492 Commits

Author SHA1 Message Date
Linus Torvalds
b2a88c212e New code for 5.20:
- Improve scalability of the XFS log by removing spinlocks and global
   synchronization points.
 - Add security labels to whiteout inodes to match the other filesystems.
 - Clean up per-ag pointer passing to simplify call sites.
 - Reduce verifier overhead by precalculating more AG geometry.
 - Implement fast-path lockless lookups in the buffer cache to reduce
   spinlock hammering.
 - Make attr forks a permanent part of the inode structure to fix a UAF
   bug and because most files these days tend to have security labels and
   soon will have parent pointers too.
 - Clean up XFS_IFORK_Q usage and give it a better name.
 - Fix more UAF bugs in the xattr code.
 - SOB my tags.
 - Fix some typos in the timestamp range documentation.
 - Fix a few more memory leaks.
 - Code cleanups and typo fixes.
 - Fix an unlocked inode fork pointer access in getbmap.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLmrLkACgkQ+H93GTRK
 tOviexAAo7mJ03hCCWnnkcEYbVQNMH4WRuCpR45D8lz4PU/s6yL7/uxuyodc0dMm
 /ZUWjCas1GMZmbOkCkL9eeatrZmgT5SeDbYc4EtHicHYi4sTgCB7ymx0soCUHXYi
 7c0kdz+eQ/oY4QvY6JZwbFkRENDL2pkxM9itGHZT0OXHmAnGcIYvzP5Vuc2GtelL
 0VWCcpusG0uck3+P1qa8e+TtkR2HU5PVGgAU7OhmAIs07aE3AheVEsPydgGKSIS9
 PICnMg1oIgly4VQi28cp/5hU+Au6yBMGogxW8ultPFlM5RWKFt8MKUUhclzS+hZL
 9dGSZ3JjpZrdmuUa9mdPnr1MsgrTF6CWHAeUsblSXUzjRT8S3Yz8I3gUMJAA/H17
 ZGBu55+TlZtE4ZsK3q/4pqZXfylaaumbEqEi5lJX+7/IYh/WLAgxJihWSpSK2B4a
 VBqi12EvMlrjZ4vrD2hqVEJAlguoWiqxgv2gXEZ5wy9dfvzGgysXwAigj0YQeJNQ
 J++AYwdYs0pCK0O4eTGZsvp+6o9wj92irtrxwiucuKreDZTOlpCBOAXVTxqom1nX
 1NS1YmKvC/RM1na6tiOIundwypgSXUe32qdan34xEWBVPY0mnSpX0N9Lcyoc0xbg
 kajAKK9TIy968su/eoBuTQf2AIu1jbWMBNZSg9oELZjfrm0CkWM=
 =fNjj
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.20-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "The biggest changes for this release are the log scalability
  improvements, lockless lookups for the buffer cache, and making the
  attr fork a permanent part of the incore inode in preparation for
  directory parent pointers.

  There's also a bunch of bug fixes that have accumulated since -rc5. I
  might send you a second pull request with some more bug fixes that I'm
  still working on.

  Once the merge window ends, I will hand maintainership back to Dave
  Chinner until the 6.1-rc1 release so that I can conduct the design
  review for the online fsck feature, and try to get it merged.

  Summary:

   - Improve scalability of the XFS log by removing spinlocks and global
     synchronization points.

   - Add security labels to whiteout inodes to match the other
     filesystems.

   - Clean up per-ag pointer passing to simplify call sites.

   - Reduce verifier overhead by precalculating more AG geometry.

   - Implement fast-path lockless lookups in the buffer cache to reduce
     spinlock hammering.

   - Make attr forks a permanent part of the inode structure to fix a
     UAF bug and because most files these days tend to have security
     labels and soon will have parent pointers too.

   - Clean up XFS_IFORK_Q usage and give it a better name.

   - Fix more UAF bugs in the xattr code.

   - SOB my tags.

   - Fix some typos in the timestamp range documentation.

   - Fix a few more memory leaks.

   - Code cleanups and typo fixes.

