IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The filesystem documentation was moved from DocBook to
Documentation/filesystems/. Update it at the sources.
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
The result was being ignored and 0 was always returned.
Return the actual result instead.
Signed-off-by: Eric Engestrom <eric.engestrom@imgtec.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch introduces an accessor which can be used
by the users of debugfs (drivers, fs, ...) to get the
original file_operations struct. It also removes the
REAL_FOPS_DEREF macro in file.c and converts the code
to use the public version.
Previously, REAL_FOPS_DEREF was only available within
the file.c of debugfs. But having a public getter
available for debugfs users is important as some
drivers (carl9170 and b43) use the pointer of the
original file_operations in conjunction with container_of()
within their debugfs implementations.
Reviewed-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Cc: stable <stable@vger.kernel.org> # 4.7+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Debugfs' open_proxy_open(), the ->open() installed at all inodes created
through debugfs_create_file_unsafe(),
- grabs a reference to the original file_operations instance passed to
debugfs_create_file_unsafe() via fops_get(),
- installs it at the file's ->f_op by means of replace_fops()
- and calls fops_put() on it.
Since the semantics of replace_fops() are such that the reference's
ownership is transferred, the subsequent fops_put() will result in a double
release when the file is eventually closed.
Currently, this is not an issue since fops_put() basically does a
module_put() on the file_operations' ->owner only and there don't exist any
modules calling debugfs_create_file_unsafe() yet. This is expected to
change in the future though, c.f. commit c646880814 ("debugfs: add
support for self-protecting attribute file fops").
Remove the call to fops_put() from open_proxy_open().
Fixes: 9fd4dcece4 ("debugfs: prevent access to possibly dead
file_operations at file open")
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Debugfs' full_proxy_open(), the ->open() installed at all inodes created
through debugfs_create_file(),
- grabs a reference to the original struct file_operations instance passed
to debugfs_create_file(),
- dynamically allocates a proxy struct file_operations instance wrapping
the original
- and installs this at the file's ->f_op.
Afterwards, it calls the original ->open() and passes its return value back
to the VFS layer.
Now, if that return value indicates failure, the VFS layer won't ever call
->release() and thus, neither the reference to the original file_operations
nor the memory for the proxy file_operations will get released, i.e. both
are leaked.
Upon failure of the original fops' ->open(), undo the proxy installation.
That is:
- Set the struct file ->f_op to what it had been when full_proxy_open()
was entered.
- Drop the reference to the original file_operations.
- Free the memory holding the proxy file_operations.
Fixes: 49d200deaa ("debugfs: prevent access to removed files' private
data")
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The struct file_operations u32_array_fops associated with files created
through debugfs_create_u32_array() has been lifetime aware already:
everything needed for subsequent operation is copied to a ->f_private
buffer at file opening time in u32_array_open(). Now, ->open() is always
protected against file removal issues by the debugfs core.
There is no need for the debugfs core to wrap the u32_array_fops
with a file lifetime managing proxy.
Make debugfs_create_u32_array() create its files in non-proxying operation
mode by means of debugfs_create_file_unsafe().
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently, the struct file_operations fops_blob associated with files
created through the debugfs_create_blob() helpers are not file
lifetime aware.
Thus, a lifetime managing proxy is created around fops_blob each time such
a file is opened which is an unnecessary waste of resources.
Implement file lifetime management for the fops_bool file_operations.
Namely, make read_file_blob() safe gainst file removals by means of
debugfs_use_file_start() and debugfs_use_file_finish().
Make debugfs_create_blob() create its files in non-proxying operation mode
by means of debugfs_create_file_unsafe().
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently, the struct file_operations fops_bool associated with files
created through the debugfs_create_bool() helpers are not file
lifetime aware.
Thus, a lifetime managing proxy is created around fops_bool each time such
a file is opened which is an unnecessary waste of resources.
Implement file lifetime management for the fops_bool file_operations.
Namely, make debugfs_read_file_bool() and debugfs_write_file_bool() safe
against file removals by means of debugfs_use_file_start() and
debugfs_use_file_finish().
