IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit ea0dfeb4209b4eab954d6e00ed136bc6b48b380d ]
Recent commit 71725ed10c40 ("mm: huge tmpfs: try to split_huge_page()
when punching hole") has allowed syzkaller to probe deeper, uncovering a
long-standing lockdep issue between the irq-unsafe shmlock_user_lock,
the irq-safe xa_lock on mapping->i_pages, and shmem inode's info->lock
which nests inside xa_lock (or tree_lock) since 4.8's shmem_uncharge().
user_shm_lock(), servicing SysV shmctl(SHM_LOCK), wants
shmlock_user_lock while its caller shmem_lock() holds info->lock with
interrupts disabled; but hugetlbfs_file_setup() calls user_shm_lock()
with interrupts enabled, and might be interrupted by a writeback endio
wanting xa_lock on i_pages.
This may not risk an actual deadlock, since shmem inodes do not take
part in writeback accounting, but there are several easy ways to avoid
it.
Requiring interrupts disabled for shmlock_user_lock would be easy, but
it's a high-level global lock for which that seems inappropriate.
Instead, recall that the use of info->lock to guard info->flags in
shmem_lock() dates from pre-3.1 days, when races with SHMEM_PAGEIN and
SHMEM_TRUNCATE could occur: nowadays it serves no purpose, the only flag
added or removed is VM_LOCKED itself, and calls to shmem_lock() an inode
are already serialized by the caller.
Take info->lock out of the chain and the possibility of deadlock or
lockdep warning goes away.
Fixes: 4595ef88d136 ("shmem: make shmem_inode_info::lock irq-safe")
Reported-by: syzbot+c8a8197c8852f566b9d9@syzkaller.appspotmail.com
Reported-by: syzbot+40b71e145e73f78f81ad@syzkaller.appspotmail.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2004161707410.16322@eggly.anvils
Link: https://lore.kernel.org/lkml/000000000000e5838c05a3152f53@google.com/
Link: https://lore.kernel.org/lkml/0000000000003712b305a331d3b1@google.com/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e84fe99b68ce353c37ceeecc95dce9696c976556 upstream.
Without CONFIG_PREEMPT, it can happen that we get soft lockups detected,
e.g., while booting up.
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:1]
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-next-20200331+ #4
Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
RIP: __pageblock_pfn_to_page+0x134/0x1c0
Call Trace:
set_zone_contiguous+0x56/0x70
page_alloc_init_late+0x166/0x176
kernel_init_freeable+0xfa/0x255
kernel_init+0xa/0x106
ret_from_fork+0x35/0x40
The issue becomes visible when having a lot of memory (e.g., 4TB)
assigned to a single NUMA node - a system that can easily be created
using QEMU. Inside VMs on a hypervisor with quite some memory
overcommit, this is fairly easy to trigger.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200416073417.5003-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bdebd6a2831b6fab69eb85cee74a8ba77f1a1cc2 upstream.
remap_vmalloc_range() has had various issues with the bounds checks it
promises to perform ("This function checks that addr is a valid
vmalloc'ed area, and that it is big enough to cover the vma") over time,
e.g.:
- not detecting pgoff<<PAGE_SHIFT overflow
- not detecting (pgoff<<PAGE_SHIFT)+usize overflow
- not checking whether addr and addr+(pgoff<<PAGE_SHIFT) are the same
vmalloc allocation
- comparing a potentially wildly out-of-bounds pointer with the end of
the vmalloc region
In particular, since commit fc9702273e2e ("bpf: Add mmap() support for
BPF_MAP_TYPE_ARRAY"), unprivileged users can cause kernel null pointer
dereferences by calling mmap() on a BPF map with a size that is bigger
than the distance from the start of the BPF map to the end of the
address space.
This could theoretically be used as a kernel ASLR bypass, by using
whether mmap() with a given offset oopses or returns an error code to
perform a binary search over the possible address range.
To allow remap_vmalloc_range_partial() to verify that addr and
addr+(pgoff<<PAGE_SHIFT) are in the same vmalloc region, pass the offset
to remap_vmalloc_range_partial() instead of adding it to the pointer in
remap_vmalloc_range().
In remap_vmalloc_range_partial(), fix the check against
get_vm_area_size() by using size comparisons instead of pointer
comparisons, and add checks for pgoff.
Fixes: 833423143c3a ("[PATCH] mm: introduce remap_vmalloc_range()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@chromium.org>
Link: http://lkml.kernel.org/r/20200415222312.236431-1-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8644772637deb121f7ac2df690cbf83fa63d3b70 upstream.
This patch replaces the size + 1 value introduced with the recent fix for 1
byte allocs with a constant value.
The idea here is to reduce code overhead as the previous logic would have
to read size into a register, then increment it, and write it back to
whatever field was being used. By using a constant we can avoid those
memory reads and arithmetic operations in favor of just encoding the
maximum value into the operation itself.
Fixes: 2c2ade81741c ("mm: page_alloc: fix ref bias in page_frag_alloc() for 1-byte allocs")
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aa9f7d5172fac9bf1f09e678c35e287a40a7b7dd upstream.
Using an empty (malformed) nodelist that is not caught during mount option
parsing leads to a stack-out-of-bounds access.
The option string that was used was: "mpol=prefer:,". However,
MPOL_PREFERRED requires a single node number, which is not being provided
here.
Add a check that 'nodes' is not empty after parsing for MPOL_PREFERRED's
nodeid.
Fixes: 095f1fc4ebf3 ("mempolicy: rework shmem mpol parsing and display")
Reported-by: Entropy Moe <3ntr0py1337@gmail.com>
Reported-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Link: http://lkml.kernel.org/r/89526377-7eb6-b662-e1d8-4430928abde9@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 763802b53a427ed3cbd419dbba255c414fdd9e7c upstream.
Commit 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in
__purge_vmap_area_lazy()") introduced a call to vmalloc_sync_all() in
the vunmap() code-path. While this change was necessary to maintain
correctness on x86-32-pae kernels, it also adds additional cycles for
architectures that don't need it.
Specifically on x86-64 with CONFIG_VMAP_STACK=y some people reported
severe performance regressions in micro-benchmarks because it now also
calls the x86-64 implementation of vmalloc_sync_all() on vunmap(). But
the vmalloc_sync_all() implementation on x86-64 is only needed for newly
created mappings.
To avoid the unnecessary work on x86-64 and to gain the performance
back, split up vmalloc_sync_all() into two functions:
* vmalloc_sync_mappings(), and
* vmalloc_sync_unmappings()
Most call-sites to vmalloc_sync_all() only care about new mappings being
synchronized. The only exception is the new call-site added in the
above mentioned commit.
Shile Zhang directed us to a report of an 80% regression in reaim
throughput.
Fixes: 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [GHES]
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20191009124418.8286-1-joro@8bytes.org
Link: https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/4D3JPPHBNOSPFK2KEPC6KGKS6J25AIDB/
Link: http://lkml.kernel.org/r/20191113095530.228959-1-shile.zhang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0715e6c516f106ed553828a671d30ad9a3431536 upstream.
