IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Pass the server and volume break counts from before the status fetch
operation that queried the attributes of a file into afs_iget5_set() so
that the new vnode's break counters can be initialised appropriately.
This allows detection of a volume or server break that happened whilst we
were fetching the status or setting up the vnode.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Make use of the status update for the target file that the YFS.RemoveFile2
RPC op returns to correctly update the vnode as to whether the file was
actually deleted or just had nlink reduced.
Fixes: 30062bd13e36 ("afs: Implement YFS support in the fs client")
Signed-off-by: David Howells <dhowells@redhat.com>
Fix afs_validate() to clear AFS_VNODE_CB_PROMISED on a vnode if we detect
any condition that causes the callback promise to be broken implicitly,
including server break (cb_s_break), volume break (cb_v_break) or callback
expiry.
Fixes: ae3b7361dc0e ("afs: Fix validation/callback interaction")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Use RCU-based freeing for afs_cb_interest struct objects and use RCU on
vnode->cb_interest. Use that change to allow afs_check_validity() to use
read_seqbegin_or_lock() instead of read_seqlock_excl().
This also requires the caller of afs_check_validity() to hold the RCU read
lock across the call.
Signed-off-by: David Howells <dhowells@redhat.com>
Split afs_validate() so that the part that decides if the vnode is still
valid can be used under LOOKUP_RCU conditions from afs_d_revalidate().
Signed-off-by: David Howells <dhowells@redhat.com>
Don't save callback version and type fields as the version is about the
format of the callback information and the type is relative to the
particular RPC call.
Signed-off-by: David Howells <dhowells@redhat.com>
When applying the status and callback in the response of an operation,
apply them in the same critical section so that there's no race between
checking the callback state and checking status-dependent state (such as
the data version).
Fix this by:
(1) Allocating a joint {status,callback} record (afs_status_cb) before
calling the RPC function for each vnode for which the RPC reply
contains a status or a status plus a callback. A flag is set in the
record to indicate if a callback was actually received.
(2) These records are passed into the RPC functions to be filled in. The
afs_decode_status() and yfs_decode_status() functions are removed and
the cb_lock is no longer taken.
(3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer
update the vnode.
(4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update
the vnode.
(5) vnodes, expected data-version numbers and callback break counters
(cb_break) no longer need to be passed to the reply delivery
functions.
Note that, for the moment, the file locking functions still need
access to both the call and the vnode at the same time.
(6) afs_vnode_commit_status() is now given the cb_break value and the
expected data_version and the task of applying the status and the
callback to the vnode are now done here.
This is done under a single taking of vnode->cb_lock.
(7) afs_pages_written_back() is now called by afs_store_data() rather than
by the reply delivery function.
afs_pages_written_back() has been moved to before the call point and
is now given the first and last page numbers rather than a pointer to
the call.
(8) The indicator from YFS.RemoveFile2 as to whether the target file
actually got removed (status.abort_code == VNOVNODE) rather than
merely dropping a link is now checked in afs_unlink rather than in
xdr_decode_YFSFetchStatus().
Supplementary fixes:
(*) afs_cache_permit() now gets the caller_access mask from the
afs_status_cb object rather than picking it out of the vnode's status
record. afs_fetch_status() returns caller_access through its argument
list for this purpose also.
(*) afs_inode_init_from_status() now uses a write lock on cb_lock rather
than a read lock and now sets the callback inside the same critical
section.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Don't invalidate the callback promise on a directory if the
AFS_VNODE_DIR_VALID flag is not set (which indicates that the directory
contents are invalid, due to edit failure, callback break, page reclaim).
The directory will be reloaded next time the directory is accessed, so
clearing the callback flag at this point may race with a reload of the
directory and cancel it's recorded callback promise.
Fixes: f3ddee8dc4e2 ("afs: Fix directory handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Fix afs_release() to go through the cleanup part of the function if
FMODE_WRITE is set rather than exiting through vfs_fsync() (which skips the
cleanup). The cleanup involves discarding the refs on the key used for
file ops and the writeback key record.
