afs/proc.c by moving fops and open functions down
afs: Move /proc management functions to the end of the file
Make calculation of the size of the inline name in struct proc_dir_entry
automatic, rather than having to manually encode the numbers and failing to
allow for lockdep.
Require a minimum inline name size of 33+1 to allow for names that look
like two hex numbers with a dash between.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All those lengths are unsigned as they should be.
Link: http://lkml.kernel.org/r/20180423213751.GC9043@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull workqueue updates from Tejun Heo:
- make kworkers report the workqueue it is executing or has executed
most recently in /proc/PID/comm (so they show up in ps/top)
- CONFIG_SMP shuffle to move stuff which isn't necessary for UP builds
inside CONFIG_SMP.
* 'for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: move function definitions within CONFIG_SMP block
workqueue: Make sure struct worker is accessible for wq_worker_comm()
workqueue: Show the latest workqueue name in /proc/PID/{comm,stat,status}
proc: Consolidate task->comm formatting into proc_task_name()
workqueue: Set worker->desc to workqueue name by default
workqueue: Make worker_attach/detach_pool() update worker->pool
workqueue: Replace pool->attach_mutex with global wq_pool_attach_mutex
Pull dcache lookup cleanups from Al Viro:
"Cleaning ->lookup() instances up - mostly d_splice_alias() conversions"
* 'work.lookup' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (29 commits)
switch the rest of procfs lookups to d_splice_alias()
procfs: switch instantiate_t to d_splice_alias()
don't bother with tid_fd_revalidate() in lookups
proc_lookupfd_common(): don't bother with instantiate unless the file is open
procfs: get rid of ancient BS in pid_revalidate() uses
cifs_lookup(): switch to d_splice_alias()
cifs_lookup(): cifs_get_inode_...() never returns 0 with *inode left NULL
9p: unify paths in v9fs_vfs_lookup()
ncp_lookup(): use d_splice_alias()
hfsplus: switch to d_splice_alias()
hfs: don't allow mounting over .../rsrc
hfs: use d_splice_alias()
omfs_lookup(): report IO errors, use d_splice_alias()
orangefs_lookup: simplify
openpromfs: switch to d_splice_alias()
xfs_vn_lookup: simplify a bit
adfs_lookup: do not fail with ENOENT on negatives, use d_splice_alias()
adfs_lookup_byname: .. *is* taken care of in fs/namei.c
romfs_lookup: switch to d_splice_alias()
qnx6_lookup: switch to d_splice_alias()
...
First of all, calling pid_revalidate() in the end of <pid>/* lookups
is *not* about closing any kind of races; that used to be true once
upon a time, but these days those comments are actively misleading.
Especially since pid_revalidate() doesn't even do d_drop() on
failure anymore. It doesn't matter, anyway, since once
pid_revalidate() starts returning false, ->d_delete() of those
dentries starts saying "don't keep"; they won't get stuck in
dcache any longer than they are pinned.
These calls cannot be just removed, though - the side effect of
pid_revalidate() (updating i_uid/i_gid/etc.) is what we are calling
it for here.
Let's separate the "update ownership" into a new helper (pid_update_inode())
and use it, both in lookups and in pid_revalidate() itself.
The comments in pid_revalidate() are also out of date - they refer to
the time when pid_revalidate() used to call d_drop() directly...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
proc shows task->comm in three places - comm, stat, status - and each
is fetching and formatting task->comm slighly differently. This patch
renames task_name() to proc_task_name(), makes it more generic, and
updates all three paths to use it.
This will enable expanding comm reporting for workqueue workers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Provide two extra functions, proc_create_net_data_write() and
proc_create_net_single_write() that act like their non-write versions but
also set a write method in the proc_dir_entry struct.
An internal simple write function is provided that will copy its buffer and
hand it to the pde->write() method if available (or give an error if not).
The buffer may be modified by the write method.
Signed-off-by: David Howells <dhowells@redhat.com>
Variants of proc_create{,_data} that directly take a seq_file show
callback and drastically reduces the boilerplate code in the callers.
All trivial callers converted over.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Variant of proc_create_data that directly take a struct seq_operations
argument + a private state size and drastically reduces the boilerplate
code in the callers.
All trivial callers converted over.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Variants of proc_create{,_data} that directly take a struct seq_operations
argument and drastically reduces the boilerplate code in the callers.