Make debugfs_create_bool() create its files in non-proxying operation mode
through debugfs_create_mode_unsafe().
Finally, purge debugfs_create_mode() as debugfs_create_bool() had been its
last user.
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently, the struct file_operations associated with the integer attribute
style files created through the debugfs_create_*() helpers are not file
lifetime aware as they are defined by means of DEFINE_SIMPLE_ATTRIBUTE().
Thus, a lifetime managing proxy is created around the original fops each
time such a file is opened which is an unnecessary waste of resources.
Migrate all usages of DEFINE_SIMPLE_ATTRIBUTE() within debugfs itself
to DEFINE_DEBUGFS_ATTRIBUTE() in order to implement file lifetime managing
within the struct file_operations thus defined.
Introduce the debugfs_create_mode_unsafe() helper, analogous to
debugfs_create_mode(), but distinct in that it creates the files in
non-proxying operation mode through debugfs_create_file_unsafe().
Feed all struct file_operations migrated to DEFINE_DEBUGFS_ATTRIBUTE()
into debugfs_create_mode_unsafe() instead of former debugfs_create_mode().
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In order to protect them against file removal issues, debugfs_create_file()
creates a lifetime managing proxy around each struct file_operations
handed in.
In cases where this struct file_operations is able to manage file lifetime
by itself already, the proxy created by debugfs is a waste of resources.
The most common class of struct file_operations given to debugfs are those
defined by means of the DEFINE_SIMPLE_ATTRIBUTE() macro.
Introduce a DEFINE_DEBUGFS_ATTRIBUTE() macro to allow any
struct file_operations of this class to be easily made file lifetime aware
and thus, to be operated unproxied.
Specifically, introduce debugfs_attr_read() and debugfs_attr_write()
which wrap simple_attr_read() and simple_attr_write() under the protection
of a debugfs_use_file_start()/debugfs_use_file_finish() pair.
Make DEFINE_DEBUGFS_ATTRIBUTE() set the defined struct file_operations'
->read() and ->write() members to these wrappers.
Export debugfs_create_file_unsafe() in order to allow debugfs users to
create their files in non-proxying operation mode.
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Upon return of debugfs_remove()/debugfs_remove_recursive(), it might
still be attempted to access associated private file data through
previously opened struct file objects. If that data has been freed by
the caller of debugfs_remove*() in the meanwhile, the reading/writing
process would either encounter a fault or, if the memory address in
question has been reassigned again, unrelated data structures could get
overwritten.
However, since debugfs files are seldomly removed, usually from module
exit handlers only, the impact is very low.
Currently, there are ~1000 call sites of debugfs_create_file() spread
throughout the whole tree and touching all of those struct file_operations
in order to make them file removal aware by means of checking the result of
debugfs_use_file_start() from within their methods is unfeasible.
Instead, wrap the struct file_operations by a lifetime managing proxy at
file open:
- In debugfs_create_file(), the original fops handed in has got stashed
away in ->d_fsdata already.
- In debugfs_create_file(), install a proxy file_operations factory,
debugfs_full_proxy_file_operations, at ->i_fop.
This proxy factory has got an ->open() method only. It carries out some
lifetime checks and if successful, dynamically allocates and sets up a new
struct file_operations proxy at ->f_op. Afterwards, it forwards to the
->open() of the original struct file_operations in ->d_fsdata, if any.
The dynamically set up proxy at ->f_op has got a lifetime managing wrapper
set for each of the methods defined in the original struct file_operations
in ->d_fsdata.
Its ->release()er frees the proxy again and forwards to the original
->release(), if any.
In order not to mislead the VFS layer, it is strictly necessary to leave
those fields blank in the proxy that have been NULL in the original
struct file_operations also, i.e. aren't supported. This is why there is a
need for dynamically allocated proxies. The choice made not to allocate a
proxy instance for every dentry at file creation, but for every
struct file object instantiated thereof is justified by the expected usage
pattern of debugfs, namely that in general very few files get opened more
than once at a time.