Also fix afs_evict_inode() to clean up any left over wb keys attached to
the inode/vnode when it is removed.
Fixes: 5a8132761609 ("afs: Do better accretion of small writes on newly created content")
Signed-off-by: David Howells <dhowells@redhat.com>
While it's not possible to give an accurate number for the blocks
used on the server, populate i_blocks based on the file size so
that 'du' can give a reasonable estimate.
The value is rounded up to 1K granularity, for consistency with
what other AFS clients report, and the servers' 1K usage quota
unit. Note that the value calculated by 'du' at the root of a
volume can still be slightly lower than the quota usage on the
server, as 0-length files are charged 1 quota block, but are
reported as occupying 0 blocks. Again, this is consistent with
other AFS clients.
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Log more information when "kAFS: AFS vnode with undefined type\n" is
displayed due to a vnode record being retrieved from the server that
appears to have a duff file type (usually 0). This prints more information
to try and help pin down the problem.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement sillyrename for AFS unlink and rename, using the NFS variant
implementation as a basis.
Note that the asynchronous file locking extender/releaser has to be
notified with a state change to stop it complaining if there's a race
between that and the actual file deletion.
A tracepoint, afs_silly_rename, is also added to note the silly rename and
the cleanup. The afs_edit_dir tracepoint is given some extra reason
indicators and the afs_flock_ev tracepoint is given a silly-delete file
lock cancellation indicator.
Signed-off-by: David Howells <dhowells@redhat.com>
get_seconds() has a limited range on 32-bit architectures and is
deprecated because of that. While AFS uses the same limits for
its inode timestamps on the wire protocol, let's just use the
simpler current_time() as we do for other file systems.
This will still zero out the 'tv_nsec' field of the timestamps
internally.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the refcounting of the authentication keys in the file locking code.
The vnode->lock_key member points to a key on which it expects to be
holding a ref, but it isn't always given an extra ref, however.
Fixes: 0fafdc9f888b ("afs: Fix file locking")
Signed-off-by: David Howells <dhowells@redhat.com>
A cb_interest record is not necessarily attached to the vnode on entry to
afs_validate(), which can cause an oops when we try to bring the vnode's
cb_s_break up to date in the default case (ie. no current callback promise
and the vnode has not been deleted).
Fix this by simply removing the line, as vnode->cb_s_break will be set when
needed by afs_register_server_cb_interest() when we next get a callback
promise from RPC call.
The oops looks something like:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
...
RIP: 0010:afs_validate+0x66/0x250 [kafs]
...
Call Trace:
afs_d_revalidate+0x8d/0x340 [kafs]
? __d_lookup+0x61/0x150
lookup_dcache+0x44/0x70
? lookup_dcache+0x44/0x70
__lookup_hash+0x24/0xa0
do_unlinkat+0x11d/0x2c0
__x64_sys_unlink+0x23/0x30
do_syscall_64+0x4d/0xf0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: ae3b7361dc0e ("afs: Fix validation/callback interaction")
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
When afs_validate() is called to validate a vnode (inode), there are two
unhandled cases in the fastpath at the top of the function:
(1) If the vnode is promised (AFS_VNODE_CB_PROMISED is set), the break
counters match and the data has expired, then there's an implicit case
in which the vnode needs revalidating.
This has no consequences since the default "valid = false" set at the
top of the function happens to do the right thing.
(2) If the vnode is not promised and it hasn't been deleted
(AFS_VNODE_DELETED is not set) then there's a default case we're not
handling in which the vnode is invalid. If the vnode is invalid, we
need to bring cb_s_break and cb_v_break up to date before we refetch
the status.
As a consequence, once the server loses track of the client
(ie. sufficient time has passed since we last sent it an operation),
it will send us a CB.InitCallBackState* operation when we next try to
talk to it. This calls afs_init_callback_state() which increments
afs_server::cb_s_break, but this then doesn't propagate to the
afs_vnode record.
