IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
ATOMISP on Medfield is a real PCI device which should be handled differently
than the fake PCI devices on south complex. PCI type 1 access is used for
accessing config space this also has other impact such as PM D3 delay. There
shouldn't be any need for reading base address from IUNIT via msg bus.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Langwell devices are not true pci devices, they are not subject to the 10 ms
d3 to d0 delay required by pci spec. This patch assigns d3_delay to 0 for all
langwell pci devices.
We can also power off devices that are not really used by the OS
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Current kernel MCE code reads ERST at the first reading of /dev/mcelog
(maybe in starting mcelogd,) even if the system does not support ERST,
which results in a fake "no such device" message (as described in [1].)
This problem is not critical, but can confuse system admins.
This patch fixes it by filtering the return value from lower (ACPI) layer.
[1] http://thread.gmane.org/gmane.linux.kernel/1060250
Reported by: Jon Masters <jonathan@jonmasters.org>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.org/lkml/2012/1/23/299
Signed-off-by: Tony Luck <tony.luck@intel.com>
When I previously fixed up the mce_device code, I used a static array of
the pointers. It was (rightfully) pointed out to me that I should be
using the per_cpu code instead.
This patch converts the code over to that structure, moving the variable
back into the per_cpu area, like it used to be for 3.2 and earlier.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Link: https://lkml.org/lkml/2012/1/27/165
Signed-off-by: Tony Luck <tony.luck@intel.com>
Printing the "start_ip" for every secondary cpu is very noisy on a large
system - and doesn't add any value. Drop this message.
Console log before:
Booting Node 0, Processors #1
smpboot cpu 1: start_ip = 96000
#2
smpboot cpu 2: start_ip = 96000
#3
smpboot cpu 3: start_ip = 96000
#4
smpboot cpu 4: start_ip = 96000
...
#31
smpboot cpu 31: start_ip = 96000
Brought up 32 CPUs
Console log after:
Booting Node 0, Processors #1#2#3#4#5#6#7 Ok.
Booting Node 1, Processors #8#9#10#11#12#13#14#15 Ok.
Booting Node 0, Processors #16#17#18#19#20#21#22#23 Ok.
Booting Node 1, Processors #24#25#26#27#28#29#30#31
Brought up 32 CPUs
Acked-by: Borislav Petkov <bp@amd64.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/4f452eb42507460426@agluck-desktop.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
141168c36cde ("x86: Simplify code by removing a !SMP #ifdefs
from 'struct cpuinfo_x86'") removed a bunch of CONFIG_SMP ifdefs
around code touching struct cpuinfo_x86 members but also caused
the following build error with Randy's randconfigs:
mce_amd.c:(.cpuinit.text+0x4723): undefined reference to `cpu_llc_shared_map'
Restore the #ifdef in threshold_create_bank() which creates
symlinks on the non-BSP CPUs.
There's a better patch series being worked on by Kevin Winchester
which will solve this in a cleaner fashion, but that series is
too ambitious for v3.3 merging - so we first queue up this trivial
fix and then do the rest for v3.4.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Acked-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Nick Bowler <nbowler@elliptictech.com>
Link: http://lkml.kernel.org/r/20120203191801.GA2846@x1.osrc.amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For each logical CPU that is coming online, we spend 20msec for
checking the TSC synchronization. And as this is done
sequentially for each logical CPU boot, this time gets added up
depending on the number of logical CPU's supported by the
platform.
Minimize this by using the socket topology information.
If the target CPU coming online doesn't have any of its
core-siblings online, a timeout of 20msec will be used for the
TSC-warp measurement loop. Otherwise a smaller timeout of 2msec
will be used, as we have some information about this socket
already (and this information grows as we have more and more
logical-siblings in that socket).
Ideally we should be able to skip the TSC sync check on the
other core-siblings, if the first logical CPU in a socket passed
the sync test. But as the TSC is per-logical CPU and can
potentially be modified wrongly by the bios before the OS boot,
TSC sync test for smaller duration should be able to catch such
errors. Also this will catch the condition where all the cores
in the socket doesn't get reset at the same time.