The wrapper methods set in the struct file_operations implement lifetime
managing by means of the SRCU protection facilities already in place for
debugfs:
They set up a SRCU read side critical section and check whether the dentry
is still alive by means of debugfs_use_file_start(). If so, they forward
the call to the original struct file_operation stored in ->d_fsdata, still
under the protection of the SRCU read side critical section.
This SRCU read side critical section prevents any pending debugfs_remove()
and friends to return to their callers. Since a file's private data must
only be freed after the return of debugfs_remove(), the ongoing proxied
call is guarded against any file removal race.
If, on the other hand, the initial call to debugfs_use_file_start() detects
that the dentry is dead, the wrapper simply returns -EIO and does not
forward the call. Note that the ->poll() wrapper is special in that its
signature does not allow for the return of arbitrary -EXXX values and thus,
POLLHUP is returned here.
In order not to pollute debugfs with wrapper definitions that aren't ever
needed, I chose not to define a wrapper for every struct file_operations
method possible. Instead, a wrapper is defined only for the subset of
methods which are actually set by any debugfs users.
Currently, these are:
->llseek()
->read()
->write()
->unlocked_ioctl()
->poll()
The ->release() wrapper is special in that it does not protect the original
->release() in any way from dead files in order not to leak resources.
Thus, any ->release() handed to debugfs must implement file lifetime
management manually, if needed.
For only 33 out of a total of 434 releasers handed in to debugfs, it could
not be verified immediately whether they access data structures that might
have been freed upon a debugfs_remove() return in the meanwhile.
Export debugfs_use_file_start() and debugfs_use_file_finish() in order to
allow any ->release() to manually implement file lifetime management.
For a set of common cases of struct file_operations implemented by the
debugfs_core itself, future patches will incorporate file lifetime
management directly within those in order to allow for their unproxied
operation. Rename the original, non-proxying "debugfs_create_file()" to
"debugfs_create_file_unsafe()" and keep it for future internal use by
debugfs itself. Factor out code common to both into the new
__debugfs_create_file().
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Nothing prevents a dentry found by path lookup before a return of
__debugfs_remove() to actually get opened after that return. Now, after
the return of __debugfs_remove(), there are no guarantees whatsoever
regarding the memory the corresponding inode's file_operations object
had been kept in.
Since __debugfs_remove() is seldomly invoked, usually from module exit
handlers only, the race is hard to trigger and the impact is very low.
A discussion of the problem outlined above as well as a suggested
solution can be found in the (sub-)thread rooted at
http://lkml.kernel.org/g/20130401203445.GA20862@ZenIV.linux.org.uk
("Yet another pipe related oops.")
Basically, Greg KH suggests to introduce an intermediate fops and
Al Viro points out that a pointer to the original ones may be stored in
->d_fsdata.
Follow this line of reasoning:
- Add SRCU as a reverse dependency of DEBUG_FS.
- Introduce a srcu_struct object for the debugfs subsystem.
- In debugfs_create_file(), store a pointer to the original
file_operations object in ->d_fsdata.
- Make debugfs_remove() and debugfs_remove_recursive() wait for a
SRCU grace period after the dentry has been delete()'d and before they
return to their callers.
- Introduce an intermediate file_operations object named
"debugfs_open_proxy_file_operations". It's ->open() functions checks,
under the protection of a SRCU read lock, whether the dentry is still
alive, i.e. has not been d_delete()'d and if so, tries to acquire a
reference on the owning module.
On success, it sets the file object's ->f_op to the original
file_operations and forwards the ongoing open() call to the original
->open().
- For clarity, rename the former debugfs_file_operations to
debugfs_noop_file_operations -- they are in no way canonical.
The choice of SRCU over "normal" RCU is justified by the fact, that the
former may also be used to protect ->i_private data from going away
during the execution of a file's readers and writers which may (and do)
sleep.
Finally, introduce the fs/debugfs/internal.h header containing some
declarations internal to the debugfs implementation.