Sachin reports [1] a crash in SLUB __slab_alloc():
BUG: Kernel NULL pointer dereference on read at 0x000073b0
Faulting instruction address: 0xc0000000003d55f4
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 19 PID: 1 Comm: systemd Not tainted 5.6.0-rc2-next-20200218-autotest #1
NIP: c0000000003d55f4 LR: c0000000003d5b94 CTR: 0000000000000000
REGS: c0000008b37836d0 TRAP: 0300 Not tainted (5.6.0-rc2-next-20200218-autotest)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24004844 XER: 00000000
CFAR: c00000000000dec4 DAR: 00000000000073b0 DSISR: 40000000 IRQMASK: 1
GPR00: c0000000003d5b94 c0000008b3783960 c00000000155d400 c0000008b301f500
GPR04: 0000000000000dc0 0000000000000002 c0000000003443d8 c0000008bb398620
GPR08: 00000008ba2f0000 0000000000000001 0000000000000000 0000000000000000
GPR12: 0000000024004844 c00000001ec52a00 0000000000000000 0000000000000000
GPR16: c0000008a1b20048 c000000001595898 c000000001750c18 0000000000000002
GPR20: c000000001750c28 c000000001624470 0000000fffffffe0 5deadbeef0000122
GPR24: 0000000000000001 0000000000000dc0 0000000000000002 c0000000003443d8
GPR28: c0000008b301f500 c0000008bb398620 0000000000000000 c00c000002287180
NIP ___slab_alloc+0x1f4/0x760
LR __slab_alloc+0x34/0x60
Call Trace:
___slab_alloc+0x334/0x760 (unreliable)
__slab_alloc+0x34/0x60
__kmalloc_node+0x110/0x490
kvmalloc_node+0x58/0x110
mem_cgroup_css_online+0x108/0x270
online_css+0x48/0xd0
cgroup_apply_control_enable+0x2ec/0x4d0
cgroup_mkdir+0x228/0x5f0
kernfs_iop_mkdir+0x90/0xf0
vfs_mkdir+0x110/0x230
do_mkdirat+0xb0/0x1a0
system_call+0x5c/0x68
This is a PowerPC platform with following NUMA topology:
available: 2 nodes (0-1)
node 0 cpus:
node 0 size: 0 MB
node 0 free: 0 MB
node 1 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
node 1 size: 35247 MB
node 1 free: 30907 MB
node distances:
node 0 1
0: 10 40
1: 40 10
possible numa nodes: 0-31
This only happens with a mmotm patch "mm/memcontrol.c: allocate
shrinker_map on appropriate NUMA node" [2] which effectively calls
kmalloc_node for each possible node. SLUB however only allocates
kmem_cache_node on online N_NORMAL_MEMORY nodes, and relies on
node_to_mem_node to return such valid node for other nodes since commit
a561ce00b09e ("slub: fall back to node_to_mem_node() node if allocating
on memoryless node"). This is however not true in this configuration
where the _node_numa_mem_ array is not initialized for nodes 0 and 2-31,
thus it contains zeroes and get_partial() ends up accessing
non-allocated kmem_cache_node.
A related issue was reported by Bharata (originally by Ramachandran) [3]
where a similar PowerPC configuration, but with mainline kernel without
patch [2] ends up allocating large amounts of pages by kmalloc-1k
kmalloc-512. This seems to have the same underlying issue with
node_to_mem_node() not behaving as expected, and might probably also
lead to an infinite loop with CONFIG_SLUB_CPU_PARTIAL [4].
This patch should fix both issues by not relying on node_to_mem_node()
anymore and instead simply falling back to NUMA_NO_NODE, when
kmalloc_node(node) is attempted for a node that's not online, or has no
usable memory. The "usable memory" condition is also changed from
node_present_pages() to N_NORMAL_MEMORY node state, as that is exactly
the condition that SLUB uses to allocate kmem_cache_node structures.
The check in get_partial() is removed completely, as the checks in
___slab_alloc() are now sufficient to prevent get_partial() being
reached with an invalid node.
[1] https://lore.kernel.org/linux-next/3381CD91-AB3D-4773-BA04-E7A072A63968@linux.vnet.ibm.com/
[2] https://lore.kernel.org/linux-mm/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com/
[3] https://lore.kernel.org/linux-mm/20200317092624.GB22538@in.ibm.com/
[4] https://lore.kernel.org/linux-mm/088b5996-faae-8a56-ef9c-5b567125ae54@suse.cz/
Fixes: a561ce00b09e ("slub: fall back to node_to_mem_node() node if allocating on memoryless node")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reported-by: PUVICHAKRAVARTHY RAMACHANDRAN <puvichakravarthy@in.ibm.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200320115533.9604-1-vbabka@suse.cz
Debugged-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5076190daded2197f62fe92cf69674488be44175 upstream.
This is just a cleanup addition to Jann's fix to properly update the
transaction ID for the slub slowpath in commit fd4d9c7d0c71 ("mm: slub:
add missing TID bump..").
The transaction ID is what protects us against any concurrent accesses,
but we should really also make sure to make the 'freelist' comparison
itself always use the same freelist value that we then used as the new
next free pointer.
Jann points out that if we do all of this carefully, we could skip the
transaction ID update for all the paths that only remove entries from
the lists, and only update the TID when adding entries (to avoid the ABA
issue with cmpxchg and list handling re-adding a previously seen value).
But this patch just does the "make sure to cmpxchg the same value we
used" rather than then try to be clever.
Acked-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7d36665a5886c27ca4c4d0afd3ecc50b400f3587 upstream.
An eventfd monitors multiple memory thresholds of the cgroup, closes them,
the kernel deletes all events related to this eventfd. Before all events
are deleted, another eventfd monitors the memory threshold of this cgroup,
leading to a crash:
BUG: kernel NULL pointer dereference, address: 0000000000000004
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0
Oops: 0002 [#1] SMP PTI
CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3
Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014
Workqueue: events memcg_event_remove
RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190
RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001
RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001
RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010
R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880
R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0
Call Trace:
memcg_event_remove+0x32/0x90
process_one_work+0x172/0x380
worker_thread+0x49/0x3f0
kthread+0xf8/0x130
ret_from_fork+0x35/0x40
CR2: 0000000000000004
We can reproduce this problem in the following ways:
1. We create a new cgroup subdirectory and a new eventfd, and then we
monitor multiple memory thresholds of the cgroup through this eventfd.
2. closing this eventfd, and __mem_cgroup_usage_unregister_event ()
will be called multiple times to delete all events related to this
eventfd.
The first time __mem_cgroup_usage_unregister_event() is called, the
kernel will clear all items related to this eventfd in thresholds->
primary.
Since there is currently only one eventfd, thresholds-> primary becomes
empty, so the kernel will set thresholds-> primary and hresholds-> spare
to NULL. If at this time, the user creates a new eventfd and monitor
the memory threshold of this cgroup, kernel will re-initialize
thresholds-> primary.
Then when __mem_cgroup_usage_unregister_event () is called for the
second time, because thresholds-> primary is not empty, the system will
access thresholds-> spare, but thresholds-> spare is NULL, which will
trigger a crash.