For example, with this modification, time spent in TSC sync
checks on a 4 socket 10-core with HT system gets reduced from
1580msec to 212msec.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jack Steiner <steiner@sgi.com>
Cc: venki@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1328581940.29790.20.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add CPU features from the Intel Archicture Instruction Set Extensions
Programming Reference version 012A (Feb 2012), document number 319433-012A.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
While various modules include <asm/i387.h> to get access to things we
actually *intend* for them to use, most of that header file was really
pretty low-level internal stuff that we really don't want to expose to
others.
So split the header file into two: the small exported interfaces remain
in <asm/i387.h>, while the internal definitions that are only used by
core architecture code are now in <asm/fpu-internal.h>.
The guiding principle for this was to expose functions that we export to
modules, and leave them in <asm/i387.h>, while stuff that is used by
task switching or was marked GPL-only is in <asm/fpu-internal.h>.
The fpu-internal.h file could be further split up too, especially since
arch/x86/kvm/ uses some of the remaining stuff for its module. But that
kvm usage should probably be abstracted out a bit, and at least now the
internal FPU accessor functions are much more contained. Even if it
isn't perhaps as contained as it _could_ be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211340330.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Instead of exporting the very low-level internals of the FPU state
save/restore code (ie things like 'fpu_owner_task'), we should export
the higher-level interfaces.
Inlining these things is pointless anyway: sure, sometimes the end
result is small, but while 'stts()' can result in just three x86
instructions, those are not cheap instructions (writing %cr0 is a
serializing instruction and a very slow one at that).
So the overhead of a function call is not noticeable, and we really
don't want random modules mucking about with our internal state save
logic anyway.
So this unexports 'fpu_owner_task', and instead uninlines and exports
the actual functions that modules can use: fpu_kernel_begin/end() and
unlazy_fpu().
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211339590.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
(And define it properly for x86-32, which had its 'current_task'
declaration in separate from x86-64)
Bitten by my dislike for modules on the machines I use, and the fact
that apparently nobody else actually wanted to test the patches I sent
out.
Snif. Nobody else cares.
Anyway, we probably should uninline the 'kernel_fpu_begin()' function
that is what modules actually use and that references this, but this is
the minimal fix for now.
Reported-by: Josh Boyer <jwboyer@gmail.com>
Reported-and-tested-by: Jongman Heo <jongman.heo@samsung.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus noticed that the cmp used to check if the code segment is
__KERNEL_CS or not did not specify a size. Perhaps it does not matter
as H. Peter Anvin noted that user space can not set the bottom two
bits of the %cs register. But it's best not to let the assembly choose
and change things between different versions of gas, but instead just
pick the size.
Four bytes are used to compare the saved code segment against
__KERNEL_CS. Perhaps this might mess up Xen, but we can fix that when
the time comes.
Also I noticed that there was another non-specified cmp that checks
the special stack variable if it is 1 or 0. This too probably doesn't
matter what cmp is used, but this patch uses cmpl just to make it non
ambiguous.
Link: http://lkml.kernel.org/r/CA+55aFxfAn9MWRgS3O5k2tqN5ys1XrhSFVO5_9ZAoZKDVgNfGA@mail.gmail.com
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This makes us recognize when we try to restore FPU state that matches
what we already have in the FPU on this CPU, and avoids the restore
entirely if so.
To do this, we add two new data fields:
- a percpu 'fpu_owner_task' variable that gets written any time we
update the "has_fpu" field, and thus acts as a kind of back-pointer
to the task that owns the CPU. The exception is when we save the FPU
state as part of a context switch - if the save can keep the FPU
state around, we leave the 'fpu_owner_task' variable pointing at the
task whose FP state still remains on the CPU.
- a per-thread 'last_cpu' field, that indicates which CPU that thread
used its FPU on last. We update this on every context switch
(writing an invalid CPU number if the last context switch didn't
leave the FPU in a lazily usable state), so we know that *that*
thread has done nothing else with the FPU since.
These two fields together can be used when next switching back to the
task to see if the CPU still matches: if 'fpu_owner_task' matches the
task we are switching to, we know that no other task (or kernel FPU
usage) touched the FPU on this CPU in the meantime, and if the current
CPU number matches the 'last_cpu' field, we know that this thread did no
other FP work on any other CPU, so the FPU state on the CPU must match
what was saved on last context switch.