Signed-off-by: Nicolai Stange <nicstange@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add debugfs_create_ulong() for the users of type 'unsigned long'. These
will be 32 bits long on a 32 bit machine and 64 bits long on a 64 bit
machine.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only bool file ops, but there
is a caller of debugfs_create_bool() that calls it with mode
equal to 0400. This leads to the possibility of userspace
modifying the file, so let's use the newly created
debugfs_create_mode() helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only size_t file ops, but there
is a caller of debugfs_create_size_t() that calls it with mode
equal to 0400. This leads to the possibility of userspace
modifying the file, so let's use the newly created
debugfs_create_mode() helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There aren't any read-only or write-only x64 file ops, but there
is a caller of debugfs_create_x64() that calls it with mode equal
to S_IRUGO. This leads to the possibility of userspace modifying
the file, so let's use the newly created debugfs_create_mode()
helper here to fix this.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The code that creates debugfs file with different file ops based
on the file mode is duplicated in each debugfs_create_*() API.
Consolidate that code into debugfs_create_mode(), that takes
three file ops structures so that we don't have to keep
copy/pasting that logic.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Its a bit odd that debugfs_create_bool() takes 'u32 *' as an argument,
when all it needs is a boolean pointer.
It would be better to update this API to make it accept 'bool *'
instead, as that will make it more consistent and often more convenient.
Over that bool takes just a byte.
That required updates to all user sites as well, in the same commit
updating the API. regmap core was also using
debugfs_{read|write}_file_bool(), directly and variable types were
updated for that to be bool as well.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The file read/write functions for bools have no special dependencies
on debugfs internals and are sufficiently non-trivial to be worth
exporting so clients can re-use the implementation.
Signed-off-by: Richard Fitzgerald <rf@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Here's the set of driver core patches for 3.19-rc1.
They are dominated by the removal of the .owner field in platform
drivers. They touch a lot of files, but they are "simple" changes, just
removing a line in a structure.
Other than that, a few minor driver core and debugfs changes. There are
some ath9k patches coming in through this tree that have been acked by
the wireless maintainers as they relied on the debugfs changes.
Everything has been in linux-next for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlSOD20ACgkQMUfUDdst+ylLPACg2QrW1oHhdTMT9WI8jihlHVRM
53kAoLeteByQ3iVwWurwwseRPiWa8+MI
=OVRS
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core update from Greg KH:
"Here's the set of driver core patches for 3.19-rc1.
They are dominated by the removal of the .owner field in platform
drivers. They touch a lot of files, but they are "simple" changes,
just removing a line in a structure.
Other than that, a few minor driver core and debugfs changes. There
are some ath9k patches coming in through this tree that have been
acked by the wireless maintainers as they relied on the debugfs
changes.
Everything has been in linux-next for a while"
* tag 'driver-core-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (324 commits)
Revert "ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries"
fs: debugfs: add forward declaration for struct device type
firmware class: Deletion of an unnecessary check before the function call "vunmap"
firmware loader: fix hung task warning dump
devcoredump: provide a one-way disable function
device: Add dev_<level>_once variants
ath: ath9k: use debugfs_create_devm_seqfile() helper for seq_file entries
ath: use seq_file api for ath9k debugfs files
debugfs: add helper function to create device related seq_file
drivers/base: cacheinfo: remove noisy error boot message
Revert "core: platform: add warning if driver has no owner"
drivers: base: support cpu cache information interface to userspace via sysfs
drivers: base: add cpu_device_create to support per-cpu devices
topology: replace custom attribute macros with standard DEVICE_ATTR*
cpumask: factor out show_cpumap into separate helper function
driver core: Fix unbalanced device reference in drivers_probe
driver core: fix race with userland in device_add()
sysfs/kernfs: make read requests on pre-alloc files use the buffer.
sysfs/kernfs: allow attributes to request write buffer be pre-allocated.
fs: sysfs: return EGBIG on write if offset is larger than file size
...
This patch adds a helper function that simplifies adding a
so-called single_open sequence file for device drivers. The
calling device driver needs to provide a read function and
a device pointer. The field struct seq_file::private will
reference the device pointer upon call to the read function
so the driver can obtain his data from it and do its task
of providing the file content using seq_printf() calls and
alike. Using this helper function also gets rid of the need
to specify file operations per debugfs file.