In general, the longer it takes to delete all events related to this
eventfd, the easier it is to trigger this problem.
The solution is to check whether the thresholds associated with the
eventfd has been cleared when deleting the event. If so, we do nothing.
[akpm@linux-foundation.org: fix comment, per Kirill]
Fixes: 907860ed381a ("cgroups: make cftype.unregister_event() void-returning")
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fd4d9c7d0c71866ec0c2825189ebd2ce35bd95b8 upstream.
When kmem_cache_alloc_bulk() attempts to allocate N objects from a percpu
freelist of length M, and N > M > 0, it will first remove the M elements
from the percpu freelist, then call ___slab_alloc() to allocate the next
element and repopulate the percpu freelist. ___slab_alloc() can re-enable
IRQs via allocate_slab(), so the TID must be bumped before ___slab_alloc()
to properly commit the freelist head change.
Fix it by unconditionally bumping c->tid when entering the slowpath.
Cc: stable@vger.kernel.org
Fixes: ebe909e0fdb3 ("slub: improve bulk alloc strategy")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e876ecc67db80dfdb8e237f71e5b43bb88ae549c ]
We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.
mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.
Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.
WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
CPU: 70 PID: 12720 Comm: ssh Tainted: 5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
<IRQ>
dump_stack+0x57/0x75
mem_cgroup_sk_alloc+0xe9/0xf0
sk_clone_lock+0x2a7/0x420
inet_csk_clone_lock+0x1b/0x110
tcp_create_openreq_child+0x23/0x3b0
tcp_v6_syn_recv_sock+0x88/0x730
tcp_check_req+0x429/0x560
tcp_v6_rcv+0x72d/0xa40
ip6_protocol_deliver_rcu+0xc9/0x400
ip6_input+0x44/0xd0
? ip6_protocol_deliver_rcu+0x400/0x400
ip6_rcv_finish+0x71/0x80
ipv6_rcv+0x5b/0xe0
? ip6_sublist_rcv+0x2e0/0x2e0
process_backlog+0x108/0x1e0
net_rx_action+0x26b/0x460
__do_softirq+0x104/0x2a6
do_softirq_own_stack+0x2a/0x40
</IRQ>
do_softirq.part.19+0x40/0x50
__local_bh_enable_ip+0x51/0x60
ip6_finish_output2+0x23d/0x520
? ip6table_mangle_hook+0x55/0x160
__ip6_finish_output+0xa1/0x100
ip6_finish_output+0x30/0xd0
ip6_output+0x73/0x120
? __ip6_finish_output+0x100/0x100
ip6_xmit+0x2e3/0x600
? ipv6_anycast_cleanup+0x50/0x50
? inet6_csk_route_socket+0x136/0x1e0
? skb_free_head+0x1e/0x30
inet6_csk_xmit+0x95/0xf0
__tcp_transmit_skb+0x5b4/0xb20
__tcp_send_ack.part.60+0xa3/0x110
tcp_send_ack+0x1d/0x20
tcp_rcv_state_process+0xe64/0xe80
? tcp_v6_connect+0x5d1/0x5f0
tcp_v6_do_rcv+0x1b1/0x3f0
? tcp_v6_do_rcv+0x1b1/0x3f0
__release_sock+0x7f/0xd0
release_sock+0x30/0xa0
__inet_stream_connect+0x1c3/0x3b0
? prepare_to_wait+0xb0/0xb0
inet_stream_connect+0x3b/0x60
__sys_connect+0x101/0x120
? __sys_getsockopt+0x11b/0x140
__x64_sys_connect+0x1a/0x20
do_syscall_64+0x51/0x200
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d7580738345 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d7242 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cb829624867b5ab10bc6a7036d183b1b82bfe9f8 upstream.
The page could be a tail page, if this is the case, this BUG_ON will
never be triggered.
Link: http://lkml.kernel.org/r/20200110032610.26499-1-richardw.yang@linux.intel.com
Fixes: e9b61f19858a ("thp: reintroduce split_huge_page()")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c7a91bc7c2e17e0a9c8b9745a2cb118891218fd1 upstream.
What we are trying to do is change the '=' character to a NUL terminator
and then at the end of the function we restore it back to an '='. The
problem is there are two error paths where we jump to the end of the
function before we have replaced the '=' with NUL.
We end up putting the '=' in the wrong place (possibly one element
before the start of the buffer).
Link: http://lkml.kernel.org/r/20200115055426.vdjwvry44nfug7yy@kili.mountain
Reported-by: syzbot+e64a13c5369a194d67df@syzkaller.appspotmail.com
Fixes: 095f1fc4ebf3 ("mempolicy: rework shmem mpol parsing and display")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d9e8c651dd979aa666bee15f086745f3ea9c4b3 upstream.
Patch series "use div64_ul() instead of div_u64() if the divisor is
unsigned long".
We were first inspired by commit b0ab99e7736a ("sched: Fix possible divide
by zero in avg_atom () calculation"), then refer to the recently analyzed
mm code, we found this suspicious place.
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
And we also disassembled and confirmed it:
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 201
0xffffffff811c37da <__wb_calc_thresh+234>: xor %r10d,%r10d
0xffffffff811c37dd <__wb_calc_thresh+237>: test %rax,%rax
0xffffffff811c37e0 <__wb_calc_thresh+240>: je 0xffffffff811c3800 <__wb_calc_thresh+272>
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 202
0xffffffff811c37e2 <__wb_calc_thresh+242>: imul %r8,%rax
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 203
0xffffffff811c37e6 <__wb_calc_thresh+246>: mov %r9d,%r10d ---> truncates it to 32 bits here
0xffffffff811c37e9 <__wb_calc_thresh+249>: xor %edx,%edx
0xffffffff811c37eb <__wb_calc_thresh+251>: div %r10
0xffffffff811c37ee <__wb_calc_thresh+254>: imul %rbx,%rax
0xffffffff811c37f2 <__wb_calc_thresh+258>: shr $0x2,%rax
0xffffffff811c37f6 <__wb_calc_thresh+262>: mul %rcx
0xffffffff811c37f9 <__wb_calc_thresh+265>: shr $0x2,%rdx
0xffffffff811c37fd <__wb_calc_thresh+269>: mov %rdx,%r10
This series uses div64_ul() instead of div_u64() if the divisor is
unsigned long, to avoid truncation to 32-bit on 64-bit platforms.
This patch (of 3):
The variables 'min' and 'max' are unsigned long and do_div truncates
them to 32 bits, which means it can test non-zero and be truncated to
zero for division. Fix this issue by using div64_ul() instead.
Link: http://lkml.kernel.org/r/20200102081442.8273-2-wenyang@linux.alibaba.com
Fixes: 693108a8a667 ("writeback: make bdi->min/max_ratio handling cgroup writeback aware")
Signed-off-by: Wen Yang <wenyang@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 24cecc37746393432d994c0dbc251fb9ac7c5d72 upstream.
The ARMv8 64-bit architecture supports execute-only user permissions by
clearing the PTE_USER and PTE_UXN bits, practically making it a mostly
privileged mapping but from which user running at EL0 can still execute.