In that case, we can avoid the 'f[x]rstor' entirely, and just clear the
CR0.TS bit.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This inlines what is usually just a couple of instructions, but more
importantly it also fixes the theoretical error case (can that FPU
restore really ever fail? Maybe we should remove the checking).
We can't start sending signals from within the scheduler, we're much too
deep in the kernel and are holding the runqueue lock etc. So don't
bother even trying.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes sure we clear the FPU usage counter for newly created tasks,
just so that we start off in a known state (for example, don't try to
preload the FPU state on the first task switch etc).
It also fixes a thinko in when we increment the fpu_counter at task
switch time, introduced by commit 34ddc81a230b ("i387: re-introduce FPU
state preloading at context switch time"). We should increment the
*new* task fpu_counter, not the old task, and only if we decide to use
that state (whether lazily or preloaded).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Pls also look at https://lkml.org/lkml/2012/2/10/228]
Using of PAT to change pages from WB to WC works quite nicely.
Changing it back to WB - not so much. The crux of the matter is
that the code that does this (__page_change_att_set_clr) has only
limited information so when it tries to the change it gets
the "raw" unfiltered information instead of the properly filtered one -
and the "raw" one tell it that PSE bit is on (while infact it
is not). As a result when the PTE is set to be WB from WC, we get
tons of:
:WARNING: at arch/x86/xen/mmu.c:475 xen_make_pte+0x67/0xa0()
:Hardware name: HP xw4400 Workstation
.. snip..
:Pid: 27, comm: kswapd0 Tainted: G W 3.2.2-1.fc16.x86_64 #1
:Call Trace:
: [<ffffffff8106dd1f>] warn_slowpath_common+0x7f/0xc0
: [<ffffffff8106dd7a>] warn_slowpath_null+0x1a/0x20
: [<ffffffff81005a17>] xen_make_pte+0x67/0xa0
: [<ffffffff810051bd>] __raw_callee_save_xen_make_pte+0x11/0x1e
: [<ffffffff81040e15>] ? __change_page_attr_set_clr+0x9d5/0xc00
: [<ffffffff8114c2e8>] ? __purge_vmap_area_lazy+0x158/0x1d0
: [<ffffffff8114cca5>] ? vm_unmap_aliases+0x175/0x190
: [<ffffffff81041168>] change_page_attr_set_clr+0x128/0x4c0
: [<ffffffff81041542>] set_pages_array_wb+0x42/0xa0
: [<ffffffff8100a9b2>] ? check_events+0x12/0x20
: [<ffffffffa0074d4c>] ttm_pages_put+0x1c/0x70 [ttm]
: [<ffffffffa0074e98>] ttm_page_pool_free+0xf8/0x180 [ttm]
: [<ffffffffa0074f78>] ttm_pool_mm_shrink+0x58/0x90 [ttm]
: [<ffffffff8112ba04>] shrink_slab+0x154/0x310
: [<ffffffff8112f17a>] balance_pgdat+0x4fa/0x6c0
: [<ffffffff8112f4b8>] kswapd+0x178/0x3d0
: [<ffffffff815df134>] ? __schedule+0x3d4/0x8c0
: [<ffffffff81090410>] ? remove_wait_queue+0x50/0x50
: [<ffffffff8112f340>] ? balance_pgdat+0x6c0/0x6c0
: [<ffffffff8108fb6c>] kthread+0x8c/0xa0
for every page. The proper fix for this is has been posted
and is https://lkml.org/lkml/2012/2/10/228
"x86/cpa: Use pte_attrs instead of pte_flags on CPA/set_p.._wb/wc operations."
along with a detailed description of the problem and solution.
But since that posting has gone nowhere I am proposing
this band-aid solution so that at least users don't get
the page corruption (the pages that are WC don't get changed to WB
and end up being recycled for filesystem or other things causing
mysterious crashes).
The negative impact of this patch is that users of WC flag
(which are InfiniBand, radeon, nouveau drivers) won't be able
to set that flag - so they are going to see performance degradation.
