1459 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
1930a6e739 |
ptrace: Cleanups for v5.18
This set of changes removes tracehook.h, moves modification of all of the ptrace fields inside of siglock to remove races, adds a missing permission check to ptrace.c The removal of tracehook.h is quite significant as it has been a major source of confusion in recent years. Much of that confusion was around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the semantics clearer). For people who don't know tracehook.h is a vestiage of an attempt to implement uprobes like functionality that was never fully merged, and was later superseeded by uprobes when uprobes was merged. For many years now we have been removing what tracehook functionaly a little bit at a time. To the point where now anything left in tracehook.h is some weird strange thing that is difficult to understand. Eric W. Biederman (15): ptrace: Move ptrace_report_syscall into ptrace.h ptrace/arm: Rename tracehook_report_syscall report_syscall ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h ptrace: Remove arch_syscall_{enter,exit}_tracehook ptrace: Remove tracehook_signal_handler task_work: Remove unnecessary include from posix_timers.h task_work: Introduce task_work_pending task_work: Call tracehook_notify_signal from get_signal on all architectures task_work: Decouple TIF_NOTIFY_SIGNAL and task_work signal: Move set_notify_signal and clear_notify_signal into sched/signal.h resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume resume_user_mode: Move to resume_user_mode.h tracehook: Remove tracehook.h ptrace: Move setting/clearing ptrace_message into ptrace_stop ptrace: Return the signal to continue with from ptrace_stop Jann Horn (1): ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE Yang Li (1): ptrace: Remove duplicated include in ptrace.c MAINTAINERS | 1 - arch/Kconfig | 5 +- arch/alpha/kernel/ptrace.c | 5 +- arch/alpha/kernel/signal.c | 4 +- arch/arc/kernel/ptrace.c | 5 +- arch/arc/kernel/signal.c | 4 +- arch/arm/kernel/ptrace.c | 12 +- arch/arm/kernel/signal.c | 4 +- arch/arm64/kernel/ptrace.c | 14 +-- arch/arm64/kernel/signal.c | 4 +- arch/csky/kernel/ptrace.c | 5 +- arch/csky/kernel/signal.c | 4 +- arch/h8300/kernel/ptrace.c | 5 +- arch/h8300/kernel/signal.c | 4 +- arch/hexagon/kernel/process.c | 4 +- arch/hexagon/kernel/signal.c | 1 - arch/hexagon/kernel/traps.c | 6 +- arch/ia64/kernel/process.c | 4 +- arch/ia64/kernel/ptrace.c | 6 +- arch/ia64/kernel/signal.c | 1 - arch/m68k/kernel/ptrace.c | 5 +- arch/m68k/kernel/signal.c | 4 +- arch/microblaze/kernel/ptrace.c | 5 +- arch/microblaze/kernel/signal.c | 4 +- arch/mips/kernel/ptrace.c | 5 +- arch/mips/kernel/signal.c | 4 +- arch/nds32/include/asm/syscall.h | 2 +- arch/nds32/kernel/ptrace.c | 5 +- arch/nds32/kernel/signal.c | 4 +- arch/nios2/kernel/ptrace.c | 5 +- arch/nios2/kernel/signal.c | 4 +- arch/openrisc/kernel/ptrace.c | 5 +- arch/openrisc/kernel/signal.c | 4 +- arch/parisc/kernel/ptrace.c | 7 +- arch/parisc/kernel/signal.c | 4 +- arch/powerpc/kernel/ptrace/ptrace.c | 8 +- arch/powerpc/kernel/signal.c | 4 +- arch/riscv/kernel/ptrace.c | 5 +- arch/riscv/kernel/signal.c | 4 +- arch/s390/include/asm/entry-common.h | 1 - arch/s390/kernel/ptrace.c | 1 - arch/s390/kernel/signal.c | 5 +- arch/sh/kernel/ptrace_32.c | 5 +- arch/sh/kernel/signal_32.c | 4 +- arch/sparc/kernel/ptrace_32.c | 5 +- arch/sparc/kernel/ptrace_64.c | 5 +- arch/sparc/kernel/signal32.c | 1 - arch/sparc/kernel/signal_32.c | 4 +- arch/sparc/kernel/signal_64.c | 4 +- arch/um/kernel/process.c | 4 +- arch/um/kernel/ptrace.c | 5 +- arch/x86/kernel/ptrace.c | 1 - arch/x86/kernel/signal.c | 5 +- arch/x86/mm/tlb.c | 1 + arch/xtensa/kernel/ptrace.c | 5 +- arch/xtensa/kernel/signal.c | 4 +- block/blk-cgroup.c | 2 +- fs/coredump.c | 1 - fs/exec.c | 1 - fs/io-wq.c | 6 +- fs/io_uring.c | 11 +- fs/proc/array.c | 1 - fs/proc/base.c | 1 - include/asm-generic/syscall.h | 2 +- include/linux/entry-common.h | 47 +------- include/linux/entry-kvm.h | 2 +- include/linux/posix-timers.h | 1 - include/linux/ptrace.h | 81 ++++++++++++- include/linux/resume_user_mode.h | 64 ++++++++++ include/linux/sched/signal.h | 17 +++ include/linux/task_work.h | 5 + include/linux/tracehook.h | 226 ----------------------------------- include/uapi/linux/ptrace.h | 2 +- kernel/entry/common.c | 19 +-- kernel/entry/kvm.c | 9 +- kernel/exit.c | 3 +- kernel/livepatch/transition.c | 1 - kernel/ptrace.c | 47 +++++--- kernel/seccomp.c | 1 - kernel/signal.c | 62 +++++----- kernel/task_work.c | 4 +- kernel/time/posix-cpu-timers.c | 1 + mm/memcontrol.c | 2 +- security/apparmor/domain.c | 1 - security/selinux/hooks.c | 1 - 85 files changed, 372 insertions(+), 495 deletions(-) Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4 0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY 3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K /HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ 4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0 eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY= =uEro -----END PGP SIGNATURE----- Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace cleanups from Eric Biederman: "This set of changes removes tracehook.h, moves modification of all of the ptrace fields inside of siglock to remove races, adds a missing permission check to ptrace.c The removal of tracehook.h is quite significant as it has been a major source of confusion in recent years. Much of that confusion was around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the semantics clearer). For people who don't know tracehook.h is a vestiage of an attempt to implement uprobes like functionality that was never fully merged, and was later superseeded by uprobes when uprobes was merged. For many years now we have been removing what tracehook functionaly a little bit at a time. To the point where anything left in tracehook.h was some weird strange thing that was difficult to understand" * tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: ptrace: Remove duplicated include in ptrace.c ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE ptrace: Return the signal to continue with from ptrace_stop ptrace: Move setting/clearing ptrace_message into ptrace_stop tracehook: Remove tracehook.h resume_user_mode: Move to resume_user_mode.h resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume signal: Move set_notify_signal and clear_notify_signal into sched/signal.h task_work: Decouple TIF_NOTIFY_SIGNAL and task_work task_work: Call tracehook_notify_signal from get_signal on all architectures task_work: Introduce task_work_pending task_work: Remove unnecessary include from posix_timers.h ptrace: Remove tracehook_signal_handler ptrace: Remove arch_syscall_{enter,exit}_tracehook ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h ptrace/arm: Rename tracehook_report_syscall report_syscall ptrace: Move ptrace_report_syscall into ptrace.h |
||
Linus Torvalds
|
9030fb0bb9 |
Folio changes for 5.18
- Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4ucgACgkQDpNsjXcp gj69Wgf6AwqwmO5Tmy+fLScDPqWxmXJofbocae1kyoGHf7Ui91OK4U2j6IpvAr+g P/vLIK+JAAcTQcrSCjymuEkf4HkGZOR03QQn7maPIEe4eLrZRQDEsmHC1L9gpeJp s/GMvDWiGE0Tnxu0EOzfVi/yT+qjIl/S8VvqtCoJv1HdzxitZ7+1RDuqImaMC5MM Qi3uHag78vLmCltLXpIOdpgZhdZexCdL2Y/1npf+b6FVkAJRRNUnA0gRbS7YpoVp CbxEJcmAl9cpJLuj5i5kIfS9trr+/QcvbUlzRxh4ggC58iqnmF2V09l2MJ7YU3XL v1O/Elq4lRhXninZFQEm9zjrri7LDQ== =n9Ad -----END PGP SIGNATURE----- Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ... |
||
Wei Yang
|
8c9bb39816 |
memcg: do not tweak node in alloc_mem_cgroup_per_node_info
alloc_mem_cgroup_per_node_info is allocated for each possible node and this used to be a problem because !node_online nodes didn't have appropriate data structure allocated. This has changed by "mm: handle uninitialized numa nodes gracefully" so we can drop the special casing here. Link: https://lkml.kernel.org/r/20220127085305.20890-7-mhocko@kernel.org Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Alexey Makhalov <amakhalov@vmware.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Nico Pache <npache@redhat.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Rafael Aquini <raquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
be740503ed |
mm: memcontrol: fix cannot alloc the maximum memcg ID
The idr_alloc() does not include @max ID. So in the current implementation, the maximum memcg ID is 65534 instead of 65535. It seems a bug. So fix this. Link: https://lkml.kernel.org/r/20220228122126.37293-15-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
f9c69d6346 |
mm: memcontrol: reuse memory cgroup ID for kmem ID