   - Fix an unlocked inode fork pointer access in getbmap"

* tag 'xfs-5.20-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (61 commits)
  xfs: delete extra space and tab in blank line
  xfs: fix NULL pointer dereference in xfs_getbmap()
  xfs: Fix typo 'the the' in comment
  xfs: Fix comment typo
  xfs: don't leak memory when attr fork loading fails
  xfs: fix for variable set but not used warning
  xfs: xfs_buf cache destroy isn't RCU safe
  xfs: delete unnecessary NULL checks
  xfs: fix comment for start time value of inode with bigtime enabled
  xfs: fix use-after-free in xattr node block inactivation
  xfs: lockless buffer lookup
  xfs: remove a superflous hash lookup when inserting new buffers
  xfs: reduce the number of atomic when locking a buffer after lookup
  xfs: merge xfs_buf_find() and xfs_buf_get_map()
  xfs: break up xfs_buf_find() into individual pieces
  xfs: add in-memory iunlink log item
  xfs: add log item precommit operation
  xfs: combine iunlink inode update functions
  xfs: clean up xfs_iunlink_update_inode()
  xfs: double link the unlinked inode list
  ...
2022-08-04 20:19:16 -07:00
Bart Van Assche
d03025aef8 fs/xfs: Use the enum req_op and blk_opf_t types
Improve static type checking by using the enum req_op type for variables
that represent a request operation and the new blk_opf_t type for the
combination of a request operation with request flags.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-63-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-07-14 12:14:33 -06:00
Dave Chinner
2fd26cc07e xfs: double link the unlinked inode list
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.

The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.

This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:46:43 +10:00
Dave Chinner
04755d2e58 xfs: refactor xlog_recover_process_iunlinks()
For upcoming changes to the way inode unlinked list processing is
done, the structure of recovery needs to change slightly. We also
really need to untangle the messy error handling in list recovery
so that actions like emptying the bucket on inode lookup failure
are associated with the bucket list walk failing, not failing
to look up the inode.

Refactor the recovery code now to keep the re-organisation seperate
to the algorithm changes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-14 11:42:39 +10:00
Dave Chinner
4fcc94d653 xfs: track the iunlink list pointer in the xfs_inode
Having direct access to the i_next_unlinked pointer in unlinked
inodes greatly simplifies the processing of inodes on the unlinked
list. We no longer need to look up the inode buffer just to find
next inode in the list if the xfs_inode is in memory. These
improvements will be realised over upcoming patches as other
dependencies on the inode buffer for unlinked list processing are
removed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:38:54 +10:00
Zhang Yi
04a98a036c xfs: flush inode gc workqueue before clearing agi bucket
In the procedure of recover AGI unlinked lists, if something bad
happenes on one of the unlinked inode in the bucket list, we would call
xlog_recover_clear_agi_bucket() to clear the whole unlinked bucket list,
not the unlinked inodes after the bad one. If we have already added some
inodes to the gc workqueue before the bad inode in the list, we could
get below error when freeing those inodes, and finaly fail to complete
the log recover procedure.

 XFS (ram0): Internal error xfs_iunlink_remove at line 2456 of file
 fs/xfs/xfs_inode.c.  Caller xfs_ifree+0xb0/0x360 [xfs]

The problem is xlog_recover_clear_agi_bucket() clear the bucket list, so
the gc worker fail to check the agino in xfs_verify_agino(). Fix this by
flush workqueue before clearing the bucket.

Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-07-14 11:36:36 +10:00
Dave Chinner
0800169e3e xfs: Pre-calculate per-AG agbno geometry
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.

In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.

Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).

Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.

Future commits will make similar changes for other per-ag geometry
validation functions.

Further:

$ size --totals fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1483006	 329588	    572	1813166	 1baaae	(TOTALS)
after	1482185	 329588	    572	1812345	 1ba779	(TOTALS)

This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:13:02 +10:00
Dave Chinner
61021deb1f xfs: pass perag to xfs_read_agi
We have the perag in most palces we call xfs_read_agi, so pass the
perag instead of a mount/agno pair.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07 19:07:47 +10:00
Darrick J. Wong
910bbdf2f4 xfs: convert buf_cancel_table allocation to kmalloc_array
While we're messing around with how recovery allocates and frees the
buffer cancellation table, convert the allocation to use kmalloc_array
instead of the old kmem_alloc APIs, and make it handle a null return,
even though that's not likely.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:27:19 +10:00
Darrick J. Wong
2723234923 xfs: refactor buffer cancellation table allocation
Move the code that allocates and frees the buffer cancellation tables
used by log recovery into the file that actually uses the tables.  This
is a precursor to some cleanups and a memory leak fix.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:26:17 +10:00
Jiapeng Chong
e62c720817 xfs: Remove dead code
Remove tht entire xlog_recover_check_summary() function, this entire
function is dead code and has been for 12 years.