But stability is more important here.
Fixes RH BZ# 742032, 787403, and 745574
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
commit 7347b4082e55ac4a673f06a0a0ce25c37273c9ec "xen: Allow
unprivileged Xen domains to create iomap pages" added a redundant
line in the early bootup code to filter out the PTE. That
filtering is already done a bit earlier so this extra processing
is not required.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
If the irq happens in user mode, our kernel stack is empty
(apart from the pt_regs themselves, of course), so there's no
need or advantage to switch.
And it really doesn't save any stack space, quite the reverse:
it means that a nested interrupt cannot switch irq stacks. So
instead of saving kernel stack space, it actually causes the
potential for *more* stack usage.
Also simplify the preemption count copy when we do switch
stacks: just copy the whole preemption count, rather than just
the softirq parts of it. There is no advantage to the partial
copy: it is more effort to get a less correct result.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202191139260.10000@i5.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, the NMI handler tests if it is nested by checking the
special variable saved on the stack (set during NMI handling)
and whether the saved stack is the NMI stack as well (to prevent
the race when the variable is set to zero).
But userspace may set their %rsp to any value as long as they do
not derefence it, and it may make it point to the NMI stack,
which will prevent NMIs from triggering while the userspace app
is running. (I tested this, and it is indeed the case)
Add another check to determine nested NMIs by looking at the
saved %cs (code segment register) and making sure that it is the
kernel code segment.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1329687817.1561.27.camel@acer.local.home
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Lower the rating of the UV rtc clocksource to just below that of
the tsc, to improve performance.
Reading the tsc clocksource has lower latency than reading the
rtc, so favor it in situations where it is synchronized and
stable. When the tsc is unsynchronized, the rtc needs to be the
chosen clocksource.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Jack Steiner <steiner@sgi.com>
Link: http://lkml.kernel.org/r/20120217141641.GA28063@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After all the FPU state cleanups and finally finding the problem that
caused all our FPU save/restore problems, this re-introduces the
preloading of FPU state that was removed in commit b3b0870ef3ff ("i387:
do not preload FPU state at task switch time").
However, instead of simply reverting the removal, this reimplements
preloading with several fixes, most notably
- properly abstracted as a true FPU state switch, rather than as
open-coded save and restore with various hacks.
In particular, implementing it as a proper FPU state switch allows us
to optimize the CR0.TS flag accesses: there is no reason to set the
TS bit only to then almost immediately clear it again. CR0 accesses
are quite slow and expensive, don't flip the bit back and forth for
no good reason.
- Make sure that the same model works for both x86-32 and x86-64, so
that there are no gratuitous differences between the two due to the
way they save and restore segment state differently due to
architectural differences that really don't matter to the FPU state.
- Avoid exposing the "preload" state to the context switch routines,
and in particular allow the concept of lazy state restore: if nothing
else has used the FPU in the meantime, and the process is still on
the same CPU, we can avoid restoring state from memory entirely, just
re-expose the state that is still in the FPU unit.
That optimized lazy restore isn't actually implemented here, but the
infrastructure is set up for it. Of course, older CPU's that use
'fnsave' to save the state cannot take advantage of this, since the
state saving also trashes the state.
In other words, there is now an actual _design_ to the FPU state saving,
rather than just random historical baggage. Hopefully it's easier to
follow as a result.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the bit that indicates whether a thread has ownership of the
FPU from the TS_USEDFPU bit in thread_info->status to a word of its own
(called 'has_fpu') in task_struct->thread.has_fpu.
This fixes two independent bugs at the same time:
- changing 'thread_info->status' from the scheduler causes nasty
problems for the other users of that variable, since it is defined to
be thread-synchronous (that's what the "TS_" part of the naming was
supposed to indicate).
So perfectly valid code could (and did) do
ti->status |= TS_RESTORE_SIGMASK;
and the compiler was free to do that as separate load, or and store
instructions. Which can cause problems with preemption, since a task
switch could happen in between, and change the TS_USEDFPU bit. The
change to TS_USEDFPU would be overwritten by the final store.
