10 Commits

Author SHA1 Message Date
Andrea Righi
a419beac4a module/decompress: use vmalloc() for zstd decompression workspace
Using kmalloc() to allocate the decompression workspace for zstd may
trigger the following warning when large modules are loaded (i.e., xfs):

[    2.961884] WARNING: CPU: 1 PID: 254 at mm/page_alloc.c:4453 __alloc_pages+0x2c3/0x350
...
[    2.989033] Call Trace:
[    2.989841]  <TASK>
[    2.990614]  ? show_regs+0x6d/0x80
[    2.991573]  ? __warn+0x89/0x160
[    2.992485]  ? __alloc_pages+0x2c3/0x350
[    2.993520]  ? report_bug+0x17e/0x1b0
[    2.994506]  ? handle_bug+0x51/0xa0
[    2.995474]  ? exc_invalid_op+0x18/0x80
[    2.996469]  ? asm_exc_invalid_op+0x1b/0x20
[    2.997530]  ? module_zstd_decompress+0xdc/0x2a0
[    2.998665]  ? __alloc_pages+0x2c3/0x350
[    2.999695]  ? module_zstd_decompress+0xdc/0x2a0
[    3.000821]  __kmalloc_large_node+0x7a/0x150
[    3.001920]  __kmalloc+0xdb/0x170
[    3.002824]  module_zstd_decompress+0xdc/0x2a0
[    3.003857]  module_decompress+0x37/0xc0
[    3.004688]  init_module_from_file+0xd0/0x100
[    3.005668]  idempotent_init_module+0x11c/0x2b0
[    3.006632]  __x64_sys_finit_module+0x64/0xd0
[    3.007568]  do_syscall_64+0x59/0x90
[    3.008373]  ? ksys_read+0x73/0x100
[    3.009395]  ? exit_to_user_mode_prepare+0x30/0xb0
[    3.010531]  ? syscall_exit_to_user_mode+0x37/0x60
[    3.011662]  ? do_syscall_64+0x68/0x90
[    3.012511]  ? do_syscall_64+0x68/0x90
[    3.013364]  entry_SYSCALL_64_after_hwframe+0x6e/0xd8

However, continuous physical memory does not seem to be required in
module_zstd_decompress(), so use vmalloc() instead, to prevent the
warning and avoid potential failures at loading compressed modules.

Fixes: 169a58ad824d ("module/decompress: Support zstd in-kernel decompression")
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-08-29 09:39:08 -07:00
Lucas De Marchi
fadb74f9f2 module/decompress: Fix error checking on zstd decompression
While implementing support for in-kernel decompression in kmod,
finit_module() was returning a very suspicious value:

	finit_module(3, "", MODULE_INIT_COMPRESSED_FILE) = 18446744072717407296

It turns out the check for module_get_next_page() failing is wrong,
and hence the decompression was not really taking place. Invert
the condition to fix it.

Fixes: 169a58ad824d ("module/decompress: Support zstd in-kernel decompression")
Cc: stable@kernel.org
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-06-01 14:36:46 -07:00
Luis Chamberlain
df3e764d8e module: add debug stats to help identify memory pressure
Loading modules with finit_module() can end up using vmalloc(), vmap()
and vmalloc() again, for a total of up to 3 separate allocations in the
worst case for a single module. We always kernel_read*() the module,
that's a vmalloc(). Then vmap() is used for the module decompression,
and if so the last read buffer is freed as we use the now decompressed
module buffer to stuff data into our copy module. The last allocation is
specific to each architectures but pretty much that's generally a series
of vmalloc() calls or a variation of vmalloc to handle ELF sections with
special permissions.

Evaluation with new stress-ng module support [1] with just 100 ops
is proving that you can end up using GiBs of data easily even with all
care we have in the kernel and userspace today in trying to not load modules
which are already loaded. 100 ops seems to resemble the sort of pressure a
system with about 400 CPUs can create on module loading. Although issues
relating to duplicate module requests due to each CPU inucurring a new
module reuest is silly and some of these are being fixed, we currently lack
proper tooling to help diagnose easily what happened, when it happened
and who likely is to blame -- userspace or kernel module autoloading.

Provide an initial set of stats which use debugfs to let us easily scrape
post-boot information about failed loads. This sort of information can
be used on production worklaods to try to optimize *avoiding* redundant
memory pressure using finit_module().