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 16:46:57 +10:00
Allison Henderson
fd92000878 xfs: Set up infrastructure for log attribute replay
Currently attributes are modified directly across one or more
transactions. But they are not logged or replayed in the event of an
error. The goal of log attr replay is to enable logging and replaying
of attribute operations using the existing delayed operations
infrastructure.  This will later enable the attributes to become part of
larger multi part operations that also must first be recorded to the
log.  This is mostly of interest in the scheme of parent pointers which
would need to maintain an attribute containing parent inode information
any time an inode is moved, created, or removed.  Parent pointers would
then be of interest to any feature that would need to quickly derive an
inode path from the mount point. Online scrub, nfs lookups and fs grow
or shrink operations are all features that could take advantage of this.

This patch adds two new log item types for setting or removing
attributes as deferred operations.  The xfs_attri_log_item will log an
intent to set or remove an attribute.  The corresponding
xfs_attrd_log_item holds a reference to the xfs_attri_log_item and is
freed once the transaction is done.  Both log items use a generic
xfs_attr_log_format structure that contains the attribute name, value,
flags, inode, and an op_flag that indicates if the operations is a set
or remove.

[dchinner: added extra little bits needed for intent whiteouts]

Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-04 12:41:02 +10:00
Dave Chinner
b5f17bec12 xfs: log shutdown triggers should only shut down the log
We've got a mess on our hands.

1. xfs_trans_commit() cannot cancel transactions because the mount is
shut down - that causes dirty, aborted, unlogged log items to sit
unpinned in memory and potentially get written to disk before the
log is shut down. Hence xfs_trans_commit() can only abort
transactions when xlog_is_shutdown() is true.

2. xfs_force_shutdown() is used in places to cause the current
modification to be aborted via xfs_trans_commit() because it may be
impractical or impossible to cancel the transaction directly, and
hence xfs_trans_commit() must cancel transactions when
xfs_is_shutdown() is true in this situation. But we can't do that
because of #1.

3. Log IO errors cause log shutdowns by calling xfs_force_shutdown()
to shut down the mount and then the log from log IO completion.

4. xfs_force_shutdown() can result in a log force being issued,
which has to wait for log IO completion before it will mark the log
as shut down. If #3 races with some other shutdown trigger that runs
a log force, we rely on xfs_force_shutdown() silently ignoring #3
and avoiding shutting down the log until the failed log force
completes.

5. To ensure #2 always works, we have to ensure that
xfs_force_shutdown() does not return until the the log is shut down.
But in the case of #4, this will result in a deadlock because the
log Io completion will block waiting for a log force to complete
which is blocked waiting for log IO to complete....

So the very first thing we have to do here to untangle this mess is
dissociate log shutdown triggers from mount shutdowns. We already
have xlog_forced_shutdown, which will atomically transistion to the
log a shutdown state. Due to internal asserts it cannot be called
multiple times, but was done simply because the only place that
could call it was xfs_do_force_shutdown() (i.e. the mount shutdown!)
and that could only call it once and once only.  So the first thing
we do is remove the asserts.

We then convert all the internal log shutdown triggers to call
xlog_force_shutdown() directly instead of xfs_force_shutdown(). This
allows the log shutdown triggers to shut down the log without
needing to care about mount based shutdown constraints. This means
we shut down the log independently of the mount and the mount may
not notice this until it's next attempt to read or modify metadata.
At that point (e.g. xfs_trans_commit()) it will see that the log is
shutdown, error out and shutdown the mount.

To ensure that all the unmount behaviours and asserts track
correctly as a result of a log shutdown, propagate the shutdown up
to the mount if it is not already set. This keeps the mount and log
state in sync, and saves a huge amount of hassle where code fails
because of a log shutdown but only checks for mount shutdowns and
hence ends up doing the wrong thing. Cleaning up that mess is
an exercise for another day.

This enables us to address the other problems noted above in
followup patches.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-03-29 18:22:01 -07:00
Dave Chinner
ab9c81ef32 xfs: shutdown in intent recovery has non-intent items in the AIL
generic/388 triggered a failure in RUI recovery due to a corrupted
btree record and the system then locked up hard due to a subsequent
assert failure while holding a spinlock cancelling intents:

 XFS (pmem1): Corruption of in-memory data (0x8) detected at xfs_do_force_shutdown+0x1a/0x20 (fs/xfs/xfs_trans.c:964).  Shutting down filesystem.
 XFS (pmem1): Please unmount the filesystem and rectify the problem(s)
 XFS: Assertion failed: !xlog_item_is_intent(lip), file: fs/xfs/xfs_log_recover.c, line: 2632
 Call Trace:
  <TASK>
  xlog_recover_cancel_intents.isra.0+0xd1/0x120
  xlog_recover_finish+0xb9/0x110
  xfs_log_mount_finish+0x15a/0x1e0
  xfs_mountfs+0x540/0x910
  xfs_fs_fill_super+0x476/0x830
  get_tree_bdev+0x171/0x270
  ? xfs_init_fs_context+0x1e0/0x1e0
  xfs_fs_get_tree+0x15/0x20
  vfs_get_tree+0x24/0xc0
  path_mount+0x304/0xba0
  ? putname+0x55/0x60
  __x64_sys_mount+0x108/0x140
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae

Essentially, there's dirty metadata in the AIL from intent recovery
transactions, so when we go to cancel the remaining intents we assume
that all objects after the first non-intent log item in the AIL are
not intents.

This is not true. Intent recovery can log new intents to continue
the operations the original intent could not complete in a single
transaction. The new intents are committed before they are deferred,
which means if the CIL commits in the background they will get
inserted into the AIL at the head.

Hence if we shut down the filesystem while processing intent
recovery, the AIL may have new intents active at the current head.
Hence this check:

                /*
                 * We're done when we see something other than an intent.
                 * There should be no intents left in the AIL now.
                 */
                if (!xlog_item_is_intent(lip)) {
#ifdef DEBUG
                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
                                ASSERT(!xlog_item_is_intent(lip));
#endif
                        break;
                }

in both xlog_recover_process_intents() and
log_recover_cancel_intents() is simply not valid. It was valid back
when we only had EFI/EFD intents and didn't chain intents, but it
hasn't been valid ever since intent recovery could create and commit
new intents.

Given that crashing the mount task like this pretty much prevents
diagnosing what went wrong that lead to the initial failure that
triggered intent cancellation, just remove the checks altogether.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-03-29 18:22:00 -07:00
Jiapeng Chong
f4901a182d xfs: Remove redundant assignment of mp
mp is being initialized to log->l_mp but this is never read
as record is overwritten later on. Remove the redundant
assignment.

Cleans up the following clang-analyzer warning:

fs/xfs/xfs_log_recover.c:3543:20: warning: Value stored to 'mp' during
its initialization is never read [clang-analyzer-deadcode.DeadStores].

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-01-06 10:43:30 -08:00
Darrick J. Wong
7993f1a431 xfs: only run COW extent recovery when there are no live extents
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose.  Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:

mount <filesystem>				# (0)
fsstress <run only readonly ops> &		# (1)
while true; do
	fsstress <run all ops>
	mount -o remount,ro			# (2)
	fsstress <run only readonly ops>
	mount -o remount,rw			# (3)
done

When (2) happens, notice that (1) is still running.  xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).

When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata.  If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.

The results are catastrophic -- file (B) and the refcount btree are now
corrupt.  In the first patch, we fixed the race condition in (2) so that
(A) will always flush the COW fork.  In this second patch, we move the
_recover_cow call to the initial mount call in (0) for safety.

As mentioned previously, xfs_reflink_recover_cow walks the refcount
btree looking for COW staging extents, and frees them.  This was
intended to be run at mount time (when we know there are no live inodes)
to clean up any leftover staging events that may have been left behind
during an unclean shutdown.  As a time "optimization" for readonly
mounts, we deferred this to the ro->rw transition, not realizing that
any failure to clean all COW forks during a rw->ro transition would
result in catastrophic corruption.

Therefore, remove this optimization and only run the recovery routine
when we're guaranteed not to have any COW staging extents anywhere,
which means we always run this at mount time.  While we're at it, move
the callsite to xfs_log_mount_finish because any refcount btree
expansion (however unlikely given that we're removing records from the
right side of the index) must be fed by a per-AG reservation, which
doesn't exist in its current location.

Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-12-21 09:49:41 -08:00
Darrick J. Wong
512edfac85 xfs: port the defer ops capture and continue to resource capture
When log recovery tries to recover a transaction that had log intent
items attached to it, it has to save certain parts of the transaction
state (reservation, dfops chain, inodes with no automatic unlock) so
that it can finish single-stepping the recovered transactions before
finishing the chains.

This is done with the xfs_defer_ops_capture and xfs_defer_ops_continue
functions.  Right now they open-code this functionality, so let's port
this to the formalized resource capture structure that we introduced in
the previous patch.  This enables us to hold up to two inodes and two
buffers during log recovery, the same way we do for regular runtime.