All trivial callers converted over.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Common code for creating a regular file. Factor out of proc_create_data, to
be reused by other functions soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Return registered entry on success, return NULL on failure and free the
passed in entry. Also expose it in internal.h as we'll start using it
in proc_net.c soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
In a typical for /proc "open+read+close" usecase, dentry is looked up
successfully on open only to be killed in dput() on close. In fact
dentries which aren't /proc/*/... and /proc/sys/* were almost NEVER
CACHED. Simple printk in proc_lookup_de() shows that.
Now that ->delete hook intelligently picks which dentries should live in
dcache and which should not, rbtree caching is not necessary as dcache
does it job, at last!
As a side effect, struct proc_dir_entry shrinks by one pointer which can
go into inline name.
Link: http://lkml.kernel.org/r/20180314231032.GA15854@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"struct proc_dir_entry" is variable sized because of 0-length trailing
array for name, however, because of SLAB padding allocations it is
possible to make "struct proc_dir_entry" fixed sized and allocate same
amount of memory.
It buys fine-grained debugging with poisoning and usercopy protection
which is not possible with kmalloc-* caches.
Currently, on 32-bit 91+ byte allocations go into kmalloc-128 and on
64-bit 147+ byte allocations go to kmalloc-192 anyway.
Additional memory is allocated only for 38/46+ byte long names which are
rare or may not even exist in the wild.
Link: http://lkml.kernel.org/r/20180223205504.GA17139@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"struct pde_opener" is fixed size and we can have more granular approach
to debugging.
For those who don't know, per cache SLUB poisoning and red zoning don't
work if there is at least one object allocated which is hopeless in case
of kmalloc-64 but not in case of standalone cache. Although systemd
opens 2 files from the get go, so it is hopeless after all.
Link: http://lkml.kernel.org/r/20180214082306.GB17157@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rearrange args for smaller code.
lookup revolves around memcmp() which gets len 3rd arg, so propagate
length as 3rd arg.
readdir and lookup add additional arg to VFS ->readdir and ->lookup, so
better add it to the end.
Space savings on x86_64:
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-18 (-18)
Function old new delta
proc_readdir 22 13 -9
proc_lookup 18 9 -9
proc_match() is smaller if not inlined, I promise!
Link: http://lkml.kernel.org/r/20180104175958.GB5204@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct proc_dir_entry became bit messy over years:
* move 16-bit ->mode_t before namelen to get rid of padding
* make ->in_use first field: it seems to be most used resulting in
smaller code on x86_64 (defconfig):
add/remove: 0/0 grow/shrink: 7/13 up/down: 24/-67 (-43)
Function old new delta
proc_readdir_de 451 455 +4
proc_get_inode 282 286 +4
pde_put 65 69 +4
remove_proc_subtree 294 297 +3
remove_proc_entry 297 300 +3
proc_register 295 298 +3
proc_notify_change 94 97 +3
unuse_pde 27 26 -1
proc_reg_write 89 85 -4
proc_reg_unlocked_ioctl 85 81 -4
proc_reg_read 89 85 -4
proc_reg_llseek 87 83 -4
proc_reg_get_unmapped_area 123 119 -4
proc_entry_rundown 139 135 -4
proc_reg_poll 91 85 -6
proc_reg_mmap 79 73 -6
proc_get_link 55 49 -6
proc_reg_release 108 101 -7
proc_reg_open 298 291 -7
close_pdeo 228 218 -10
* move writeable fields together to a first cacheline (on x86_64),
those include
* ->in_use: reference count, taken every open/read/write/close etc
* ->count: reference count, taken at readdir on every entry
* ->pde_openers: tracks (nearly) every open, dirtied
* ->pde_unload_lock: spinlock protecting ->pde_openers
* ->proc_iops, ->proc_fops, ->data: writeonce fields,
used right together with previous group.
* other rarely written fields go into 1st/2nd and 2nd/3rd cacheline on
32-bit and 64-bit respectively.
Additionally on 32-bit, ->subdir, ->subdir_node, ->namelen, ->name go
fully into 2nd cacheline, separated from writeable fields. They are all
used during lookup.
Link: http://lkml.kernel.org/r/20171220215914.GA7877@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull mode_t whack-a-mole from Al Viro:
"For all internal uses we want umode_t, which is arch-independent;
mode_t (or __kernel_mode_t, for that matter) is wrong outside of
userland ABI.
Unfortunately, that crap keeps coming back and needs to be put down
from time to time..."