The downside, however, is that the kernel at EL1 inadvertently reading
such mapping would not trip over the PAN (privileged access never)
protection.
Revert the relevant bits from commit cab15ce604e5 ("arm64: Introduce
execute-only page access permissions") so that PROT_EXEC implies
PROT_READ (and therefore PTE_USER) until the architecture gains proper
support for execute-only user mappings.
Fixes: cab15ce604e5 ("arm64: Introduce execute-only page access permissions")
Cc: <stable@vger.kernel.org> # 4.9.x-
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ac8f05da5174c560de122c499ce5dfb5d0dfbee5 upstream.
When zspage is migrated to the other zone, the zone page state should be
updated as well, otherwise the NR_ZSPAGE for each zone shows wrong
counts including proc/zoneinfo in practice.
Link: http://lkml.kernel.org/r/1575434841-48009-1-git-send-email-chanho.min@lge.com
Fixes: 91537fee0013 ("mm: add NR_ZSMALLOC to vmstat")
Signed-off-by: Chanho Min <chanho.min@lge.com>
Signed-off-by: Jinsuk Choi <jjinsuk.choi@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aa71ecd8d86500da6081a72da6b0b524007e0627 upstream.
In 64bit system. sb->s_maxbytes of shmem filesystem is MAX_LFS_FILESIZE,
which equal LLONG_MAX.
If offset > LLONG_MAX - PAGE_SIZE, offset + len < LLONG_MAX in
shmem_fallocate, which will pass the checking in vfs_fallocate.
/* Check for wrap through zero too */
if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0))
return -EFBIG;
loff_t unmap_start = round_up(offset, PAGE_SIZE) in shmem_fallocate
causes a overflow.
Syzkaller reports a overflow problem in mm/shmem:
UBSAN: Undefined behaviour in mm/shmem.c:2014:10
signed integer overflow: '9223372036854775807 + 1' cannot be represented in type 'long long int'
CPU: 0 PID:17076 Comm: syz-executor0 Not tainted 4.1.46+ #1
Hardware name: linux, dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2c8 arch/arm64/kernel/traps.c:100
show_stack+0x20/0x30 arch/arm64/kernel/traps.c:238
__dump_stack lib/dump_stack.c:15 [inline]
ubsan_epilogue+0x18/0x70 lib/ubsan.c:164
handle_overflow+0x158/0x1b0 lib/ubsan.c:195
shmem_fallocate+0x6d0/0x820 mm/shmem.c:2104
vfs_fallocate+0x238/0x428 fs/open.c:312
SYSC_fallocate fs/open.c:335 [inline]
SyS_fallocate+0x54/0xc8 fs/open.c:239
The highest bit of unmap_start will be appended with sign bit 1
(overflow) when calculate shmem_falloc.start:
shmem_falloc.start = unmap_start >> PAGE_SHIFT.
Fix it by casting the type of unmap_start to u64, when right shifted.
This bug is found in LTS Linux 4.1. It also seems to exist in mainline.
Link: http://lkml.kernel.org/r/1573867464-5107-1-git-send-email-chenjun102@huawei.com
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8b09549c2bfd9f3f8f4cdad74107ef4f4ff9cdd7 ]
Commit fa5e084e43eb ("vmscan: do not unconditionally treat zones that
fail zone_reclaim() as full") changed the return value of
node_reclaim(). The original return value 0 means NODE_RECLAIM_SOME
after this commit.
While the return value of node_reclaim() when CONFIG_NUMA is n is not
changed. This will leads to call zone_watermark_ok() again.
This patch fixes the return value by adjusting to NODE_RECLAIM_NOSCAN.
Since node_reclaim() is only called in page_alloc.c, move it to
mm/internal.h.
Link: http://lkml.kernel.org/r/20181113080436.22078-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8df1d0e4a265f25dc1e7e7624ccdbcb4a6630c89 ]
add_memory() currently does not take the device_hotplug_lock, however
is aleady called under the lock from
arch/powerpc/platforms/pseries/hotplug-memory.c
drivers/acpi/acpi_memhotplug.c
to synchronize against CPU hot-remove and similar.
In general, we should hold the device_hotplug_lock when adding memory to
synchronize against online/offline request (e.g. from user space) - which
already resulted in lock inversions due to device_lock() and
mem_hotplug_lock - see 30467e0b3be ("mm, hotplug: fix concurrent memory
hot-add deadlock"). add_memory()/add_memory_resource() will create memory
block devices, so this really feels like the right thing to do.
Holding the device_hotplug_lock makes sure that a memory block device
can really only be accessed (e.g. via .online/.state) from user space,
once the memory has been fully added to the system.
The lock is not held yet in
drivers/xen/balloon.c
arch/powerpc/platforms/powernv/memtrace.c
drivers/s390/char/sclp_cmd.c
drivers/hv/hv_balloon.c
So, let's either use the locked variants or take the lock.
Don't export add_memory_resource(), as it once was exported to be used by
XEN, which is never built as a module. If somebody requires it, we also
have to export a locked variant (as device_hotplug_lock is never
exported).
Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 ]
We've recently seen a workload on XFS filesystems with a repeatable
deadlock between background writeback and a multi-process application
doing concurrent writes and fsyncs to a small range of a file.
range_cyclic
writeback Process 1 Process 2
xfs_vm_writepages
write_cache_pages
writeback_index = 2
cycled = 0
....
find page 2 dirty
lock Page 2
->writepage
page 2 writeback
page 2 clean
page 2 added to bio
no more pages
write()
locks page 1
dirties page 1
locks page 2
dirties page 1
fsync()
....
xfs_vm_writepages
write_cache_pages
start index 0
find page 1 towrite
lock Page 1
->writepage
page 1 writeback
page 1 clean
page 1 added to bio
find page 2 towrite
lock Page 2
page 2 is writeback
<blocks>
write()
locks page 1
dirties page 1
fsync()
....
xfs_vm_writepages
write_cache_pages
start index 0
!done && !cycled
sets index to 0, restarts lookup
find page 1 dirty
find page 1 towrite
lock Page 1
page 1 is writeback
<blocks>
lock Page 1
<blocks>
DEADLOCK because:
- process 1 needs page 2 writeback to complete to make
enough progress to issue IO pending for page 1
- writeback needs page 1 writeback to complete so process 2
can progress and unlock the page it is blocked on, then it
can issue the IO pending for page 2
- process 2 can't make progress until process 1 issues IO
for page 1
The underlying cause of the problem here is that range_cyclic writeback is
processing pages in descending index order as we hold higher index pages
in a structure controlled from above write_cache_pages(). The
write_cache_pages() caller needs to be able to submit these pages for IO
before write_cache_pages restarts writeback at mapping index 0 to avoid
wcp inverting the page lock/writeback wait order.
generic_writepages() is not susceptible to this bug as it has no private
context held across write_cache_pages() - filesystems using this
infrastructure always submit pages in ->writepage immediately and so there
is no problem with range_cyclic going back to mapping index 0.