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The seq_printf() will soon just return void, and seq_has_overflowed()
should be used instead to see if the seq can no longer accept input.
As the return value of debugfs_print_regs32() has no users and
the seq_file descriptor should be checked with seq_has_overflowed()
instead of return values of functions, it is better to just have
debugfs_print_regs32() also return void.
Link: http://lkml.kernel.org/p/2634b19eb1c04a9d31148c1fe6f1f3819be95349.1412031505.git.joe@perches.com
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Joe Perches <joe@perches.com>
[ original change only updated seq_printf() return, added return of
void to debugfs_print_regs32() as well ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In case, userland writes an empty string to a bool debugfs file, buf[]
will still be uninitialized when being passed to strtobool() making the
outcome of that function purely random.
Fix this by always zero-terminating the buffer.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
debugfs currently lack the ability to create attributes
that set/get atomic_t values.
This patch adds support for this through a new
debugfs_create_atomic_t() function.
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The format_array_alloc() function is fundamentally racy, in that it
prints the array twice: once to figure out how much space to allocate
for the buffer, and the second time to actually print out the data.
If any of the array contents changes in between, the allocation size may
be wrong, and the end result may be truncated in odd ways.
Just don't do it. Allocate a maximum-sized array up-front, and just
format the array contents once. The only user of the u32_array
interfaces is the Xen spinlock statistics code, and it has 31 entries in
the arrays, so the maximum size really isn't that big, and the end
result is much simpler code without the bug.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
u32_array_open() is racy when multiple threads read from a file with a
seek position of zero, i.e. when two or more simultaneous reads are
occurring after the non-seekable files are created. It is possible that
file->private_data is double-freed because the threads races between
kfree(file->private-data);
and
file->private_data = NULL;
The fix is to only do format_array_alloc() when the file is opened and
free it when it is closed.
Note that because the file has always been non-seekable, you can't open
it and read it multiple times anyway, so the data has always been
generated just once. The difference is that now it is generated at open
time rather than at the time of the first read, and that avoids the
race.
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Raghavendra <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code from Xen to debugfs to make the code common
for other users as well.
Accked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suzuki Poulose <suzuki@in.ibm.com>
[v1: Fixed rebase issues]
[v2: Fixed PPC compile issues]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Many users of debugfs copy the implementation of default_open() when
they want to support a custom read/write function op. This leads to a
proliferation of the default_open() implementation across the entire
tree.
Now that the common implementation has been consolidated into libfs we
can replace all the users of this function with simple_open().
This replacement was done with the following semantic patch:
<smpl>
@ open @
identifier open_f != simple_open;
identifier i, f;
@@
-int open_f(struct inode *i, struct file *f)
-{
(
-if (i->i_private)
-f->private_data = i->i_private;
|
-f->private_data = i->i_private;
)
-return 0;
-}
@ has_open depends on open @
identifier fops;
identifier open.open_f;
@@
struct file_operations fops = {
...
-.open = open_f,
+.open = simple_open,
...
};
</smpl>
[akpm@linux-foundation.org: checkpatch fixes]
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix new kernel-doc warnings:
Warning(fs/debugfs/file.c:556): No description found for parameter 'nregs'
Warning(fs/debugfs/file.c:556): Excess function parameter 'mregs' description in 'debugfs_print_regs32'
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (165 commits)
reiserfs: Properly display mount options in /proc/mounts
vfs: prevent remount read-only if pending removes
vfs: count unlinked inodes
vfs: protect remounting superblock read-only
vfs: keep list of mounts for each superblock
vfs: switch ->show_options() to struct dentry *
vfs: switch ->show_path() to struct dentry *
vfs: switch ->show_devname() to struct dentry *
vfs: switch ->show_stats to struct dentry *
switch security_path_chmod() to struct path *
vfs: prefer ->dentry->d_sb to ->mnt->mnt_sb
vfs: trim includes a bit
switch mnt_namespace ->root to struct mount
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
vfs: opencode mntget() mnt_set_mountpoint()
vfs: spread struct mount - remaining argument of next_mnt()
vfs: move fsnotify junk to struct mount
vfs: move mnt_devname
vfs: move mnt_list to struct mount
vfs: switch pnode.h macros to struct mount *
...