* 'work.whack-a-mole' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
mode_t whack-a-mole: task_dump_owner()
... such that we can avoid the tree walks to get the node with the
smallest key. Semantically the same, as the previously used rb_first(),
but O(1). The main overhead is the extra footprint for the cached rb_node
pointer, which should not matter for procfs.
Link: http://lkml.kernel.org/r/20170719014603.19029-14-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/pid/smaps_rollup is a new proc file that improves the performance
of user programs that determine aggregate memory statistics (e.g., total
PSS) of a process.
Android regularly "samples" the memory usage of various processes in
order to balance its memory pool sizes. This sampling process involves
opening /proc/pid/smaps and summing certain fields. For very large
processes, sampling memory use this way can take several hundred
milliseconds, due mostly to the overhead of the seq_printf calls in
task_mmu.c.
smaps_rollup improves the situation. It contains most of the fields of
/proc/pid/smaps, but instead of a set of fields for each VMA,
smaps_rollup instead contains one synthetic smaps-format entry
representing the whole process. In the single smaps_rollup synthetic
entry, each field is the summation of the corresponding field in all of
the real-smaps VMAs. Using a common format for smaps_rollup and smaps
allows userspace parsers to repurpose parsers meant for use with
non-rollup smaps for smaps_rollup, and it allows userspace to switch
between smaps_rollup and smaps at runtime (say, based on the
availability of smaps_rollup in a given kernel) with minimal fuss.
By using smaps_rollup instead of smaps, a caller can avoid the
significant overhead of formatting, reading, and parsing each of a large
process's potentially very numerous memory mappings. For sampling
system_server's PSS in Android, we measured a 12x speedup, representing
a savings of several hundred milliseconds.
One alternative to a new per-process proc file would have been including
PSS information in /proc/pid/status. We considered this option but
thought that PSS would be too expensive (by a few orders of magnitude)
to collect relative to what's already emitted as part of
/proc/pid/status, and slowing every user of /proc/pid/status for the
sake of readers that happen to want PSS feels wrong.
The code itself works by reusing the existing VMA-walking framework we
use for regular smaps generation and keeping the mem_size_stats
structure around between VMA walks instead of using a fresh one for each
VMA. In this way, summation happens automatically. We let seq_file
walk over the VMAs just as it does for regular smaps and just emit
nothing to the seq_file until we hit the last VMA.
Benchmarks:
using smaps:
iterations:1000 pid:1163 pss:220023808
0m29.46s real 0m08.28s user 0m20.98s system
using smaps_rollup:
iterations:1000 pid:1163 pss:220702720
0m04.39s real 0m00.03s user 0m04.31s system
We're using the PSS samples we collect asynchronously for
system-management tasks like fine-tuning oom_adj_score, memory use
tracking for debugging, application-level memory-use attribution, and
deciding whether we want to kill large processes during system idle
maintenance windows. Android has been using PSS for these purposes for
a long time; as the average process VMA count has increased and and
devices become more efficiency-conscious, PSS-collection inefficiency
has started to matter more. IMHO, it'd be a lot safer to optimize the
existing PSS-collection model, which has been fine-tuned over the years,
instead of changing the memory tracking approach entirely to work around
smaps-generation inefficiency.
Tim said:
: There are two main reasons why Android gathers PSS information:
:
: 1. Android devices can show the user the amount of memory used per
: application via the settings app. This is a less important use case.
:
: 2. We log PSS to help identify leaks in applications. We have found
: an enormous number of bugs (in the Android platform, in Google's own
: apps, and in third-party applications) using this data.
:
: To do this, system_server (the main process in Android userspace) will
: sample the PSS of a process three seconds after it changes state (for
: example, app is launched and becomes the foreground application) and about
: every ten minutes after that. The net result is that PSS collection is
: regularly running on at least one process in the system (usually a few
: times a minute while the screen is on, less when screen is off due to
: suspend). PSS of a process is an incredibly useful stat to track, and we
: aren't going to get rid of it. We've looked at some very hacky approaches
: using RSS ("take the RSS of the target process, subtract the RSS of the
: zygote process that is the parent of all Android apps") to reduce the
: accounting time, but it regularly overestimated the memory used by 20+
: percent. Accordingly, I don't think that there's a good alternative to
: using PSS.
:
: We started looking into PSS collection performance after we noticed random
: frequency spikes while a phone's screen was off; occasionally, one of the
: CPU clusters would ramp to a high frequency because there was 200-300ms of
: constant CPU work from a single thread in the main Android userspace
: process. The work causing the spike (which is reasonable governor
: behavior given the amount of CPU time needed) was always PSS collection.