There are two idrs being used by memory cgroup, one is for kmem ID, another is for memory cgroup ID. The maximum ID of both is 64Ki. Both of them can limit the total number of memory cgroups. Actually, we can reuse memory cgroup ID for kmem ID to simplify the code. Link: https://lkml.kernel.org/r/20220228122126.37293-14-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
bbca91cca9 |
mm: list_lru: replace linear array with xarray
If we run 10k containers in the system, the size of the list_lru_memcg->lrus can be ~96KB per list_lru. When we decrease the number containers, the size of the array will not be shrinked. It is not scalable. The xarray is a good choice for this case. We can save a lot of memory when there are tens of thousands continers in the system. If we use xarray, we also can remove the logic code of resizing array, which can simplify the code. [akpm@linux-foundation.org: remove unused local] Link: https://lkml.kernel.org/r/20220228122126.37293-13-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
1f391eb270 |
mm: list_lru: rename memcg_drain_all_list_lrus to memcg_reparent_list_lrus
The purpose of the memcg_drain_all_list_lrus() is list_lrus reparenting. It is very similar to memcg_reparent_objcgs(). Rename it to memcg_reparent_list_lrus() so that the name can more consistent with memcg_reparent_objcgs(). Link: https://lkml.kernel.org/r/20220228122126.37293-12-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
5abc1e37af |
mm: list_lru: allocate list_lru_one only when needed
In our server, we found a suspected memory leak problem. The kmalloc-32 consumes more than 6GB of memory. Other kmem_caches consume less than 2GB memory. After our in-depth analysis, the memory consumption of kmalloc-32 slab cache is the cause of list_lru_one allocation. crash> p memcg_nr_cache_ids memcg_nr_cache_ids = $2 = 24574 memcg_nr_cache_ids is very large and memory consumption of each list_lru can be calculated with the following formula. num_numa_node * memcg_nr_cache_ids * 32 (kmalloc-32) There are 4 numa nodes in our system, so each list_lru consumes ~3MB. crash> list super_blocks | wc -l 952 Every mount will register 2 list lrus, one is for inode, another is for dentry. There are 952 super_blocks. So the total memory is 952 * 2 * 3 MB (~5.6GB). But the number of memory cgroup is less than 500. So I guess more than 12286 containers have been deployed on this machine (I do not know why there are so many containers, it may be a user's bug or the user really want to do that). And memcg_nr_cache_ids has not been reduced to a suitable value. This can waste a lot of memory. Now the infrastructure for dynamic list_lru_one allocation is ready, so remove statically allocated memory code to save memory. Link: https://lkml.kernel.org/r/20220228122126.37293-11-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
da0efe3094 |
mm: memcontrol: move memcg_online_kmem() to mem_cgroup_css_online()
It will simplify the code if moving memcg_online_kmem() to mem_cgroup_css_online() and do not need to set ->kmemcg_id to -1 to indicate the memcg is offline. In the next patch, ->kmemcg_id will be used to sync list lru reparenting which requires not to change ->kmemcg_id. Link: https://lkml.kernel.org/r/20220228122126.37293-10-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
88f2ef73fd |
mm: introduce kmem_cache_alloc_lru
We currently allocate scope for every memcg to be able to tracked on every superblock instantiated in the system, regardless of whether that superblock is even accessible to that memcg. These huge memcg counts come from container hosts where memcgs are confined to just a small subset of the total number of superblocks that instantiated at any given point in time. For these systems with huge container counts, list_lru does not need the capability of tracking every memcg on every superblock. What it comes down to is that adding the memcg to the list_lru at the first insert. So introduce kmem_cache_alloc_lru to allocate objects and its list_lru. In the later patch, we will convert all inode and dentry allocation from kmem_cache_alloc to kmem_cache_alloc_lru. Link: https://lkml.kernel.org/r/20220228122126.37293-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
0790ed6238 |
mm/memcg: disable migration instead of preemption in drain_all_stock().