With this patch applied, we'll be ready to support atomic extent swap
which holds two inodes; and logged xattrs which holds one inode and one
xattr leaf buffer.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-10-14 09:19:31 -07:00
Dave Chinner
d6837c1aab xfs: introduce xfs_sb_is_v5 helper
Rather than open coding XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5
checks everywhere, add a simple wrapper to encapsulate this and make
the code easier to read.

This allows us to remove the xfs_sb_version_has_v3inode() wrapper
which is only used in xfs_format.h now and is just a version number
check.

There are a couple of places where we should be checking the mount
feature bits rather than the superblock version (e.g. remount), so
those are converted to use xfs_has_crc(mp) instead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
2e973b2cd4 xfs: convert remaining mount flags to state flags
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.

Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
38c26bfd90 xfs: replace xfs_sb_version checks with feature flag checks
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.

Large parts of this conversion were done with sed with commands like
this:

for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
	sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done

With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.

The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:

$ size -t fs/xfs/built-in.a
	text	   data	    bss	    dec	    hex	filenam
before	1130866  311352     484 1442702  16038e (TOTALS)
after	1127727  311352     484 1439563  15f74b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
a1d86e8dec xfs: reflect sb features in xfs_mount
Currently on-disk feature checks require decoding the superblock
fileds and so can be non-trivial. We have almost 400 hundred
individual feature checks in the XFS code, so this is a significant
amount of code. To reduce runtime check overhead, pre-process all
the version flags into a features field in the xfs_mount at mount
time so we can convert all the feature checks to a simple flag
check.

There is also a need to convert the dynamic feature flags to update
the m_features field. This is required for attr, attr2 and quota
features. New xfs_mount based wrappers are added for this.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
e1d06e5f66 xfs: convert log flags to an operational state field
log->l_flags doesn't actually contain "flags" as such, it contains
operational state information that can change at runtime. For the
shutdown state, this at least should be an atomic bit because
it is read without holding locks in many places and so using atomic
bitops for the state field modifications makes sense.

This allows us to use things like test_and_set_bit() on state
changes (e.g. setting XLOG_TAIL_WARN) to avoid races in setting the
state when we aren't holding locks.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:28 -07:00
Dave Chinner
fd67d8a072 xfs: move recovery needed state updates to xfs_log_mount_finish
xfs_log_mount_finish() needs to know if recovery is needed or not to
make decisions on whether to flush the log and AIL.  Move the
handling of the NEED_RECOVERY state out to this function rather than
needing a temporary variable to store this state over the call to
xlog_recover_finish().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:28 -07:00
Dave Chinner
2039a27230 xfs: convert XLOG_FORCED_SHUTDOWN() to xlog_is_shutdown()
Make it less shouty and a static inline before adding more calls
through the log code.

Also convert internal log code that uses XFS_FORCED_SHUTDOWN(mount)
to use xlog_is_shutdown(log) as well.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:27 -07:00
Darrick J. Wong
4bc619833f xfs: refactor xfs_iget calls from log intent recovery
Hoist the code from xfs_bui_item_recover that igets an inode and marks
it as being part of log intent recovery.  The next patch will want a
common function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09 15:57:59 -07:00
Darrick J. Wong
908ce71e54 xfs: allow setting and clearing of log incompat feature flags
Log incompat feature flags in the superblock exist for one purpose: to
protect the contents of a dirty log from replay on a kernel that isn't
prepared to handle those dirty contents.  This means that they can be
cleared if (a) we know the log is clean and (b) we know that there
aren't any other threads in the system that might be setting or relying
upon a log incompat flag.

Therefore, clear the log incompat flags when we've finished recovering
the log, when we're unmounting cleanly, remounting read-only, or
freezing; and provide a function so that subsequent patches can start
using this.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09 15:57:59 -07:00
Dave Chinner
d634525db6 xfs: replace kmem_alloc_large() with kvmalloc()
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09 15:57:43 -07:00
Dave Chinner
98fe2c3cef xfs: remove kmem_alloc_io()
Since commit 59bb47985c1d ("mm, sl[aou]b: guarantee natural alignment
for kmalloc(power-of-two)"), the core slab code now guarantees slab
alignment in all situations sufficient for IO purposes (i.e. minimum
of 512 byte alignment of >= 512 byte sized heap allocations) we no
longer need the workaround in the XFS code to provide this
guarantee.