In practice, this seldom happened, though, because the 'status' field
was seldom used more than once, so gcc would generally tend to
generate code that used a read-modify-write instruction and thus
happened to avoid this problem - RMW instructions are naturally low
fat and preemption-safe.
- On x86-32, the current_thread_info() pointer would, during interrupts
and softirqs, point to a *copy* of the real thread_info, because
x86-32 uses %esp to calculate the thread_info address, and thus the
separate irq (and softirq) stacks would cause these kinds of odd
thread_info copy aliases.
This is normally not a problem, since interrupts aren't supposed to
look at thread information anyway (what thread is running at
interrupt time really isn't very well-defined), but it confused the
heck out of irq_fpu_usable() and the code that tried to squirrel
away the FPU state.
(It also caused untold confusion for us poor kernel developers).
It also turns out that using 'task_struct' is actually much more natural
for most of the call sites that care about the FPU state, since they
tend to work with the task struct for other reasons anyway (ie
scheduling). And the FPU data that we are going to save/restore is
found there too.
Thanks to Arjan Van De Ven <arjan@linux.intel.com> for pointing us to
the %esp issue.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Reported-and-tested-by: Raphael Prevost <raphael@buro.asia>
Acked-and-tested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
pending. In order to not leak FIP state from one process to another, we
need to do a floating point load after the fxsave of the old process,
and before the fxrstor of the new FPU state. That resets the state to
the (uninteresting) kernel load, rather than some potentially sensitive
user information.
We used to do this directly after the FPU state save, but that is
actually very inconvenient, since it
(a) corrupts what is potentially perfectly good FPU state that we might
want to lazy avoid restoring later and
(b) on x86-64 it resulted in a very annoying ordering constraint, where
"__unlazy_fpu()" in the task switch needs to be delayed until after
the DS segment has been reloaded just to get the new DS value.
Coupling it to the fxrstor instead of the fxsave automatically avoids
both of these issues, and also ensures that we only do it when actually
necessary (the FP state after a save may never actually get used). It's
simply a much more natural place for the leaked state cleanup.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yes, taking the trap to re-load the FPU/MMX state is expensive, but so
is spending several days looking for a bug in the state save/restore
code. And the preload code has some rather subtle interactions with
both paravirtualization support and segment state restore, so it's not
nearly as simple as it should be.
Also, now that we no longer necessarily depend on a single bit (ie
TS_USEDFPU) for keeping track of the state of the FPU, we migth be able
to do better. If we are really switching between two processes that
keep touching the FP state, save/restore is inevitable, but in the case
of having one process that does most of the FPU usage, we may actually
be able to do much better than the preloading.
In particular, we may be able to keep track of which CPU the process ran
on last, and also per CPU keep track of which process' FP state that CPU
has. For modern CPU's that don't destroy the FPU contents on save time,
that would allow us to do a lazy restore by just re-enabling the
existing FPU state - with no restore cost at all!
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This creates three helper functions that do the TS_USEDFPU accesses, and
makes everybody that used to do it by hand use those helpers instead.
In addition, there's a couple of helper functions for the "change both
CR0.TS and TS_USEDFPU at the same time" case, and the places that do
that together have been changed to use those. That means that we have
fewer random places that open-code this situation.
The intent is partly to clarify the code without actually changing any
semantics yet (since we clearly still have some hard to reproduce bug in
this area), but also to make it much easier to use another approach
entirely to caching the CR0.TS bit for software accesses.
Right now we use a bit in the thread-info 'status' variable (this patch
does not change that), but we might want to make it a full field of its
own or even make it a per-cpu variable.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Touching TS_USEDFPU without touching CR0.TS is confusing, so don't do
it. By moving it into the callers, we always do the TS_USEDFPU next to
the CR0.TS accesses in the source code, and it's much easier to see how
the two go hand in hand.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5b1cbac37798 ("i387: make irq_fpu_usable() tests more robust")
added a sanity check to the #NM handler to verify that we never cause
the "Device Not Available" exception in kernel mode.
However, that check actually pinpointed a (fundamental) race where we do
cause that exception as part of the signal stack FPU state save/restore
code.