However:
mpage_writepages() has a private bio context,
exofs_writepages() has page_collect
fuse_writepages() has fuse_fill_wb_data
nfs_writepages() has nfs_pageio_descriptor
xfs_vm_writepages() has xfs_writepage_ctx
All of these ->writepages implementations can hold pages under writeback
in their private structures until write_cache_pages() returns, and hence
they are all susceptible to this deadlock.
Also worth noting is that ext4 has it's own bastardised version of
write_cache_pages() and so it /may/ have an equivalent deadlock. I looked
at the code long enough to understand that it has a similar retry loop for
range_cyclic writeback reaching the end of the file and then promptly ran
away before my eyes bled too much. I'll leave it for the ext4 developers
to determine if their code is actually has this deadlock and how to fix it
if it has.
There's a few ways I can see avoid this deadlock. There's probably more,
but these are the first I've though of:
1. get rid of range_cyclic altogether
2. range_cyclic always stops at EOF, and we start again from
writeback index 0 on the next call into write_cache_pages()
2a. wcp also returns EAGAIN to ->writepages implementations to
indicate range cyclic has hit EOF. writepages implementations can
then flush the current context and call wpc again to continue. i.e.
lift the retry into the ->writepages implementation
3. range_cyclic uses trylock_page() rather than lock_page(), and it
skips pages it can't lock without blocking. It will already do this
for pages under writeback, so this seems like a no-brainer
3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid
blocking as per pages under writeback.
I don't think #1 is an option - range_cyclic prevents frequently
dirtied lower file offset from starving background writeback of
rarely touched higher file offsets.
#2 is simple, and I don't think it will have any impact on
performance as going back to the start of the file implies an
immediate seek. We'll have exactly the same number of seeks if we
switch writeback to another inode, and then come back to this one
later and restart from index 0.
#2a is pretty much "status quo without the deadlock". Moving the
retry loop up into the wcp caller means we can issue IO on the
pending pages before calling wcp again, and so avoid locking or
waiting on pages in the wrong order. I'm not convinced we need to do
this given that we get the same thing from #2 on the next writeback
call from the writeback infrastructure.
#3 is really just a band-aid - it doesn't fix the access/wait
inversion problem, just prevents it from becoming a deadlock
situation. I'd prefer we fix the inversion, not sweep it under the
carpet like this.
#3a is really an optimisation that just so happens to include the
band-aid fix of #3.
So it seems that the simplest way to fix this issue is to implement
solution #2
Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 9a63236f1ad82d71a98aa80320b6cb618fb32f44 upstream.
It's possible to hit the WARN_ON_ONCE(page_mapped(page)) in
remove_stable_node() when it races with __mmput() and squeezes in
between ksm_exit() and exit_mmap().
WARNING: CPU: 0 PID: 3295 at mm/ksm.c:888 remove_stable_node+0x10c/0x150
Call Trace:
remove_all_stable_nodes+0x12b/0x330
run_store+0x4ef/0x7b0
kernfs_fop_write+0x200/0x420
vfs_write+0x154/0x450
ksys_write+0xf9/0x1d0
do_syscall_64+0x99/0x510
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Remove the warning as there is nothing scary going on.
Link: http://lkml.kernel.org/r/20191119131850.5675-1-aryabinin@virtuozzo.com
Fixes: cbf86cfe04a6 ("ksm: remove old stable nodes more thoroughly")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The commit 3ce6b467b9b2 ("memfd: Fix locking when tagging pins")
introduces the following warning messages.
*WARNING: suspicious RCU usage in memfd_wait_for_pins*
It is because we still use radix_tree_deref_slot without read_rcu_lock.
We should use radix_tree_deref_slot_protected instead in the case.
Cc: stable@vger.kernel.org
Fixes: 3ce6b467b9b2 ("memfd: Fix locking when tagging pins")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0362f326d86c645b5e96b7dbc3ee515986ed019d upstream.
An exiting task might belong to an offline cgroup. In this case an
attempt to grab a cgroup reference from the task can end up with an
infinite loop in hugetlb_cgroup_charge_cgroup(), because neither the
cgroup will become online, neither the task will be migrated to a live
cgroup.
Fix this by switching over to css_tryget(). As css_tryget_online()
can't guarantee that the cgroup won't go offline, in most cases the
check doesn't make sense. In this particular case users of
hugetlb_cgroup_charge_cgroup() are not affected by this change.
A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").
Link: http://lkml.kernel.org/r/20191106225131.3543616-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 00d484f354d85845991b40141d40ba9e5eb60faf upstream.
We've encountered a rcu stall in get_mem_cgroup_from_mm():
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017
(t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33
<...>
RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90
<...>
__memcg_kmem_charge+0x55/0x140
__alloc_pages_nodemask+0x267/0x320
pipe_write+0x1ad/0x400
new_sync_write+0x127/0x1c0
__kernel_write+0x4f/0xf0
dump_emit+0x91/0xc0
writenote+0xa0/0xc0
elf_core_dump+0x11af/0x1430
do_coredump+0xc65/0xee0
get_signal+0x132/0x7c0
do_signal+0x36/0x640
exit_to_usermode_loop+0x61/0xd0
do_syscall_64+0xd4/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The problem is caused by an exiting task which is associated with an
offline memcg. We're iterating over and over in the do {} while
(!css_tryget_online()) loop, but obviously the memcg won't become online
and the exiting task won't be migrated to a live memcg.
Let's fix it by switching from css_tryget_online() to css_tryget().
As css_tryget_online() cannot guarantee that the memcg won't go offline,
the check is usually useless, except some rare cases when for example it
determines if something should be presented to a user.
A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").
Johannes:
: The bug aside, it doesn't matter whether the cgroup is online for the
: callers. It used to matter when offlining needed to evacuate all charges
: from the memcg, and so needed to prevent new ones from showing up, but we
: don't care now.
Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeeb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c3aab9a0bd91b696a852169479b7db1ece6cbf8c upstream.
Functions like filemap_write_and_wait_range() should do nothing if inode
has no dirty pages or pages currently under writeback. But they anyway
construct struct writeback_control and this does some atomic operations if
CONFIG_CGROUP_WRITEBACK=y - on fast path it locks inode->i_lock and
updates state of writeback ownership, on slow path might be more work.
Current this path is safely avoided only when inode mapping has no pages.
For example generic_file_read_iter() calls filemap_write_and_wait_range()
at each O_DIRECT read - pretty hot path.
This patch skips starting new writeback if mapping has no dirty tags set.
If writeback is already in progress filemap_write_and_wait_range() will
wait for it.
Link: http://lkml.kernel.org/r/156378816804.1087.8607636317907921438.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit abaed0112c1db08be15a784a2c5c8a8b3063cdd3 upstream.
/proc/pagetypeinfo is a debugging tool to examine internal page
allocator state wrt to fragmentation. It is not very useful for any
other use so normal users really do not need to read this file.
Waiman Long has noticed that reading this file can have negative side
effects because zone->lock is necessary for gathering data and that a)
interferes with the page allocator and its users and b) can lead to hard
lockups on large machines which have very long free_list.
Reduce both issues by simply not exporting the file to regular users.
Link: http://lkml.kernel.org/r/20191025072610.18526-2-mhocko@kernel.org
Fixes: 467c996c1e19 ("Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Waiman Long <longman@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Jann Horn <jannh@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e4f8e513c3d353c134ad4eef9fd0bba12406c7c8 upstream.