: As a result, Android is burning more power than we should be on PSS
: collection.
:
: The other issue (and why I'm less sure about improving smaps as a
: long-term solution) is that the number of VMAs per process has increased
: significantly from release to release. After trying to figure out why we
: were seeing these 200-300ms PSS collection times on Android O but had not
: noticed it in previous versions, we found that the number of VMAs in the
: main system process increased by 50% from Android N to Android O (from
: ~1800 to ~2700) and varying increases in every userspace process. Android
: M to N also had an increase in the number of VMAs, although not as much.
: I'm not sure why this is increasing so much over time, but thinking about
: ASLR and ways to make ASLR better, I expect that this will continue to
: increase going forward. I would not be surprised if we hit 5000 VMAs on
: the main Android process (system_server) by 2020.
:
: If we assume that the number of VMAs is going to increase over time, then
: doing anything we can do to reduce the overhead of each VMA during PSS
: collection seems like the right way to go, and that means outputting an
: aggregate statistic (to avoid whatever overhead there is per line in
: writing smaps and in reading each line from userspace).
Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.com
Signed-off-by: Daniel Colascione <dancol@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
randstruct plugin, including the task_struct.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJZbRgGAAoJEIly9N/cbcAmk2AQAIL60aQ+9RIcFAXriFhnd7Z2
x9Jqi9JNc8NgPFXx8GhE4J4eTZ5PwcjgXBpNRWY/laBkRyoBHn24ku09YxrJjmHz
ZSUsP+/iO9lVeEfbmU9Tnk50afkfwx6bHXBwkiVGQWHtybNVUqA19JbqkHeg8ubx
myKLGeUv5PPCodRIcBDD0+HaAANcsqtgbDpgmWU8s+IXWwvWCE2p7PuBw7v3HHgH
qzlPDHYQCRDw+LWsSqPaHj+9mbRO18P/ydMoZHGH4Hl3YYNtty8ZbxnraI3A7zBL
6mLUVcZ+/l88DqHc5I05T8MmLU1yl2VRxi8/jpMAkg9wkvZ5iNAtlEKIWU6eqsvk
vaImNOkViLKlWKF+oUD1YdG16d8Segrc6m4MGdI021tb+LoGuUbkY7Tl4ee+3dl/
9FM+jPv95HjJnyfRNGidh2TKTa9KJkh6DYM9aUnktMFy3ca1h/LuszOiN0LTDiHt
k5xoFURk98XslJJyXM8FPwXCXiRivrXMZbg5ixNoS4aYSBLv7Cn1M6cPnSOs7UPh
FqdNPXLRZ+vabSxvEg5+41Ioe0SHqACQIfaSsV5BfF2rrRRdaAxK4h7DBcI6owV2
7ziBN1nBBq2onYGbARN6ApyCqLcchsKtQfiZ0iFsvW7ZawnkVOOObDTCgPl3tdkr
403YXzphQVzJtpT5eRV6
=ngAW
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull structure randomization updates from Kees Cook:
"Now that IPC and other changes have landed, enable manual markings for
randstruct plugin, including the task_struct.
This is the rest of what was staged in -next for the gcc-plugins, and
comes in three patches, largest first:
- mark "easy" structs with __randomize_layout
- mark task_struct with an optional anonymous struct to isolate the
__randomize_layout section
- mark structs to opt _out_ of automated marking (which will come
later)
And, FWIW, this continues to pass allmodconfig (normal and patched to
enable gcc-plugins) builds of x86_64, i386, arm64, arm, powerpc, and
s390 for me"
* tag 'gcc-plugins-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: opt-out externally exposed function pointer structs
task_struct: Allow randomized layout
randstruct: Mark various structs for randomization
Andrei Vagin writes:
FYI: This bug has been reproduced on 4.11.7
> BUG: Dentry ffff895a3dd01240{i=4e7c09a,n=lo} still in use (1) [unmount of proc proc]
> ------------[ cut here ]------------
> WARNING: CPU: 1 PID: 13588 at fs/dcache.c:1445 umount_check+0x6e/0x80
> CPU: 1 PID: 13588 Comm: kworker/1:1 Not tainted 4.11.7-200.fc25.x86_64 #1
> Hardware name: CompuLab sbc-flt1/fitlet, BIOS SBCFLT_0.08.04 06/27/2015
> Workqueue: events proc_cleanup_work
> Call Trace:
> dump_stack+0x63/0x86
> __warn+0xcb/0xf0
> warn_slowpath_null+0x1d/0x20
> umount_check+0x6e/0x80
> d_walk+0xc6/0x270
> ? dentry_free+0x80/0x80
> do_one_tree+0x26/0x40
> shrink_dcache_for_umount+0x2d/0x90
> generic_shutdown_super+0x1f/0xf0
> kill_anon_super+0x12/0x20
> proc_kill_sb+0x40/0x50
> deactivate_locked_super+0x43/0x70
> deactivate_super+0x5a/0x60
> cleanup_mnt+0x3f/0x90
> mntput_no_expire+0x13b/0x190
> kern_unmount+0x3e/0x50
> pid_ns_release_proc+0x15/0x20
> proc_cleanup_work+0x15/0x20
> process_one_work+0x197/0x450
> worker_thread+0x4e/0x4a0
> kthread+0x109/0x140
> ? process_one_work+0x450/0x450
> ? kthread_park+0x90/0x90
> ret_from_fork+0x2c/0x40
> ---[ end trace e1c109611e5d0b41 ]---
> VFS: Busy inodes after unmount of proc. Self-destruct in 5 seconds. Have a nice day...