Because we use the floating point instructions themselves to save and
restore state directly from user mode, we cannot do that atomically with
testing the TS_USEDFPU bit: the user mode access itself may cause a page
fault, which causes a task switch, which saves and restores the FP/MMX
state from the kernel buffers.
This kind of "recursive" FP state save is fine per se, but it means that
when the signal stack save/restore gets restarted, it will now take the
'#NM' exception we originally tried to avoid. With preemption this can
happen even without the page fault - but because of the user access, we
cannot just disable preemption around the save/restore instruction.
There are various ways to solve this, including using the
"enable/disable_page_fault()" helpers to not allow page faults at all
during the sequence, and fall back to copying things by hand without the
use of the native FP state save/restore instructions.
However, the simplest thing to do is to just allow the #NM from kernel
space, but fix the race in setting and clearing CR0.TS that this all
exposed: the TS bit changes and the TS_USEDFPU bit absolutely have to be
atomic wrt scheduling, so while the actual state save/restore can be
interrupted and restarted, the act of actually clearing/setting CR0.TS
and the TS_USEDFPU bit together must not.
Instead of just adding random "preempt_disable/enable()" calls to what
is already excessively ugly code, this introduces some helper functions
that mostly mirror the "kernel_fpu_begin/end()" functionality, just for
the user state instead.
Those helper functions should probably eventually replace the other
ad-hoc CR0.TS and TS_USEDFPU tests too, but I'll need to think about it
some more: the task switching functionality in particular needs to
expose the difference between the 'prev' and 'next' threads, while the
new helper functions intentionally were written to only work with
'current'.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The check for save_init_fpu() (introduced in commit 5b1cbac37798: "i387:
make irq_fpu_usable() tests more robust") was the wrong way around, but
I hadn't noticed, because my "tests" were bogus: the FPU exceptions are
disabled by default, so even doing a divide by zero never actually
triggers this code at all unless you do extra work to enable them.
So if anybody did enable them, they'd get one spurious warning.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
by the xen-pci[front|back] to conform to the one used in majority of
PCI drivers; Two fixes to make the code more resilient to invalid
configurations.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAABAgAGBQJPOeReAAoJEFjIrFwIi8fJn9QIANP48kzrGg0uO4bjSf2h/z7G
pp3ISdtVLk7pwMov2POBqskoXSq8E0yQAfNN8se183wqNXo3Dm4rU1DIG7HQFBk9
sdcyfHI8x7pat9JClRhGxpQ23Ig9f1iWkShweCcZCO782vfxZyNd65i6t87X7uLq
7SPtG1XH2RixTX7tHtKKBqdzZ0OMXOEkJ33dgCmyrn+wzohbKrFj5mg+NdOgmzEo
VgsHPVtuq7orDROe+F9d91eAg0TILQ13th8xfWZ59lQATXu/zAlaueYt87tpy1pb
oVQvumsn8Xev+7hct9My9Tw45D4m8YOSFLG2HcekkW2WtNmGhTTbIyMh9PsLugk=
=NDYK
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-fixes-3.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
Two fixes for VCPU offlining; One to fix the string format exposed
by the xen-pci[front|back] to conform to the one used in majority of
PCI drivers; Two fixes to make the code more resilient to invalid
configurations.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
* tag 'stable/for-linus-fixes-3.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xenbus_dev: add missing error check to watch handling
xen/pci[front|back]: Use %d instead of %1x for displaying PCI devfn.
xen pvhvm: do not remap pirqs onto evtchns if !xen_have_vector_callback
xen/smp: Fix CPU online/offline bug triggering a BUG: scheduling while atomic.
xen/bootup: During bootup suppress XENBUS: Unable to read cpu state
Host bridges that lead to things like the Uncore need not have any
I/O port or MMIO apertures. For example, in this case:
ACPI: PCI Root Bridge [UNC1] (domain 0000 [bus ff])
PCI: root bus ff: using default resources
PCI host bridge to bus 0000:ff
pci_bus 0000:ff: root bus resource [io 0x0000-0xffff]
pci_bus 0000:ff: root bus resource [mem 0x00000000-0x3fffffffffff]
we should not pretend those default resources are available on bus ff.