A long time ago we fixed a similar deadlock in show_slab_objects() [1].
However, it is apparently due to the commits like 01fb58bcba63 ("slab:
remove synchronous synchronize_sched() from memcg cache deactivation
path") and 03afc0e25f7f ("slab: get_online_mems for
kmem_cache_{create,destroy,shrink}"), this kind of deadlock is back by
just reading files in /sys/kernel/slab which will generate a lockdep
splat below.
Since the "mem_hotplug_lock" here is only to obtain a stable online node
mask while racing with NUMA node hotplug, in the worst case, the results
may me miscalculated while doing NUMA node hotplug, but they shall be
corrected by later reads of the same files.
WARNING: possible circular locking dependency detected
------------------------------------------------------
cat/5224 is trying to acquire lock:
ffff900012ac3120 (mem_hotplug_lock.rw_sem){++++}, at:
show_slab_objects+0x94/0x3a8
but task is already holding lock:
b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (kn->count#45){++++}:
lock_acquire+0x31c/0x360
__kernfs_remove+0x290/0x490
kernfs_remove+0x30/0x44
sysfs_remove_dir+0x70/0x88
kobject_del+0x50/0xb0
sysfs_slab_unlink+0x2c/0x38
shutdown_cache+0xa0/0xf0
kmemcg_cache_shutdown_fn+0x1c/0x34
kmemcg_workfn+0x44/0x64
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #1 (slab_mutex){+.+.}:
lock_acquire+0x31c/0x360
__mutex_lock_common+0x16c/0xf78
mutex_lock_nested+0x40/0x50
memcg_create_kmem_cache+0x38/0x16c
memcg_kmem_cache_create_func+0x3c/0x70
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #0 (mem_hotplug_lock.rw_sem){++++}:
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
other info that might help us debug this:
Chain exists of:
mem_hotplug_lock.rw_sem --> slab_mutex --> kn->count#45
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(kn->count#45);
lock(slab_mutex);
lock(kn->count#45);
lock(mem_hotplug_lock.rw_sem);
*** DEADLOCK ***
3 locks held by cat/5224:
#0: 9eff00095b14b2a0 (&p->lock){+.+.}, at: seq_read+0x4c/0x8a8
#1: 0eff008997041480 (&of->mutex){+.+.}, at: kernfs_seq_start+0x34/0xf0
#2: b8ff009693eee398 (kn->count#45){++++}, at:
kernfs_seq_start+0x44/0xf0
stack backtrace:
Call trace:
dump_backtrace+0x0/0x248
show_stack+0x20/0x2c
dump_stack+0xd0/0x140
print_circular_bug+0x368/0x380
check_noncircular+0x248/0x250
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
I think it is important to mention that this doesn't expose the
show_slab_objects to use-after-free. There is only a single path that
might really race here and that is the slab hotplug notifier callback
__kmem_cache_shrink (via slab_mem_going_offline_callback) but that path
doesn't really destroy kmem_cache_node data structures.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.0/02850.html
[akpm@linux-foundation.org: add comment explaining why we don't need mem_hotplug_lock]
Link: http://lkml.kernel.org/r/1570192309-10132-1-git-send-email-cai@lca.pw
Fixes: 01fb58bcba63 ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path")
Fixes: 03afc0e25f7f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The RCU lock is insufficient to protect the radix tree iteration as
a deletion from the tree can occur before we take the spinlock to
tag the entry. In 4.19, this has manifested as a bug with the following
trace:
kernel BUG at lib/radix-tree.c:1429!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 7 PID: 6935 Comm: syz-executor.2 Not tainted 4.19.36 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:radix_tree_tag_set+0x200/0x2f0 lib/radix-tree.c:1429
Code: 00 00 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 89 44 24 10 e8 a3 29 7e fe 48 8b 44 24 10 48 0f ab 03 e9 d2 fe ff ff e8 90 29 7e fe <0f> 0b 48 c7 c7 e0 5a 87 84 e8 f0 e7 08 ff 4c 89 ef e8 4a ff ac fe
RSP: 0018:ffff88837b13fb60 EFLAGS: 00010016
RAX: 0000000000040000 RBX: ffff8883c5515d58 RCX: ffffffff82cb2ef0
RDX: 0000000000000b72 RSI: ffffc90004cf2000 RDI: ffff8883c5515d98
RBP: ffff88837b13fb98 R08: ffffed106f627f7e R09: ffffed106f627f7e
R10: 0000000000000001 R11: ffffed106f627f7d R12: 0000000000000004
R13: ffffea000d7fea80 R14: 1ffff1106f627f6f R15: 0000000000000002
FS: 00007fa1b8df2700(0000) GS:ffff8883e2fc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa1b8df1db8 CR3: 000000037d4d2001 CR4: 0000000000160ee0
Call Trace:
memfd_tag_pins mm/memfd.c:51 [inline]
memfd_wait_for_pins+0x2c5/0x12d0 mm/memfd.c:81
memfd_add_seals mm/memfd.c:215 [inline]
memfd_fcntl+0x33d/0x4a0 mm/memfd.c:247
do_fcntl+0x589/0xeb0 fs/fcntl.c:421
__do_sys_fcntl fs/fcntl.c:463 [inline]
__se_sys_fcntl fs/fcntl.c:448 [inline]
__x64_sys_fcntl+0x12d/0x180 fs/fcntl.c:448
do_syscall_64+0xc8/0x580 arch/x86/entry/common.c:293
The problem does not occur in mainline due to the XArray rewrite which
changed the locking to exclude modification of the tree during iteration.
At the time, nobody realised this was a bugfix. Backport the locking
changes to stable.
Cc: stable@vger.kernel.org
Reported-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 314eed30ede02fa925990f535652254b5bad6b65 upstream.
When running on a system with >512MB RAM with a 32-bit kernel built with:
CONFIG_DEBUG_VIRTUAL=y
CONFIG_HIGHMEM=y
CONFIG_HARDENED_USERCOPY=y
all execve()s will fail due to argv copying into kmap()ed pages, and on
usercopy checking the calls ultimately of virt_to_page() will be looking
for "bad" kmap (highmem) pointers due to CONFIG_DEBUG_VIRTUAL=y:
------------[ cut here ]------------
kernel BUG at ../arch/x86/mm/physaddr.c:83!
invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.3.0-rc8 #6
Hardware name: Dell Inc. Inspiron 1318/0C236D, BIOS A04 01/15/2009
EIP: __phys_addr+0xaf/0x100
...
Call Trace:
__check_object_size+0xaf/0x3c0
? __might_sleep+0x80/0xa0
copy_strings+0x1c2/0x370
copy_strings_kernel+0x2b/0x40
__do_execve_file+0x4ca/0x810
? kmem_cache_alloc+0x1c7/0x370
do_execve+0x1b/0x20
...
The check is from arch/x86/mm/physaddr.c:
VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn);
Due to the kmap() in fs/exec.c:
kaddr = kmap(kmapped_page);
...
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) ...