Before the for-each-CPU loop, preemption is disabled so that so that drain_local_stock() can be invoked directly instead of scheduling a worker. Ensuring that drain_local_stock() completed on the local CPU is not correctness problem. It _could_ be that the charging path will be forced to reclaim memory because cached charges are still waiting for their draining. Disabling preemption before invoking drain_local_stock() is problematic on PREEMPT_RT due to the sleeping locks involved. To ensure that no CPU migrations happens across for_each_online_cpu() it is enouhg to use migrate_disable() which disables migration and keeps context preemptible to a sleeping lock can be acquired. A race with CPU hotplug is not a problem because pcp data is not going away. In the worst case we just schedule draining of an empty stock. Use migrate_disable() instead of get_cpu() around the for_each_online_cpu() loop. Link: https://lkml.kernel.org/r/20220226204144.1008339-7-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
5675114623 |
mm/memcg: protect memcg_stock with a local_lock_t
The members of the per-CPU structure memcg_stock_pcp are protected by disabling interrupts. This is not working on PREEMPT_RT because it creates atomic context in which actions are performed which require preemptible context. One example is obj_cgroup_release(). The IRQ-disable sections can be replaced with local_lock_t which preserves the explicit disabling of interrupts while keeps the code preemptible on PREEMPT_RT. drain_obj_stock() drops a reference on obj_cgroup which leads to an invocat= ion of obj_cgroup_release() if it is the last object. This in turn leads to recursive locking of the local_lock_t. To avoid this, obj_cgroup_release() = is invoked outside of the locked section. obj_cgroup_uncharge_pages() can be invoked with the local_lock_t acquired a= nd without it. This will lead later to a recursion in refill_stock(). To avoid the locking recursion provide obj_cgroup_uncharge_pages_locked() which uses the locked version of refill_stock(). - Replace disabling interrupts for memcg_stock with a local_lock_t. - Let drain_obj_stock() return the old struct obj_cgroup which is passed to obj_cgroup_put() outside of the locked section. - Provide obj_cgroup_uncharge_pages_locked() which uses the locked version of refill_stock() to avoid recursive locking in drain_obj_stock(). Link: https://lkml.kernel.org/r/20220209014709.GA26885@xsang-OptiPlex-9020 Link: https://lkml.kernel.org/r/20220226204144.1008339-6-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reported-by: kernel test robot <oliver.sang@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
af9a3b69e8 |
mm/memcg: opencode the inner part of obj_cgroup_uncharge_pages() in drain_obj_stock()
Provide the inner part of refill_stock() as __refill_stock() without disabling interrupts. This eases the integration of local_lock_t where recursive locking must be avoided. Open code obj_cgroup_uncharge_pages() in drain_obj_stock() and use __refill_stock(). The caller of drain_obj_stock() already disables interrupts. [bigeasy@linutronix.de: patch body around Johannes' diff] Link: https://lkml.kernel.org/r/20220226204144.1008339-5-bigeasy@linutronix.de Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
be3e67b54b |
mm/memcg: protect per-CPU counter by disabling preemption on PREEMPT_RT where needed.