There's a few examples that can be provided:

A 255 vCPU system without the next patch in this series applied:

Startup finished in 19.143s (kernel) + 7.078s (userspace) = 26.221s
graphical.target reached after 6.988s in userspace

And 13.58 GiB of virtual memory space lost due to failed module loading:

root@big ~ # cat /sys/kernel/debug/modules/stats
         Mods ever loaded       67
     Mods failed on kread       0
Mods failed on decompress       0
  Mods failed on becoming       0
      Mods failed on load       1411
        Total module size       11464704
      Total mod text size       4194304
       Failed kread bytes       0
  Failed decompress bytes       0
    Failed becoming bytes       0
        Failed kmod bytes       14588526272
 Virtual mem wasted bytes       14588526272
         Average mod size       171115
    Average mod text size       62602
  Average fail load bytes       10339140
Duplicate failed modules:
              module-name        How-many-times                    Reason
                kvm_intel                   249                      Load
                      kvm                   249                      Load
                irqbypass                     8                      Load
         crct10dif_pclmul                   128                      Load
      ghash_clmulni_intel                    27                      Load
             sha512_ssse3                    50                      Load
           sha512_generic                   200                      Load
              aesni_intel                   249                      Load
              crypto_simd                    41                      Load
                   cryptd                   131                      Load
                    evdev                     2                      Load
                serio_raw                     1                      Load
               virtio_pci                     3                      Load
                     nvme                     3                      Load
                nvme_core                     3                      Load
    virtio_pci_legacy_dev                     3                      Load
    virtio_pci_modern_dev                     3                      Load
                   t10_pi                     3                      Load
                   virtio                     3                      Load
             crc32_pclmul                     6                      Load
           crc64_rocksoft                     3                      Load
             crc32c_intel                    40                      Load
              virtio_ring                     3                      Load
                    crc64                     3                      Load

The following screen shot, of a simple 8vcpu 8 GiB KVM guest with the
next patch in this series applied, shows 226.53 MiB are wasted in virtual
memory allocations which due to duplicate module requests during boot.
It also shows an average module memory size of 167.10 KiB and an an
average module .text + .init.text size of 61.13 KiB. The end shows all
modules which were detected as duplicate requests and whether or not
they failed early after just the first kernel_read*() call or late after
we've already allocated the private space for the module in
layout_and_allocate(). A system with module decompression would reveal
more wasted virtual memory space.

We should put effort now into identifying the source of these duplicate
module requests and trimming these down as much possible. Larger systems
will obviously show much more wasted virtual memory allocations.

root@kmod ~ # cat /sys/kernel/debug/modules/stats
         Mods ever loaded       67
     Mods failed on kread       0
Mods failed on decompress       0
  Mods failed on becoming       83
      Mods failed on load       16
        Total module size       11464704
      Total mod text size       4194304
       Failed kread bytes       0
  Failed decompress bytes       0
    Failed becoming bytes       228959096
        Failed kmod bytes       8578080
 Virtual mem wasted bytes       237537176
         Average mod size       171115
    Average mod text size       62602
  Avg fail becoming bytes       2758544
  Average fail load bytes       536130
Duplicate failed modules:
              module-name        How-many-times                    Reason
                kvm_intel                     7                  Becoming
                      kvm                     7                  Becoming
                irqbypass                     6           Becoming & Load
         crct10dif_pclmul                     7           Becoming & Load
      ghash_clmulni_intel                     7           Becoming & Load
             sha512_ssse3                     6           Becoming & Load
           sha512_generic                     7           Becoming & Load
              aesni_intel                     7                  Becoming
              crypto_simd                     7           Becoming & Load
                   cryptd                     3           Becoming & Load
                    evdev                     1                  Becoming
                serio_raw                     1                  Becoming
                     nvme                     3                  Becoming
                nvme_core                     3                  Becoming
                   t10_pi                     3                  Becoming
               virtio_pci                     3                  Becoming
             crc32_pclmul                     6           Becoming & Load
           crc64_rocksoft                     3                  Becoming
             crc32c_intel                     3                  Becoming
    virtio_pci_modern_dev                     2                  Becoming
    virtio_pci_legacy_dev                     1                  Becoming
                    crc64                     2                  Becoming
                   virtio                     2                  Becoming
              virtio_ring                     2                  Becoming

[0] https://github.com/ColinIanKing/stress-ng.git
[1] echo 0 > /proc/sys/vm/oom_dump_tasks
    ./stress-ng --module 100 --module-name xfs

Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-04-18 11:15:24 -07:00
Fabio M. De Francesco
3c17655ab1 module/decompress: Never use kunmap() for local un-mappings
Use kunmap_local() to unmap pages locally mapped with kmap_local_page().

kunmap_local() must be called on the kernel virtual address returned by
kmap_local_page(), differently from how we use kunmap() which instead
expects the mapped page as its argument.

In module_zstd_decompress() we currently map with kmap_local_page() and
unmap with kunmap(). This breaks the code and so it should be fixed.

Cc: Piotr Gorski <piotrgorski@cachyos.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Fixes: 169a58ad824d ("module/decompress: Support zstd in-kernel decompression")
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Piotr Gorski <piotrgorski@cachyos.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2023-03-22 16:12:35 -07:00
Stephen Boyd
169a58ad82 module/decompress: Support zstd in-kernel decompression
Add support for zstd compressed modules to the in-kernel decompression
code. This allows zstd compressed modules to be decompressed by the
kernel, similar to the existing support for gzip and xz compressed
modules.

Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Piotr Gorski <lucjan.lucjanov@gmail.com>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Reviewed-by: Piotr Gorski <lucjan.lucjanov@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-12-07 12:05:05 -08:00
Miaoqian Lin
45af1d7aae module: Fix NULL vs IS_ERR checking for module_get_next_page
The module_get_next_page() function return error pointers on error
instead of NULL.
Use IS_ERR() to check the return value to fix this.

Fixes: b1ae6dc41eaa ("module: add in-kernel support for decompressing")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-11-11 10:19:52 -08:00
David Disseldorp
77d6354bd4 module/decompress: generate sysfs string at compile time
compression_show() before (with noinline):
   0xffffffff810b5ff0 <+0>:     mov    %rdx,%rdi
   0xffffffff810b5ff3 <+3>:     mov    $0xffffffff81b55629,%rsi
   0xffffffff810b5ffa <+10>:    mov    $0xffffffff81b0cde2,%rdx
   0xffffffff810b6001 <+17>:    call   0xffffffff811b8fd0 <sysfs_emit>
   0xffffffff810b6006 <+22>:    cltq
   0xffffffff810b6008 <+24>:    ret

After:
   0xffffffff810b5ff0 <+0>:     mov    $0xffffffff81b0cde2,%rsi
   0xffffffff810b5ff7 <+7>:     mov    %rdx,%rdi
   0xffffffff810b5ffa <+10>:    call   0xffffffff811b8fd0 <sysfs_emit>
   0xffffffff810b5fff <+15>:    cltq
   0xffffffff810b6001 <+17>:    ret

Signed-off-by: David Disseldorp <ddiss@suse.de>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-09-08 17:00:43 -07:00
Fabio M. De Francesco
554694ba12 module: Replace kmap() with kmap_local_page()
kmap() is being deprecated in favor of kmap_local_page().

Two main problems with kmap(): (1) It comes with an overhead as mapping
space is restricted and protected by a global lock for synchronization and
(2) it also requires global TLB invalidation when the kmap’s pool wraps
and it might block when the mapping space is fully utilized until a slot
becomes available.

With kmap_local_page() the mappings are per thread, CPU local, can take
page faults, and can be called from any context (including interrupts).
Tasks can be preempted and, when scheduled to run again, the kernel
virtual addresses are restored and still valid.

kmap_local_page() is faster than kmap() in kernels with HIGHMEM enabled.

Since the use of kmap_local_page() in module_gzip_decompress() and in
module_xz_decompress() is safe (i.e., it does not break the strict rules
of use), it should be preferred over kmap().

Therefore, replace kmap() with kmap_local_page().

Tested on a QEMU/KVM x86_32 VM with 4GB RAM, booting kernels with
HIGHMEM64GB enabled. Modules compressed with XZ or GZIP decompress
properly.

Cc: Matthew Wilcox <willy@infradead.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-07-20 14:27:46 -07:00
Aaron Tomlin
5aff4dfdb4 module: Make internal.h and decompress.c more compliant
This patch will address the following warning and style violations
generated by ./scripts/checkpatch.pl in strict mode:

  WARNING: Use #include <linux/module.h> instead of <asm/module.h>
  #10: FILE: kernel/module/internal.h:10:
  +#include <asm/module.h>

  CHECK: spaces preferred around that '-' (ctx:VxV)
  #18: FILE: kernel/module/internal.h:18:
  +#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))

  CHECK: Please use a blank line after function/struct/union/enum declarations
  #69: FILE: kernel/module/internal.h:69:
  +}
  +static inline void module_decompress_cleanup(struct load_info *info)
						   ^
  CHECK: extern prototypes should be avoided in .h files
  #84: FILE: kernel/module/internal.h:84:
  +extern int mod_verify_sig(const void *mod, struct load_info *info);

  WARNING: Missing a blank line after declarations
  #116: FILE: kernel/module/decompress.c:116:
  +               struct page *page = module_get_next_page(info);
  +               if (!page) {

  WARNING: Missing a blank line after declarations
  #174: FILE: kernel/module/decompress.c:174:
  +               struct page *page = module_get_next_page(info);
  +               if (!page) {

  CHECK: Please use a blank line after function/struct/union/enum declarations
  #258: FILE: kernel/module/decompress.c:258:
  +}
  +static struct kobj_attribute module_compression_attr = __ATTR_RO(compression);

Note: Fortunately, the multiple-include optimisation found in
include/linux/module.h will prevent duplication/or inclusion more than
once.

Fixes: f314dfea16a0 ("modsign: log module name in the event of an error")
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-05 08:42:35 -07:00
Aaron Tomlin
cfc1d27789 module: Move all into module/
No functional changes.

This patch moves all module related code into a separate directory,
modifies each file name and creates a new Makefile. Note: this effort
is in preparation to refactor core module code.

Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-04 12:57:54 -07:00