Now we can fetch the correct page to avoid the pfn check. In both cases,
hardened usercopy will need to walk the page-span checker (if enabled)
to do sanity checking.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Fixes: f5509cc18daa ("mm: Hardened usercopy")
Cc: Matthew Wilcox <willy@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/201909171056.7F2FFD17@keescook
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 701d678599d0c1623aaf4139c03eea260a75b027 ]
In zs_destroy_pool() we call flush_work(&pool->free_work). However, we
have no guarantee that migration isn't happening in the background at
that time.
Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages. But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work(). Which would mean
pages still pointing at the inode when we free it.
Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages). This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding. Keeping that state under the class spinlock
keeps the logic straightforward.
In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page. This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts
destruction).
Link: http://lkml.kernel.org/r/20190809181751.219326-2-henryburns@google.com
Fixes: 48b4800a1c6a ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1a87aa03597efa9641e92875b883c94c7f872ccb upstream.
In zs_page_migrate() we call putback_zspage() after we have finished
migrating all pages in this zspage. However, the return value is
ignored. If a zs_free() races in between zs_page_isolate() and
zs_page_migrate(), freeing the last object in the zspage,
putback_zspage() will leave the page in ZS_EMPTY for potentially an
unbounded amount of time.
To fix this, we need to do the same thing as zs_page_putback() does:
schedule free_work to occur.
To avoid duplicated code, move the sequence to a new
putback_zspage_deferred() function which both zs_page_migrate() and
zs_page_putback() call.
Link: http://lkml.kernel.org/r/20190809181751.219326-1-henryburns@google.com
Fixes: 48b4800a1c6a ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f7da677bc6e72033f0981b9d58b5c5d409fa641e upstream.
THP splitting path is missing the split_page_owner() call that
split_page() has.
As a result, split THP pages are wrongly reported in the page_owner file
as order-9 pages. Furthermore when the former head page is freed, the
remaining former tail pages are not listed in the page_owner file at
all. This patch fixes that by adding the split_page_owner() call into
__split_huge_page().
Link: http://lkml.kernel.org/r/20190820131828.22684-2-vbabka@suse.cz
Fixes: a9627bc5e34e ("mm/page_owner: introduce split_page_owner and replace manual handling")
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 951531691c4bcaa59f56a316e018bc2ff1ddf855 upstream.
Currently, when checking to see if accessing n bytes starting at address
"ptr" will cause a wraparound in the memory addresses, the check in
check_bogus_address() adds an extra byte, which is incorrect, as the
range of addresses that will be accessed is [ptr, ptr + (n - 1)].
This can lead to incorrectly detecting a wraparound in the memory
address, when trying to read 4 KB from memory that is mapped to the the
last possible page in the virtual address space, when in fact, accessing
that range of memory would not cause a wraparound to occur.
Use the memory range that will actually be accessed when considering if
accessing a certain amount of bytes will cause the memory address to
wrap around.
Link: http://lkml.kernel.org/r/1564509253-23287-1-git-send-email-isaacm@codeaurora.org
Fixes: f5509cc18daa ("mm: Hardened usercopy")
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Co-developed-by: Prasad Sodagudi <psodagud@codeaurora.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Trilok Soni <tsoni@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[kees: backport to v4.9]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3f8fd02b1bf1d7ba964485a56f2f4b53ae88c167 upstream.
On x86-32 with PTI enabled, parts of the kernel page-tables are not shared
between processes. This can cause mappings in the vmalloc/ioremap area to
persist in some page-tables after the region is unmapped and released.
When the region is re-used the processes with the old mappings do not fault
in the new mappings but still access the old ones.
This causes undefined behavior, in reality often data corruption, kernel
oopses and panics and even spontaneous reboots.
Fix this problem by activly syncing unmaps in the vmalloc/ioremap area to
all page-tables in the system before the regions can be re-used.
References: https://bugzilla.suse.com/show_bug.cgi?id=1118689
Fixes: 5d72b4fba40ef ('x86, mm: support huge I/O mapping capability I/F')
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190719184652.11391-4-joro@8bytes.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 59ea6d06cfa9247b586a695c21f94afa7183af74 upstream.
When fixing the race conditions between the coredump and the mmap_sem
holders outside the context of the process, we focused on
mmget_not_zero()/get_task_mm() callers in 04f5866e41fb70 ("coredump: fix
race condition between mmget_not_zero()/get_task_mm() and core
dumping"), but those aren't the only cases where the mmap_sem can be
taken outside of the context of the process as Michal Hocko noticed
while backporting that commit to older -stable kernels.
If mmgrab() is called in the context of the process, but then the
mm_count reference is transferred outside the context of the process,
that can also be a problem if the mmap_sem has to be taken for writing
through that mm_count reference.
khugepaged registration calls mmgrab() in the context of the process,
but the mmap_sem for writing is taken later in the context of the
khugepaged kernel thread.
collapse_huge_page() after taking the mmap_sem for writing doesn't
modify any vma, so it's not obvious that it could cause a problem to the
coredump, but it happens to modify the pmd in a way that breaks an
invariant that pmd_trans_huge_lock() relies upon. collapse_huge_page()
needs the mmap_sem for writing just to block concurrent page faults that
call pmd_trans_huge_lock().
Specifically the invariant that "!pmd_trans_huge()" cannot become a
"pmd_trans_huge()" doesn't hold while collapse_huge_page() runs.
The coredump will call __get_user_pages() without mmap_sem for reading,
which eventually can invoke a lockless page fault which will need a
functional pmd_trans_huge_lock().
So collapse_huge_page() needs to use mmget_still_valid() to check it's
not running concurrently with the coredump... as long as the coredump
can invoke page faults without holding the mmap_sem for reading.
This has "Fixes: khugepaged" to facilitate backporting, but in my view
it's more a bug in the coredump code that will eventually have to be
rewritten to stop invoking page faults without the mmap_sem for reading.
So the long term plan is still to drop all mmget_still_valid().
Link: http://lkml.kernel.org/r/20190607161558.32104-1-aarcange@redhat.com
Fixes: ba76149f47d8 ("thp: khugepaged")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Ajay: Just adjusted to apply on v4.9]
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 04f5866e41fb70690e28397487d8bd8eea7d712a upstream.
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes: 86039bd3b4e6 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[akaher@vmware.com: stable 4.9 backport
- handle binder_update_page_range - mhocko@suse.com]
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c633324e311243586675e732249339685e5d6faa ]
The description of cma_declare_contiguous() indicates that if the
'fixed' argument is true the reserved contiguous area must be exactly at
the address of the 'base' argument.
However, the function currently allows the 'base', 'size', and 'limit'
arguments to be silently adjusted to meet alignment constraints. This
commit enforces the documented behavior through explicit checks that
return an error if the region does not fit within a specified region.
Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com
Fixes: 5ea3b1b2f8ad ("cma: add placement specifier for "cma=" kernel parameter")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 543bdb2d825fe2400d6e951f1786d92139a16931 ]
Make mmu_notifier_register() safer by issuing a memory barrier before
registering a new notifier. This fixes a theoretical bug on weakly
ordered CPUs. For example, take this simplified use of notifiers by a
driver:
my_struct->mn.ops = &my_ops; /* (1) */
mmu_notifier_register(&my_struct->mn, mm)
...
hlist_add_head(&mn->hlist, &mm->mmu_notifiers); /* (2) */
...