Replace the use of kmem_alloc_io() with kmem_alloc() or
kmem_alloc_large() appropriately, and remove the kmem_alloc_io()
interface altogether.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09 15:57:43 -07:00
Dave Chinner
de2860f463 mm: Add kvrealloc()
During log recovery of an XFS filesystem with 64kB directory
buffers, rebuilding a buffer split across two log records results
in a memory allocation warning from krealloc like this:

xfs filesystem being mounted at /mnt/scratch supports timestamps until 2038 (0x7fffffff)
XFS (dm-0): Unmounting Filesystem
XFS (dm-0): Mounting V5 Filesystem
XFS (dm-0): Starting recovery (logdev: internal)
------------[ cut here ]------------
WARNING: CPU: 5 PID: 3435170 at mm/page_alloc.c:3539 get_page_from_freelist+0xdee/0xe40
.....
RIP: 0010:get_page_from_freelist+0xdee/0xe40
Call Trace:
 ? complete+0x3f/0x50
 __alloc_pages+0x16f/0x300
 alloc_pages+0x87/0x110
 kmalloc_order+0x2c/0x90
 kmalloc_order_trace+0x1d/0x90
 __kmalloc_track_caller+0x215/0x270
 ? xlog_recover_add_to_cont_trans+0x63/0x1f0
 krealloc+0x54/0xb0
 xlog_recover_add_to_cont_trans+0x63/0x1f0
 xlog_recovery_process_trans+0xc1/0xd0
 xlog_recover_process_ophdr+0x86/0x130
 xlog_recover_process_data+0x9f/0x160
 xlog_recover_process+0xa2/0x120
 xlog_do_recovery_pass+0x40b/0x7d0
 ? __irq_work_queue_local+0x4f/0x60
 ? irq_work_queue+0x3a/0x50
 xlog_do_log_recovery+0x70/0x150
 xlog_do_recover+0x38/0x1d0
 xlog_recover+0xd8/0x170
 xfs_log_mount+0x181/0x300
 xfs_mountfs+0x4a1/0x9b0
 xfs_fs_fill_super+0x3c0/0x7b0
 get_tree_bdev+0x171/0x270
 ? suffix_kstrtoint.constprop.0+0xf0/0xf0
 xfs_fs_get_tree+0x15/0x20
 vfs_get_tree+0x24/0xc0
 path_mount+0x2f5/0xaf0
 __x64_sys_mount+0x108/0x140
 do_syscall_64+0x3a/0x70
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Essentially, we are taking a multi-order allocation from kmem_alloc()
(which has an open coded no fail, no warn loop) and then
reallocating it out to 64kB using krealloc(__GFP_NOFAIL) and that is
then triggering the above warning.

This is a regression caused by converting this code from an open
coded no fail/no warn reallocation loop to using __GFP_NOFAIL.

What we actually need here is kvrealloc(), so that if contiguous
page allocation fails we fall back to vmalloc() and we don't
get nasty warnings happening in XFS.

Fixes: 771915c4f688 ("xfs: remove kmem_realloc()")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09 15:57:43 -07:00
Dave Chinner
ab23a77687 xfs: per-cpu deferred inode inactivation queues
Move inode inactivation to background work contexts so that it no
longer runs in the context that releases the final reference to an
inode. This will allow process work that ends up blocking on
inactivation to continue doing work while the filesytem processes
the inactivation in the background.

A typical demonstration of this is unlinking an inode with lots of
extents. The extents are removed during inactivation, so this blocks
the process that unlinked the inode from the directory structure. By
moving the inactivation to the background process, the userspace
applicaiton can keep working (e.g. unlinking the next inode in the
directory) while the inactivation work on the previous inode is
done by a different CPU.

The implementation of the queue is relatively simple. We use a
per-cpu lockless linked list (llist) to queue inodes for
inactivation without requiring serialisation mechanisms, and a work
item to allow the queue to be processed by a CPU bound worker
thread. We also keep a count of the queue depth so that we can
trigger work after a number of deferred inactivations have been
queued.

The use of a bound workqueue with a single work depth allows the
workqueue to run one work item per CPU. We queue the work item on
the CPU we are currently running on, and so this essentially gives
us affine per-cpu worker threads for the per-cpu queues. THis
maintains the effective CPU affinity that occurs within XFS at the
AG level due to all objects in a directory being local to an AG.
Hence inactivation work tends to run on the same CPU that last
accessed all the objects that inactivation accesses and this
maintains hot CPU caches for unlink workloads.

A depth of 32 inodes was chosen to match the number of inodes in an
inode cluster buffer. This hopefully allows sequential
allocation/unlink behaviours to defering inactivation of all the
inodes in a single cluster buffer at a time, further helping
maintain hot CPU and buffer cache accesses while running
inactivations.