CC: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This patch converts the underlying maintenance aspects of FW-assigned
BIOS BAR values from a statically allocated array within struct pci_dev
to a list of temporary, stand alone, entries.
Signed-off-by: Myron Stowe <myron.stowe@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Commit 58c84eda075 introduced functionality to try and reinstate the
original BIOS BAR addresses of a PCI device when normal resource
assignment attempts fail. To keep track of the BIOS BAR addresses,
struct pci_dev was augmented with an array to hold the BAR addresses
of the PCI device: 'resource_size_t fw_addr[DEVICE_COUNT_RESOURCE]'.
The reinstatement of BAR addresses is an uncommon event leaving the
'fw_addr' array unused under normal circumstances. This functionality
is also currently architecture specific with an implementation limited
to x86. As the use of struct pci_dev is so prevalent, having the
'fw_addr' array residing within such seems somewhat wasteful.
This patch introduces a stand alone data structure and interfacing
routines for maintaining a list of FW-assigned BIOS BAR value entries.
Signed-off-by: Myron Stowe <myron.stowe@redhat.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
We cannot reach the line after 'return err'. Remove it.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We can never reach the line just after the 'return 0'
statement. Remove it.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We currently include commas on both sides of the feature ID in a
modalias, but this prevents the lowest numbered feature of a CPU from
being matched. Since all feature IDs have the same length, we do not
need to worry about substring matches, so omit commas from the
modalias entirely.
Avoid generating multiple adjacent wildcards when there is no
feature ID to match.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Thomas Renninger <trenn@suse.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
snprintf() does not return a negative value when truncating.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Thomas Renninger <trenn@suse.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some code - especially the crypto layer - wants to use the x86
FP/MMX/AVX register set in what may be interrupt (typically softirq)
context.
That *can* be ok, but the tests for when it was ok were somewhat
suspect. We cannot touch the thread-specific status bits either, so
we'd better check that we're not going to try to save FP state or
anything like that.
Now, it may be that the TS bit is always cleared *before* we set the
USEDFPU bit (and only set when we had already cleared the USEDFP
before), so the TS bit test may actually have been sufficient, but it
certainly was not obviously so.
So this explicitly verifies that we will not touch the TS_USEDFPU bit,
and adds a few related sanity-checks. Because it seems that somehow
AES-NI is corrupting user FP state. The cause is not clear, and this
patch doesn't fix it, but while debugging it I really wanted the code to
be more obviously correct and robust.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was marked asmlinkage for some really old and stale legacy reasons.
Fix that and the equally stale comment.
Noticed when debugging the irq_fpu_usable() bugs.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The power and cpuidle tracepoints are called within a rcu_idle_exit()
section, and must be denoted with the _rcuidle() version of the tracepoint.
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Found out that show_msr=<cpus> is broken, when I asked a
user to use it to capture debug info about broken MTRR's
whose MTRR settings are probably different between CPUs.
Only the first CPUs MSRs are printed, but that is not
enough to track down the suspected bug.
For years we called print_cpu_msr from print_cpu_info(),
but this commit:
| commit 2eaad1fddd7450a48ad464229775f97fbfe8af36
| Author: Mike Travis <travis@sgi.com>
| Date: Thu Dec 10 17:19:36 2009 -0800
|
| x86: Limit the number of processor bootup messages
removed the print_cpu_info() call from all APs.
Put it back - it will only print MSRs when the user
specifically requests them via show_msr=<cpus>.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/1329069237-11483-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix to decode grouped AVX with VEX pp bits which should be
handled as same as last-prefixes. This fixes below warnings
in posttest with CONFIG_CRYPTO_SHA1_SSSE3=y.
Warning: arch/x86/tools/test_get_len found difference at <sha1_transform_avx>:ffffffff810d5fc0
Warning: ffffffff810d6069: c5 f9 73 de 04 vpsrldq $0x4,%xmm6,%xmm0
Warning: objdump says 5 bytes, but insn_get_length() says 4
...
With this change, test_get_len can decode it correctly.