> BUG: unable to handle kernel NULL pointer dereference at (null)
> IP: _raw_spin_lock+0xc/0x30
> PGD 0
Fix this by taking a reference to the super block in proc_sys_prune_dcache.
The superblock reference is the core of the fix however the sysctl_inodes
list is converted to a hlist so that hlist_del_init_rcu may be used. This
allows proc_sys_prune_dache to remove inodes the sysctl_inodes list, while
not causing problems for proc_sys_evict_inode when if it later choses to
remove the inode from the sysctl_inodes list. Removing inodes from the
sysctl_inodes list allows proc_sys_prune_dcache to have a progress
guarantee, while still being able to drop all locks. The fact that
head->unregistering is set in start_unregistering ensures that no more
inodes will be added to the the sysctl_inodes list.
Previously the code did a dance where it delayed calling iput until the
next entry in the list was being considered to ensure the inode remained on
the sysctl_inodes list until the next entry was walked to. The structure
of the loop in this patch does not need that so is much easier to
understand and maintain.
Cc: stable@vger.kernel.org
Reported-by: Andrei Vagin <avagin@gmail.com>
Tested-by: Andrei Vagin <avagin@openvz.org>
Fixes: ace0c791e6 ("proc/sysctl: Don't grab i_lock under sysctl_lock.")
Fixes: d6cffbbe9a ("proc/sysctl: prune stale dentries during unregistering")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This marks many critical kernel structures for randomization. These are
structures that have been targeted in the past in security exploits, or
contain functions pointers, pointers to function pointer tables, lists,
workqueues, ref-counters, credentials, permissions, or are otherwise
sensitive. This initial list was extracted from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Left out of this list is task_struct, which requires special handling
and will be covered in a subsequent patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
But first update the code that uses these facilities with the
new header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/coredump.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/coredump.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently unregistering sysctl table does not prune its dentries.
Stale dentries could slowdown sysctl operations significantly.
For example, command:
# for i in {1..100000} ; do unshare -n -- sysctl -a &> /dev/null ; done
creates a millions of stale denties around sysctls of loopback interface:
# sysctl fs.dentry-state
fs.dentry-state = 25812579 24724135 45 0 0 0
All of them have matching names thus lookup have to scan though whole
hash chain and call d_compare (proc_sys_compare) which checks them
under system-wide spinlock (sysctl_lock).
# time sysctl -a > /dev/null
real 1m12.806s
user 0m0.016s
sys 1m12.400s
Currently only memory reclaimer could remove this garbage.
But without significant memory pressure this never happens.
This patch collects sysctl inodes into list on sysctl table header and
prunes all their dentries once that table unregisters.
Konstantin Khlebnikov <khlebnikov@yandex-team.ru> writes:
> On 10.02.2017 10:47, Al Viro wrote:
>> how about >> the matching stats *after* that patch?
>
> dcache size doesn't grow endlessly, so stats are fine
>
> # sysctl fs.dentry-state
> fs.dentry-state = 92712 58376 45 0 0 0
>
> # time sysctl -a &>/dev/null
>
> real 0m0.013s
> user 0m0.004s
> sys 0m0.008s
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Instead of making the files owned by the GLOBAL_ROOT_USER. Make
non-dumpable files whose mm has always lived in a user namespace owned
by the user namespace root. This allows the container root to have
things work as expected in a container.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>