Once mmu_notifier_register() releases the mm locks, another thread can
invalidate a range:
mmu_notifier_invalidate_range()
...
hlist_for_each_entry_rcu(mn, &mm->mmu_notifiers, hlist) {
if (mn->ops->invalidate_range)
The read side relies on the data dependency between mn and ops to ensure
that the pointer is properly initialized. But the write side doesn't have
any dependency between (1) and (2), so they could be reordered and the
readers could dereference an invalid mn->ops. mmu_notifier_register()
does take all the mm locks before adding to the hlist, but those have
acquire semantics which isn't sufficient.
By calling hlist_add_head_rcu() instead of hlist_add_head() we update the
hlist using a store-release, ensuring that readers see prior
initialization of my_struct. This situation is better illustated by
litmus test MP+onceassign+derefonce.
Link: http://lkml.kernel.org/r/20190502133532.24981-1-jean-philippe.brucker@arm.com
Fixes: cddb8a5c14aa ("mmu-notifiers: core")
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0874bb49bb21bf24deda853e8bf61b8325e24bcb ]
On a 64-bit machine the value of "vma->vm_end - vma->vm_start" may be
negative when using 32 bit ints and the "count >> PAGE_SHIFT"'s result
will be wrong. So change the local variable and return value to
unsigned long to fix the problem.
Link: http://lkml.kernel.org/r/20190513023701.83056-1-swkhack@gmail.com
Fixes: 0cf2f6f6dc60 ("mm: mlock: check against vma for actual mlock() size")
Signed-off-by: swkhack <swkhack@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 745e10146c31b1c6ed3326286704ae251b17f663 ]
"cat /proc/slab_allocators" could hang forever on SMP machines with
kmemleak or object debugging enabled due to other CPUs running do_drain()
will keep making kmemleak_object or debug_objects_cache dirty and unable
to escape the first loop in leaks_show(),
do {
set_store_user_clean(cachep);
drain_cpu_caches(cachep);
...
} while (!is_store_user_clean(cachep));
For example,
do_drain
slabs_destroy
slab_destroy
kmem_cache_free
__cache_free
___cache_free
kmemleak_free_recursive
delete_object_full
__delete_object
put_object
free_object_rcu
kmem_cache_free
cache_free_debugcheck --> dirty kmemleak_object
One approach is to check cachep->name and skip both kmemleak_object and
debug_objects_cache in leaks_show(). The other is to set store_user_clean
after drain_cpu_caches() which leaves a small window between
drain_cpu_caches() and set_store_user_clean() where per-CPU caches could
be dirty again lead to slightly wrong information has been stored but
could also speed up things significantly which sounds like a good
compromise. For example,
# cat /proc/slab_allocators
0m42.778s # 1st approach
0m0.737s # 2nd approach
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw
Fixes: d31676dfde25 ("mm/slab: alternative implementation for DEBUG_SLAB_LEAK")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f0fd50504a54f5548eb666dc16ddf8394e44e4b7 ]
If not find zero bit in find_next_zero_bit(), it will return the size
parameter passed in, so the start bit should be compared with bitmap_maxno
rather than cma->count. Although getting maxchunk is working fine due to
zero value of order_per_bit currently, the operation will be stuck if
order_per_bit is set as non-zero.
Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Safonov <d.safonov@partner.samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1df3a339074e31db95c4790ea9236874b13ccd87 ]
f022d8cb7ec7 ("mm: cma: Don't crash on allocation if CMA area can't be
activated") fixes the crash issue when activation fails via setting
cma->count as 0, same logic exists if bitmap allocation fails.
Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 299c83dce9ea3a79bb4b5511d2cb996b6b8e5111 ]
342332e6a925 ("mm/page_alloc.c: introduce kernelcore=mirror option") and
later patches rewrote the calculation of node spanned pages.
e506b99696a2 ("mem-hotplug: fix node spanned pages when we have a movable
node"), but the current code still has problems,
When we have a node with only zone_movable and the node id is not zero,
the size of node spanned pages is double added.
That's because we have an empty normal zone, and zone_start_pfn or
zone_end_pfn is not between arch_zone_lowest_possible_pfn and
arch_zone_highest_possible_pfn, so we need to use clamp to constrain the
range just like the commit <96e907d13602> (bootmem: Reimplement
__absent_pages_in_range() using for_each_mem_pfn_range()).
e.g.
Zone ranges:
DMA [mem 0x0000000000001000-0x0000000000ffffff]
DMA32 [mem 0x0000000001000000-0x00000000ffffffff]
Normal [mem 0x0000000100000000-0x000000023fffffff]
Movable zone start for each node
Node 0: 0x0000000100000000
Node 1: 0x0000000140000000
Early memory node ranges
node 0: [mem 0x0000000000001000-0x000000000009efff]
node 0: [mem 0x0000000000100000-0x00000000bffdffff]
node 0: [mem 0x0000000100000000-0x000000013fffffff]
node 1: [mem 0x0000000140000000-0x000000023fffffff]
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0x100000 present:0x100000 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 2097152
node_spanned_pages:2097152
Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K
cma-reserved)
It shows that the current memory of node 1 is double added.
After this patch, the problem is fixed.
node 0 DMA spanned:0xfff present:0xf9e absent:0x61
node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020
node 0 Normal spanned:0 present:0 absent:0
node 0 Movable spanned:0x40000 present:0x40000 absent:0
On node 0 totalpages(node_present_pages): 1048446
node_spanned_pages:1310719
node 1 DMA spanned:0 present:0 absent:0
node 1 DMA32 spanned:0 present:0 absent:0
node 1 Normal spanned:0 present:0 absent:0
node 1 Movable spanned:0x100000 present:0x100000 absent:0
On node 1 totalpages(node_present_pages): 1048576
node_spanned_pages:1048576
memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata,
4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K
cma-reserved)
Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.com
Signed-off-by: Linxu Fang <fanglinxu@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0919e1b69ab459e06df45d3ba6658d281962db80 ]
When a huge page is allocated, PagePrivate() is set if the allocation
consumed a reservation. When freeing a huge page, PagePrivate is checked.
If set, it indicates the reservation should be restored. PagePrivate
being set at free huge page time mostly happens on error paths.
When huge page reservations are created, a check is made to determine if
the mapping is associated with an explicitly mounted filesystem. If so,
pages are also reserved within the filesystem. The default action when
freeing a huge page is to decrement the usage count in any associated
explicitly mounted filesystem. However, if the reservation is to be
restored the reservation/use count within the filesystem should not be
decrementd. Otherwise, a subsequent page allocation and free for the same
mapping location will cause the file filesystem usage to go 'negative'.
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G -4.0M 4.1G - /opt/hugepool
To fix, when freeing a huge page do not adjust filesystem usage if
PagePrivate() is set to indicate the reservation should be restored.
I did not cc stable as the problem has been around since reserves were
added to hugetlbfs and nobody has noticed.
Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>