The result being that every afs_validate() call thereafter sends a
status fetch operation to the server.
Clarify and fix this by:
(A) Setting valid in all the branches rather than initialising it at the
top so that the compiler catches where we've missed.
(B) Restructuring the logic in the 'promised' branch so that we set valid
to false if the callback is due to expire (or has expired) and so that
the final case is that the vnode is still valid.
(C) Adding an else-statement that ups cb_s_break and cb_v_break if the
promised and deleted cases don't match.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Calculate the callback expiration time at the point of operation reply
delivery, using the reply time queried from AF_RXRPC on that call as a
base.
Signed-off-by: David Howells <dhowells@redhat.com>
Increase the sizes of the volume ID to 64 bits and the vnode ID (inode
number equivalent) to 96 bits to allow the support of YFS.
This requires the iget comparator to check the vnode->fid rather than i_ino
and i_generation as i_ino is not sufficiently capacious. It also requires
this data to be placed into the vnode cache key for fscache.
For the moment, just discard the top 32 bits of the vnode ID when returning
it though stat.
Signed-off-by: David Howells <dhowells@redhat.com>
Include the site of detection of AFS protocol errors in trace lines to
better be able to determine what went wrong.
Signed-off-by: David Howells <dhowells@redhat.com>
It's possible for an AFS file server to issue a whole-volume notification
that callbacks on all the vnodes in the file have been broken. This is
done for R/O and backup volumes (which don't have per-file callbacks) and
for things like a volume being taken offline.
Fix callback handling to detect whole-volume notifications, to track it
across operations and to check it during inode validation.
Fixes: c435ee34551e ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
The afs directory loading code (primarily afs_read_dir()) locks all the
pages that hold a directory's content blob to defend against
getdents/getdents races and getdents/lookup races where the competitors
issue conflicting reads on the same data. As the reads will complete
consecutively, they may retrieve different versions of the data and
one may overwrite the data that the other is busy parsing.
Fix this by not locking the pages at all, but rather by turning the
validation lock into an rwsem and getting an exclusive lock on it whilst
reading the data or validating the attributes and a shared lock whilst
parsing the data. Sharing the attribute validation lock should be fine as
the data fetch will retrieve the attributes also.
The individual page locks aren't needed at all as the only place they're
being used is to serialise data loading.
Without this patch, the:
if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
...
}
part of afs_read_dir() may be skipped, leaving the pages unlocked when we
hit the success: clause - in which case we try to unlock the not-locked
pages, leading to the following oops:
page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0
flags: 0xfffe000001004(referenced|private)
raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff
raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000
page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
page->mem_cgroup:ffff98156b27c000
------------[ cut here ]------------
kernel BUG at mm/filemap.c:1205!
...
RIP: 0010:unlock_page+0x43/0x50
...
Call Trace:
afs_dir_iterate+0x789/0x8f0 [kafs]
? _cond_resched+0x15/0x30
? kmem_cache_alloc_trace+0x166/0x1d0
? afs_do_lookup+0x69/0x490 [kafs]
? afs_do_lookup+0x101/0x490 [kafs]
? key_default_cmp+0x20/0x20
? request_key+0x3c/0x80
? afs_lookup+0xf1/0x340 [kafs]
? __lookup_slow+0x97/0x150
? lookup_slow+0x35/0x50
? walk_component+0x1bf/0x490
? path_lookupat.isra.52+0x75/0x200
? filename_lookup.part.66+0xa0/0x170
? afs_end_vnode_operation+0x41/0x60 [kafs]
? __check_object_size+0x9c/0x171
? strncpy_from_user+0x4a/0x170
? vfs_statx+0x73/0xe0
? __do_sys_newlstat+0x39/0x70
? __x64_sys_getdents+0xc9/0x140
? __x64_sys_getdents+0x140/0x140
? do_syscall_64+0x5b/0x160
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: f3ddee8dc4e2 ("afs: Fix directory handling")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Locally edit the contents of an AFS directory upon a successful inode
operation that modifies that directory (such as mkdir, create and unlink)
so that we can avoid the current practice of re-downloading the directory
after each change.