$ arch/x86/tools/test_get_len -v -y
ffffffff810d6069: c5 f9 73 de 04 vpsrldq $0x4,%xmm6,%xmm0
Succeed: decoded and checked 1 instructions
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: yrl.pp-manager.tt@hitachi.com
Link: http://lkml.kernel.org/r/20120210053340.30429.73410.stgit@localhost.localdomain
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix double start/stop in x86_pmu_start()
perf evsel: Fix an issue where perf report fails to show the proper percentage
perf tools: Fix prefix matching for kernel maps
perf tools: Fix perf stack to non executable on x86_64
perf: Remove deprecated WARN_ON_ONCE()
For L1 instruction cache and L2 cache the shared CPU information
is wrong. On current AMD family 15h CPUs those caches are shared
between both cores of a compute unit.
This fixes https://bugzilla.kernel.org/show_bug.cgi?id=42607
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Petkov Borislav <Borislav.Petkov@amd.com>
Cc: Dave Jones <davej@redhat.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/20120208195229.GA17523@alberich.amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The following patch fixes a bug introduced by the following
commit:
e050e3f0a71b ("perf: Fix broken interrupt rate throttling")
The patch caused the following warning to pop up depending on
the sampling frequency adjustments:
------------[ cut here ]------------
WARNING: at arch/x86/kernel/cpu/perf_event.c:995 x86_pmu_start+0x79/0xd4()
It was caused by the following call sequence:
perf_adjust_freq_unthr_context.part() {
stop()
if (delta > 0) {
perf_adjust_period() {
if (period > 8*...) {
stop()
...
start()
}
}
}
start()
}
Which caused a double start and a double stop, thus triggering
the assert in x86_pmu_start().
The patch fixes the problem by avoiding the double calls. We
pass a new argument to perf_adjust_period() to indicate whether
or not the event is already stopped. We can't just remove the
start/stop from that function because it's called from
__perf_event_overflow where the event needs to be reloaded via a
stop/start back-toback call.
The patch reintroduces the assertion in x86_pmu_start() which
was removed by commit:
84f2b9b ("perf: Remove deprecated WARN_ON_ONCE()")
In this second version, we've added calls to disable/enable PMU
during unthrottling or frequency adjustment based on bug report
of spurious NMI interrupts from Eric Dumazet.
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: markus@trippelsdorf.de
Cc: paulus@samba.org
Link: http://lkml.kernel.org/r/20120207133956.GA4932@quad
[ Minor edits to the changelog and to the code ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stephane Eranian reported that doing a scheduler latency
measurements with perf on AMD doesn't work out as expected due
to the fact that the sched_clock() granularity is too coarse,
i.e. done in jiffies due to the sched_clock_stable not set,
which, if set, would mean that we get to use the TSC as sample
source which would give us much higher precision.
However, there's no reason not to set sched_clock_stable on AMD
because all families from F10h and upwards do have an invariant
TSC and have the CPUID flag to prove (CPUID_8000_0007_EDX[8]).
Make it so, #1.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@amd64.org>
Cc: Venki Pallipadi <venki@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/20120206132546.GA30854@quad
[ Should any non-standard system break the TSC, we should
mark them so explicitly, in their platform init handler, or
in a DMI quirk. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
AMD processors will never support /dev/cpu/microcode updating so
just silently fail instead of printing out a warning for every
cpu.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1328552935-965-1-git-send-email-prarit@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The definition of it being questionable already (unnecessarily
including a cast), and it being used in a single place that can
be written shorter without it, remove this #define.
Along the same lines, simplify __ticket_spin_is_locked()'s main
expression, which was the more convoluted way because of needs
that went away with the recent type changes by Jeremy.
This is pure cleanup, no functional change intended.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4F2C06020200007800071066@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fixing a regression with the PMU MSRs when PMU virtualization is
disabled, a guest-internal DoS with the SYSCALL instruction, and a dirty
memory logging race that may cause live migration to fail.
* 'kvm-updates/3.3' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: do not #GP on perf MSR writes when vPMU is disabled
KVM: x86: fix missing checks in syscall emulation
KVM: x86: extend "struct x86_emulate_ops" with "get_cpuid"
KVM: Fix __set_bit() race in mark_page_dirty() during dirty logging