A hard per-cpu queue throttle of 256 inode has been set to avoid
runaway queuing when inodes that take a long to time inactivate are
being processed. For example, when unlinking inodes with large
numbers of extents that can take a lot of processing to free.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: tweak comments and tracepoints, convert opflags to state bits]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06 11:05:39 -07:00
Darrick J. Wong
4e6b8270c8 xfs: force the log offline when log intent item recovery fails
If any part of log intent item recovery fails, we should shut down the
log immediately to stop the log from writing a clean unmount record to
disk, because the metadata is not consistent.  The inability to cancel a
dirty transaction catches most of these cases, but there are a few
things that have slipped through the cracks, such as ENOSPC from a
transaction allocation, or runtime errors that result in cancellation of
a non-dirty transaction.

This solves some weird behaviors reported by customers where a system
goes down, the first mount fails, the second succeeds, but then the fs
goes down later because of inconsistent metadata.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-06-21 10:14:24 -07:00
Dave Chinner
934933c3ee xfs: convert raw ag walks to use for_each_perag
Convert the raw walks to an iterator, pulling the current AG out of
pag->pag_agno instead of the loop iterator variable.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Dave Chinner
9bbafc7191 xfs: move xfs_perag_get/put to xfs_ag.[ch]
They are AG functions, not superblock functions, so move them to the
appropriate location.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02 10:48:24 +10:00
Christoph Hellwig
9b3beb028f xfs: remove the di_dmevmask and di_dmstate fields from struct xfs_icdinode
The legacy DMAPI fields were never set by upstream Linux XFS, and have no
way to be read using the kernel APIs.  So instead of bloating the in-core
inode for them just copy them from the on-disk inode into the log when
logging the inode.  The only caveat is that we need to make sure to zero
the fields for newly read or deleted inodes, which is solved using a new
flag in the inode.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-07 14:37:03 -07:00
Christoph Hellwig
af9dcddef6 xfs: split xfs_imap_to_bp
Split looking up the dinode from xfs_imap_to_bp, which can be
significantly simplified as a result.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-07 14:37:02 -07:00
Bhaskar Chowdhury
bd24a4f5f7 xfs: Rudimentary typo fixes
s/filesytem/filesystem/
s/instrumention/instrumentation/

Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-03-25 16:47:52 -07:00
Dave Chinner
e82226138b xfs: remove xfs_buf_t typedef
Prepare for kernel xfs_buf  alignment by getting rid of the
xfs_buf_t typedef from userspace.

[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2020-12-16 16:07:34 -08:00
Darrick J. Wong
6337032689 xfs: trace log intent item recovery failures
Add a trace point so that we can capture when a recovered log intent
item fails to recover.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-12-09 09:49:38 -08:00
Darrick J. Wong
2e76f188fd xfs: cancel intents immediately if process_intents fails
If processing recovered log intent items fails, we need to cancel all
the unprocessed recovered items immediately so that a subsequent AIL
push in the bail out path won't get wedged on the pinned intent items
that didn't get processed.

This can happen if the log contains (1) an intent that gets and releases
an inode, (2) an intent that cannot be recovered successfully, and (3)
some third intent item.  When recovery of (2) fails, we leave (3) pinned
in memory.  Inode reclamation is called in the error-out path of
xfs_mountfs before xfs_log_cancel_mount.  Reclamation calls
xfs_ail_push_all_sync, which gets stuck waiting for (3).

Therefore, call xlog_recover_cancel_intents if _process_intents fails.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-21 16:28:46 -07:00
Darrick J. Wong
ff4ab5e02a xfs: fix an incore inode UAF in xfs_bui_recover
In xfs_bui_item_recover, there exists a use-after-free bug with regards
to the inode that is involved in the bmap replay operation.  If the
mapping operation does not complete, we call xfs_bmap_unmap_extent to
create a deferred op to finish the unmapping work, and we retain a
pointer to the incore inode.

Unfortunately, the very next thing we do is commit the transaction and
drop the inode.  If reclaim tears down the inode before we try to finish
the defer ops, we dereference garbage and blow up.  Therefore, create a
way to join inodes to the defer ops freezer so that we can maintain the
xfs_inode reference until we're done with the inode.

Note: This imposes the requirement that there be enough memory to keep
every incore inode in memory throughout recovery.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong
929b92f640 xfs: xfs_defer_capture should absorb remaining transaction reservation
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the transaction reservation type
from the old transaction so that when we continue the dfops chain, we
still use the same reservation parameters.