This is viable provided that the directory version number we get back from
the modifying RPC op is exactly incremented by 1 from what we had
previously. The data in the directory contents is in a defined format that
we have to parse locally to perform lookups and readdir, so modifying isn't
a problem.
If the edit fails, we just clear the VALID flag on the directory and it
will be reloaded next time it is needed.
Signed-off-by: David Howells <dhowells@redhat.com>
AFS directories are structured blobs that are downloaded just like files
and then parsed by the lookup and readdir code and, as such, are currently
handled in the pagecache like any other file, with the entire directory
content being thrown away each time the directory changes.
However, since the blob is a known structure and since the data version
counter on a directory increases by exactly one for each change committed
to that directory, we can actually edit the directory locally rather than
fetching it from the server after each locally-induced change.
What we can't do, though, is mix data from the server and data from the
client since the server is technically at liberty to rearrange or compress
a directory if it sees fit, provided it updates the data version number
when it does so and breaks the callback (ie. sends a notification).
Further, lookup with lookup-ahead, readdir and, when it arrives, local
editing are likely want to scan the whole of a directory.
So directory handling needs to be improved to maintain the coherency of the
directory blob prior to permitting local directory editing.
To this end:
(1) If any directory page gets discarded, invalidate and reread the entire
directory.
(2) If readpage notes that if when it fetches a single page that the
version number has changed, the entire directory is flagged for
invalidation.
(3) Read as much of the directory in one go as we can.
Note that this removes local caching of directories in fscache for the
moment as we can't pass the pages to fscache_read_or_alloc_pages() since
page->lru is in use by the LRU.
Signed-off-by: David Howells <dhowells@redhat.com>
Each afs dentry is tagged with the version that the parent directory was at
last time it was validated and, currently, if this differs, the directory
is scanned and the dentry is refreshed.
However, this leads to an excessive amount of revalidation on directories
that get modified on the client without conflict with another client. We
know there's no conflict because the parent directory's data version number
got incremented by exactly 1 on any create, mkdir, unlink, etc., therefore
we can trust the current state of the unaffected dentries when we perform a
local directory modification.
Optimise by keeping track of the last version of the parent directory that
was changed outside of the client in the parent directory's vnode and using
that to validate the dentries rather than the current version.
Signed-off-by: David Howells <dhowells@redhat.com>
Rearrange the AFSFetchStatus to inode attribute mapping code in a number of
ways:
(1) Use an XDR structure rather than a series of incremented pointer
accesses when decoding an AFSFetchStatus object. This allows
out-of-order decode.
(2) Don't store the if_version value but rather just check it and abort if
it's not something we can handle.
(3) Store the owner and group in the status record as raw values rather
than converting them to kuid/kgid. Do that when they're mapped into
i_uid/i_gid.
(4) Validate the type and abort code up front and abort if they're wrong.
(5) Split the inode attribute setting out into its own function from the
XDR decode of an AFSFetchStatus object. This allows it to be called
from elsewhere too.
(6) Differentiate changes to data from changes to metadata.
(7) Use the split-out attribute mapping function from afs_iget().
Signed-off-by: David Howells <dhowells@redhat.com>
Store the data version number indicated by an FS.FetchData op into the read
request structure so that it's accessible by the page reader.
Signed-off-by: David Howells <dhowells@redhat.com>
We no longer parse symlinks when we get the inode to determine if this
symlink is actually a mountpoint as we detect that by examining the mode
instead (symlinks are always 0777 and mountpoints 0644).
Access the cache after mapping the status so that we don't have to manually
set the inode size now.