"debugfs: add tools to printk 32-bit registers" adds new functions which rely
on IOMEM functionality which is not present on all architectures and therefore
result in compile errors:
fs/debugfs/file.c: In function 'debugfs_print_regs32':
fs/debugfs/file.c:561:7: error: implicit declaration of function 'readl' [-Werror=implicit-function-declaration]
Add an #ifdef CONFIG_HAS_IOMEM to fix this
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Alessandro Rubini <rubini@gnudd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The cast here causes a Sparse warning:
fs/debugfs/file.c:561:42: warning: cast removes address space of expression
fs/debugfs/file.c:561:42: warning: incorrect type in argument 1 (different address spaces)
fs/debugfs/file.c:561:42: expected void const volatile [noderef] <asn:2>*addr
fs/debugfs/file.c:561:42: got void *<noident>
It's redundant to cast it to a (void *) anyway when it is already a
(void __iomem *).
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The regs32 machinery uses readl. I forgot the mandatory include
and the code was not compiling on all archs.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Alessandro Rubini <rubini@gnudd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Some debugfs file I deal with are mostly blocks of registers,
i.e. lines of the form "<name> = 0x<value>". Some files are only
registers, some include registers blocks among other material. This
patch introduces data structures and functions to deal with both
cases. I expect more users of this over time.
Signed-off-by: Alessandro Rubini <rubini@gnudd.com>
Acked-by: Giancarlo Asnaghi <giancarlo.asnaghi@st.com>
Cc: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Enabling DEBUG_STRICT_USER_COPY_CHECKS causes the following
warning:
In file included from arch/x86/include/asm/uaccess.h:573,
from include/linux/uaccess.h:5,
from include/linux/highmem.h:7,
from include/linux/pagemap.h:10,
from fs/debugfs/file.c:18:
In function 'copy_from_user',
inlined from 'write_file_bool' at fs/debugfs/file.c:435:
arch/x86/include/asm/uaccess_64.h:65: warning: call to
'copy_from_user_overflow' declared with attribute warning:
copy_from_user() buffer size is not provably correct
presumably due to buf_size being signed causing GCC to fail to
see that buf_size can't become negative.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
No functional changes requires that we eat errors from strtobool.
If people want to not do this, then it should be fixed at a later date.
V2: Simplification suggested by Rusty Russell removes the need for
additional variable ret.
Signed-off-by: Jonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
In many SoC implementations there are hardware registers can be read or
write only. This extends the debugfs to enforce the file permissions for
these types of registers by providing a set of fops which are read or
write only. This assumes that the kernel developer knows more about the
hardware than the user (even root users) -- which is normally true.
Signed-off-by: Robin Getz <rgetz@blackfin.uclinux.org>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Bryan Wu <cooloney@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Fix an error in debugfs_create_blob's docbook description
It cannot actually be used to write a binary blob.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
In the same spirit as debugfs_create_*(), introduce helpers for
exporting size_t values over debugfs.
The only trick done is that the format verifier is kept at %llu
instead of %zu; otherwise type warnings would pop up:
format ‘%zu’ expects type ‘size_t’, but argument 2 has type ‘long long unsigned int’
There is no real way to fix this one--however, we can consider %llu
and %zu to be compatible if we consider that we are using the same for
validating in debugfs_create_{x,u}{8,16,32}().
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Sometimes simple attributes might need to return an error, e.g. for
acquiring a mutex interruptibly. In fact we have that situation in
spufs already which is the original user of the simple attributes. This
patch merged the temporarily forked attributes in spufs back into the
main ones and allows to return errors.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <stefano.brivio@polimi.it>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg KH <greg@kroah.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix filesystems docbook warnings.
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'name'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'mode'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'parent'
Warning(linux-2.6.23-git8//fs/debugfs/file.c:241): No description found for parameter 'value'
Warning(linux-2.6.23-git8//include/linux/jbd.h:404): No description found for parameter 'h_lockdep_map'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>