Doing this means that the log item recovery functions get to determine
the transaction reservation instead of abusing tr_itruncate in yet
another part of xfs.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong
4f9a60c480 xfs: xfs_defer_capture should absorb remaining block reservations
When xfs_defer_capture extracts the deferred ops and transaction state
from a transaction, it should record the remaining block reservations so
that when we continue the dfops chain, we can reserve the same number of
blocks to use.  We capture the reservations for both data and realtime
volumes.

This adds the requirement that every log intent item recovery function
must be careful to reserve enough blocks to handle both itself and all
defer ops that it can queue.  On the other hand, this enables us to do
away with the handwaving block estimation nonsense that was going on in
xlog_finish_defer_ops.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-07 08:40:28 -07:00
Darrick J. Wong
e6fff81e48 xfs: proper replay of deferred ops queued during log recovery
When we replay unfinished intent items that have been recovered from the
log, it's possible that the replay will cause the creation of more
deferred work items.  As outlined in commit 509955823cc9c ("xfs: log
recovery should replay deferred ops in order"), later work items have an
implicit ordering dependency on earlier work items.  Therefore, recovery
must replay the items (both recovered and created) in the same order
that they would have been during normal operation.

For log recovery, we enforce this ordering by using an empty transaction
to collect deferred ops that get created in the process of recovering a
log intent item to prevent them from being committed before the rest of
the recovered intent items.  After we finish committing all the
recovered log items, we allocate a transaction with an enormous block
reservation, splice our huge list of created deferred ops into that
transaction, and commit it, thereby finishing all those ops.

This is /really/ hokey -- it's the one place in XFS where we allow
nested transactions; the splicing of the defer ops list is is inelegant
and has to be done twice per recovery function; and the broken way we
handle inode pointers and block reservations cause subtle use-after-free
and allocator problems that will be fixed by this patch and the two
patches after it.

Therefore, replace the hokey empty transaction with a structure designed
to capture each chain of deferred ops that are created as part of
recovering a single unfinished log intent.  Finally, refactor the loop
that replays those chains to do so using one transaction per chain.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:28 -07:00
Darrick J. Wong
901219bb25 xfs: remove XFS_LI_RECOVERED
The ->iop_recover method of a log intent item removes the recovered
intent item from the AIL by logging an intent done item and committing
the transaction, so it's superfluous to have this flag check.  Nothing
else uses it, so get rid of the flag entirely.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-07 08:40:27 -07:00
Kaixu Xia
d6b8fc6c7a xfs: do the assert for all the log done items in xfs_trans_cancel
We should do the assert for all the log intent-done items if they appear
here. This patch detect intent-done items by the fact that their item ops
don't have iop_unpin and iop_push methods and also move the helper
xlog_item_is_intent to xfs_trans.h.

Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-25 11:34:07 -07:00
Gao Xiang
0c771b99d6 xfs: clean up calculation of LR header blocks
Let's use DIV_ROUND_UP() to calculate log record header
blocks as what did in xlog_get_iclog_buffer_size() and
wrap up a common helper for log recovery.

Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-23 09:24:17 -07:00
Gao Xiang
f692d09e9c xfs: avoid LR buffer overrun due to crafted h_len
Currently, crafted h_len has been blocked for the log
header of the tail block in commit a70f9fe52daa ("xfs:
detect and handle invalid iclog size set by mkfs").

However, each log record could still have crafted h_len
and cause log record buffer overrun. So let's check
h_len vs buffer size for each log record as well.

Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-09-23 08:58:52 -07:00
Christoph Hellwig
26e328759b xfs: reuse _xfs_buf_read for re-reading the superblock
Instead of poking deeply into buffer cache internals when re-reading the
superblock during log recovery just generalize _xfs_buf_read and use it
there.  Note that we don't have to explicitly set up the ops as they
must be set from the initial read.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-15 20:52:39 -07:00
Christoph Hellwig
b3f8e08ca8 xfs: remove xfs_getsb
Merge xfs_getsb into its only caller, and clean that one up a little bit
as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-15 20:52:39 -07:00
Christoph Hellwig
22c10589a1 xfs: remove xlog_recover_iodone
The log recovery I/O completion handler does not substancially differ from
the normal one except for the fact that it:

 a) never retries failed writes
 b) can have log items that aren't on the AIL
 c) never has inode/dquot log items attached and thus don't need to
    handle them

Add conditionals for (a) and (b) to the ioend code, while (c) doesn't
need special handling anyway.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-15 20:52:39 -07:00