Note that this may need adjusting if the disconnected operation is
implemented as the file metadata may have to be obtained from the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Introduce a proc file that displays a bunch of statistics for the AFS
filesystem in the current network namespace.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix warnings raised by checker, including:
(*) Warnings raised by unequal comparison for the purposes of sorting,
where the endianness doesn't matter:
fs/afs/addr_list.c:246:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:246:30: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:248:21: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:248:49: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:283:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:283:30: warning: restricted __be16 degrades to integer
(*) afs_set_cb_interest() is not actually used and can be removed.
(*) afs_cell_gc_delay() should be provided with a sysctl.
(*) afs_cell_destroy() needs to use rcu_access_pointer() to read
cell->vl_addrs.
(*) afs_init_fs_cursor() should be static.
(*) struct afs_vnode::permit_cache needs to be marked __rcu.
(*) afs_server_rcu() needs to use rcu_access_pointer().
(*) afs_destroy_server() should use rcu_access_pointer() on
server->addresses as the server object is no longer accessible.
(*) afs_find_server() casts __be16/__be32 values to int in order to
directly compare them for the purpose of finding a match in a list,
but is should also annotate the cast with __force to avoid checker
warnings.
(*) afs_check_permit() accesses vnode->permit_cache outside of the RCU
readlock, though it doesn't then access the value; the extraneous
access is deleted.
False positives:
(*) Conditional locking around the code in xdr_decode_AFSFetchStatus. This
can be dealt with in a separate patch.
fs/afs/fsclient.c:148:9: warning: context imbalance in 'xdr_decode_AFSFetchStatus' - different lock contexts for basic block
(*) Incorrect handling of seq-retry lock context balance:
fs/afs/inode.c:455:38: warning: context imbalance in 'afs_getattr' - different
lock contexts for basic block
fs/afs/server.c:52:17: warning: context imbalance in 'afs_find_server' - different lock contexts for basic block
fs/afs/server.c:128:17: warning: context imbalance in 'afs_find_server_by_uuid' - different lock contexts for basic block
Errors:
(*) afs_lookup_cell_rcu() needs to break out of the seq-retry loop, not go
round again if it successfully found the workstation cell.
(*) Fix UUID decode in afs_deliver_cb_probe_uuid().
(*) afs_cache_permit() has a missing rcu_read_unlock() before one of the
jumps to the someone_else_changed_it label. Move the unlock to after
the label.
(*) afs_vl_get_addrs_u() is using ntohl() rather than htonl() when
encoding to XDR.
(*) afs_deliver_yfsvl_get_endpoints() is using htonl() rather than ntohl()
when decoding from XDR.
Signed-off-by: David Howells <dhowells@redhat.com>
Pass the object size in to fscache_acquire_cookie() and
fscache_write_page() rather than the netfs providing a callback by which it
can be received. This makes it easier to update the size of the object
when a new page is written that extends the object.
The current object size is also passed by fscache to the check_aux
function, obviating the need to store it in the aux data.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
Attach copies of the index key and auxiliary data to the fscache cookie so
that:
(1) The callbacks to the netfs for this stuff can be eliminated. This
can simplify things in the cache as the information is still
available, even after the cache has relinquished the cookie.
(2) Simplifies the locking requirements of accessing the information as we
don't have to worry about the netfs object going away on us.
(3) The cache can do lazy updating of the coherency information on disk.
As long as the cache is flushed before reboot/poweroff, there's no
need to update the coherency info on disk every time it changes.
(4) Cookies can be hashed or put in a tree as the index key is easily
available. This allows:
(a) Checks for duplicate cookies can be made at the top fscache layer
rather than down in the bowels of the cache backend.
(b) Caching can be added to a netfs object that has a cookie if the
cache is brought online after the netfs object is allocated.
A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.
The downside of this is that live cache operation requires more memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
When relinquishing cookies, either due to iget failure or to inode
eviction, retire a cookie if we think the corresponding vnode got deleted
on the server rather than just letting it lie in the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Invalidate any data stored in fscache for a vnode that changes on the
server so that we don't end up with the cache in a bad state locally.
Signed-off-by: David Howells <dhowells@redhat.com>
Support the AFS dynamic root which is a pseudo-volume that doesn't connect
to any server resource, but rather is just a root directory that
dynamically creates mountpoint directories where the name of such a
directory is the name of the cell.
Such a mount can be created thus:
mount -t afs none /afs -o dyn
Dynamic root superblocks aren't shared except by bind mounts and
propagation. Cell root volumes can then be mounted by referring to them by
name, e.g.:
ls /afs/grand.central.org/
ls /afs/.grand.central.org/
The kernel will upcall to consult the DNS if the address wasn't supplied
directly.
Signed-off-by: David Howells <dhowells@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJabwjlAAoJEAAOaEEZVoIVeEEP/R84kZJjlZV/vNmFFvY46jM+
0hpMHXRNym+nW1Du1CKNkesEUAY8ACAQIyzJh63Q72341QTDdz3+asHwPYRNOqdC
PgryidPieojkNKQg+h7dmoKYlYh1xiCicvn66Q5PFb9B0lH36twekOK4X1qqJj8Z
breRmRoFLka9looMSuYgwbErts023fmASalvGum6T0ZM/7F9hUj4O3OsQtKTLUNM
VQ+gLJTQrUqrgzvWUwq3WTMa9YAaKP4oad8nsglNSpiVLG7WtURr5HokW9hAziqL
k99Y+K2ni1wZJlNGJAyV7PyEG2ieI5Xn+LzM2RM+SndD1QHF2QXACmSTDYfL51k5
G2RsKeTZvQPtX4qx9+vnCp/4oV6JduvCaq2Mt8SQb9nYZxKjs85TNLrARJv+85eQ
zP0OTxlH1Gfu3j36n3cny4XemyMYYF4hCFYfRPqTGst37fgLBtfIfUSQ6jedoCK2
Xcyb6ukGXMh6If/A7DSy91hvSSPrWSH7TPPsbfLy6o+wUOtpAGR4eXVlEuAiXrzc
gnoAz85oIMUQae66LrdrPk1NyE59qOb24g/yU5gyRBSpi2+/aoboNCKaD73tgs/C
XIMwGXLYmqkcud7IBQF0tHHiM+jsEkbSM4LUqRXSnqMdwNnS18Z4Q+JKqpdP0cii
eRdenDvUfu8Gu1Y9vWBv
=iihN
-----END PGP SIGNATURE-----
Merge tag 'iversion-v4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull inode->i_version rework from Jeff Layton:
"This pile of patches is a rework of the inode->i_version field. We
have traditionally incremented that field on every inode data or
metadata change. Typically this increment needs to be logged on disk
even when nothing else has changed, which is rather expensive.
It turns out though that none of the consumers of that field actually
require this behavior. The only real requirement for all of them is
that it be different iff the inode has changed since the last time the
field was checked.
Given that, we can optimize away most of the i_version increments and
avoid dirtying inode metadata when the only change is to the i_version
and no one is querying it. Queries of the i_version field are rather
rare, so we can help write performance under many common workloads.
This patch series converts existing accesses of the i_version field to
a new API, and then converts all of the in-kernel filesystems to use
it. The last patch in the series then converts the backend
implementation to a scheme that optimizes away a large portion of the
metadata updates when no one is looking at it.
In my own testing this series significantly helps performance with
small I/O sizes. I also got this email for Christmas this year from
the kernel test robot (a 244% r/w bandwidth improvement with XFS over
DAX, with 4k writes):
https://lkml.org/lkml/2017/12/25/8
A few of the earlier patches in this pile are also flowing to you via
other trees (mm, integrity, and nfsd trees in particular)".
* tag 'iversion-v4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux: (22 commits)
fs: handle inode->i_version more efficiently
btrfs: only dirty the inode in btrfs_update_time if something was changed
xfs: avoid setting XFS_ILOG_CORE if i_version doesn't need incrementing
fs: only set S_VERSION when updating times if necessary
IMA: switch IMA over to new i_version API
xfs: convert to new i_version API
ufs: use new i_version API
ocfs2: convert to new i_version API
nfsd: convert to new i_version API
nfs: convert to new i_version API
ext4: convert to new i_version API
ext2: convert to new i_version API
exofs: switch to new i_version API
btrfs: convert to new i_version API
afs: convert to new i_version API
affs: convert to new i_version API
fat: convert to new i_version API
fs: don't take the i_lock in inode_inc_iversion
fs: new API for handling inode->i_version
ntfs: remove i_version handling
...
For AFS, it's generally treated as an opaque value, so we use the
*_raw variants of the API here.
Note that AFS has quite a different definition for this counter. AFS
only increments it on changes to the data to the data in regular files
and contents of the directories. Inode metadata changes do not result
in a version increment.
We'll need to reconcile that somehow if we ever want to present this to
userspace via statx.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Repeating creation and deletion of a file on an afs mount will run the box
out of memory, e.g.:
dd if=/dev/zero of=/afs/scratch/m0 bs=$((1024*1024)) count=512
rm /afs/scratch/m0
The problem seems to be that it's not properly decrementing the nlink count
so that the inode can be scrapped.
Note that this doesn't fix local creation followed by remote deletion.
That's harder to handle and will require a separate patch as we're not told
that the file has been deleted - only that the directory has changed.
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Get rid of the afs_writeback record that kAFS is using to match keys with
writes made by that key.
Instead, keep a list of keys that have a file open for writing and/or
sync'ing and iterate through those.
Signed-off-by: David Howells <dhowells@redhat.com>
Introduce a file-private data record for kAFS and put the key into it
rather than storing the key in file->private_data.
Signed-off-by: David Howells <dhowells@redhat.com>
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul permit caching in AFS by making it per-vnode and sharing permit
lists where possible.
When most of the fileserver operations are called, they return a status
structure indicating the (revised) details of the vnode or vnodes involved
in the operation. This includes the access mark derived from the ACL
(named CallerAccess in the protocol definition file). This is cacheable
and if the ACL changes, the server will tell us that it is breaking the
callback promise, at which point we can discard the currently cached
permits.
With this patch, the afs_permits structure has, at the end, an array of
{ key, CallerAccess } elements, sorted by key pointer. This is then cached
in a hash table so that it can be shared between vnodes with the same
access permits.
Permit lists can only be shared if they contain the exact same set of
key->CallerAccess mappings.
Note that that table is global rather than being per-net_ns. If the keys
in a permit list cross net_ns boundaries, there is no problem sharing the
cached permits, since the permits are just integer masks.
Since permit lists pin keys, the permit cache also makes it easier for a
future patch to find all occurrences of a key and remove them by means of
setting the afs_permits::invalidated flag and then clearing the appropriate
key pointer. In such an event, memory barriers will need adding.
Lastly, the permit caching is skipped if the server has sent either a
vnode-specific or an entire-server callback since the start of the
operation.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul the AFS callback handling by the following means:
(1) Don't give up callback promises on vnodes that we are no longer using,
rather let them just expire on the server or let the server break
them. This is actually more efficient for the server as the callback
lookup is expensive if there are lots of extant callbacks.
(2) Only give up the callback promises we have from a server when the
server record is destroyed. Then we can just give up *all* the
callback promises on it in one go.
(3) Servers can end up being shared between cells if cells are aliased, so
don't add all the vnodes being backed by a particular server into a
big FID-indexed tree on that server as there may be duplicates.
Instead have each volume instance (~= superblock) register an interest
in a server as it starts to make use of it and use this to allow the
processor for callbacks from the server to find the superblock and
thence the inode corresponding to the FID being broken by means of
ilookup_nowait().
(4) Rather than iterating over the entire callback list when a mass-break
comes in from the server, maintain a counter of mass-breaks in
afs_server (cb_seq) and make afs_validate() check it against the copy
in afs_vnode.
It would be nice not to have to take a read_lock whilst doing this,
but that's tricky without using RCU.
(5) Save a ref on the fileserver we're using for a call in the afs_call
struct so that we can access its cb_s_break during call decoding.
(6) Write-lock around callback and status storage in a vnode and read-lock
around getattr so that we don't see the status mid-update.
This has the following consequences:
(1) Data invalidation isn't seen until someone calls afs_validate() on a
vnode. Unfortunately, we need to use a key to query the server, but
getting one from a background thread is tricky without caching loads
of keys all over the place.
(2) Mass invalidation isn't seen until someone calls afs_validate().
(3) Callback breaking is going to hit the inode_hash_lock quite a bit.
Could this be replaced with rcu_read_lock() since inodes are destroyed
under RCU conditions.
Signed-off-by: David Howells <dhowells@redhat.com>
Push the network namespace pointer to more places in AFS, including the
afs_server structure (which doesn't hold a ref on the netns).
In particular, afs_put_cell() now takes requires a net ns parameter so that
it can safely alter the netns after decrementing the cell usage count - the
cell will be deallocated by a background thread after being cached for a
period, which means that it's not safe to access it after reducing its
usage count.
Signed-off-by: David Howells <dhowells@redhat.com>
Add xattrs to allow the user to get/set metadata in lieu of having pioctl()
available. The following xattrs are now available:
- "afs.cell"
The name of the cell in which the vnode's volume resides.
- "afs.fid"
The volume ID, vnode ID and vnode uniquifier of the file as three hex
numbers separated by colons.
- "afs.volume"
The name of the volume in which the vnode resides.
For example:
# getfattr -d -m ".*" /mnt/scratch
getfattr: Removing leading '/' from absolute path names
# file: mnt/scratch
afs.cell="mycell.myorg.org"
afs.fid="10000b:1:1"
afs.volume="scratch"
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inode timestamps should be set from the client time
in the status received from the server, rather than the
server time which is meant for internal server use.
Set AFS_SET_MTIME and populate the mtime for operations
that take an input status, such as file/dir creation
and StoreData. If an input time is not provided the
server will set the vnode times based on the current server
time.
In a situation where the server has some skew with the
client, this could lead to the client seeing a timestamp
in the future for a file that it just created or wrote.
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
get_seconds() returns real wall-clock seconds. On 32-bit systems
this value will overflow in year 2038 and beyond. This patch changes
afs_vnode record to use ktime_get_real_seconds() instead, for the
fields cb_expires and cb_expires_at.
Signed-off-by: Tina Ruchandani <ruchandani.tina@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
The use of "rcu_assign_pointer()" is NULLing out the pointer.
According to RCU_INIT_POINTER()'s block comment:
"1. This use of RCU_INIT_POINTER() is NULLing out the pointer"
it is better to use it instead of rcu_assign_pointer() because it has a
smaller overhead.
The following Coccinelle semantic patch was used:
@@
@@
- rcu_assign_pointer
+ RCU_INIT_POINTER
(..., NULL)
Signed-off-by: Andreea-Cristina Bernat <bernat.ada@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
In AFS, mountpoints appear as symlinks with mode 0644 and normal symlinks
have mode 0777, so use this to distinguish them rather than reading the
content and parsing it. In the case of a mountpoint, the symlink body is a
formatted string indicating the location of the target volume.
Note that with this, kAFS no longer 'pre-fetches' the contents of symlinks,
so afs_readpage() may fail with an access-denial because when the VFS calls
d_automount(), it wraps the call in an credentials override that sets the
initial creds - thereby preventing access to the caller's keyrings and the
authentication keys held therein.
To this end, a patch reverting that change to the VFS is required also.
Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>