The per-CPU counter are modified with the non-atomic modifier. The consistency is ensured by disabling interrupts for the update. On non PREEMPT_RT configuration this works because acquiring a spinlock_t typed lock with the _irq() suffix disables interrupts. On PREEMPT_RT configurations the RMW operation can be interrupted. Another problem is that mem_cgroup_swapout() expects to be invoked with disabled interrupts because the caller has to acquire a spinlock_t which is acquired with disabled interrupts. Since spinlock_t never disables interrupts on PREEMPT_RT the interrupts are never disabled at this point. The code is never called from in_irq() context on PREEMPT_RT therefore disabling preemption during the update is sufficient on PREEMPT_RT. The sections which explicitly disable interrupts can remain on PREEMPT_RT because the sections remain short and they don't involve sleeping locks (memcg_check_events() is doing nothing on PREEMPT_RT). Disable preemption during update of the per-CPU variables which do not explicitly disable interrupts. Link: https://lkml.kernel.org/r/20220226204144.1008339-4-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
2343e88d23 |
mm/memcg: disable threshold event handlers on PREEMPT_RT
During the integration of PREEMPT_RT support, the code flow around memcg_check_events() resulted in `twisted code'. Moving the code around and avoiding then would then lead to an additional local-irq-save section within memcg_check_events(). While looking better, it adds a local-irq-save section to code flow which is usually within an local-irq-off block on non-PREEMPT_RT configurations. The threshold event handler is a deprecated memcg v1 feature. Instead of trying to get it to work under PREEMPT_RT just disable it. There should be no users on PREEMPT_RT. From that perspective it makes even less sense to get it to work under PREEMPT_RT while having zero users. Make memory.soft_limit_in_bytes and cgroup.event_control return -EOPNOTSUPP on PREEMPT_RT. Make an empty memcg_check_events() and memcg_write_event_control() which return only -EOPNOTSUPP on PREEMPT_RT. Document that the two knobs are disabled on PREEMPT_RT. Link: https://lkml.kernel.org/r/20220226204144.1008339-3-bigeasy@linutronix.de Suggested-by: Michal Hocko <mhocko@kernel.org> Suggested-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
fead2b8697 |
mm/memcg: revert ("mm/memcg: optimize user context object stock access")
Patch series "mm/memcg: Address PREEMPT_RT problems instead of disabling it", v5. This series aims to address the memcg related problem on PREEMPT_RT. I tested them on CONFIG_PREEMPT and CONFIG_PREEMPT_RT with the tools/testing/selftests/cgroup/* tests and I haven't observed any regressions (other than the lockdep report that is already there). This patch (of 6): The optimisation is based on a micro benchmark where local_irq_save() is more expensive than a preempt_disable(). There is no evidence that it is visible in a real-world workload and there are CPUs where the opposite is true (local_irq_save() is cheaper than preempt_disable()). Based on micro benchmarks, the optimisation makes sense on PREEMPT_NONE where preempt_disable() is optimized away. There is no improvement with PREEMPT_DYNAMIC since the preemption counter is always available. The optimization makes also the PREEMPT_RT integration more complicated since most of the assumption are not true on PREEMPT_RT. Revert the optimisation since it complicates the PREEMPT_RT integration and the improvement is hardly visible. [bigeasy@linutronix.de: patch body around Michal's diff] Link: https://lkml.kernel.org/r/20220226204144.1008339-1-bigeasy@linutronix.de Link: https://lore.kernel.org/all/YgOGkXXCrD%2F1k+p4@dhcp22.suse.cz Link: https://lkml.kernel.org/r/YdX+INO9gQje6d0S@linutronix.de Link: https://lkml.kernel.org/r/20220226204144.1008339-2-bigeasy@linutronix.de Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Waiman Long <longman@redhat.com> Cc: kernel test robot <oliver.sang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
460a79e188 |
mm/memcontrol: return 1 from cgroup.memory __setup() handler
__setup() handlers should return 1 if the command line option is handled and 0 if not (or maybe never return 0; it just pollutes init's environment). The only reason that this particular __setup handler does not pollute init's environment is that the setup string contains a '.', as in "cgroup.memory". This causes init/main.c::unknown_boottoption() to consider it to be an "Unused module parameter" and ignore it. (This is for parsing of loadable module parameters any time after kernel init.) Otherwise the string "cgroup.memory=whatever" would be added to init's environment strings. Instead of relying on this '.' quirk, just return 1 to indicate that the boot option has been handled. Note that there is no warning message if someone enters: cgroup.memory=anything_invalid Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org Fixes: f7e1cb6ec51b0 ("mm: memcontrol: account socket memory in unified hierarchy memory controller") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru> Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
c9afe31ec4 |
memcg: synchronously enforce memory.high for large overcharges
The high limit is used to throttle the workload without invoking the oom-killer. Recently we tried to use the high limit to right size our internal workloads. More specifically dynamically adjusting the limits of the workload without letting the workload get oom-killed. However due to the limitation of the implementation of high limit enforcement, we observed the mechanism fails for some real workloads. The high limit is enforced on return-to-userspace i.e. the kernel let the usage goes over the limit and when the execution returns to userspace, the high reclaim is triggered and the process can get throttled as well. However this mechanism fails for workloads which do large allocations in a single kernel entry e.g. applications that mlock() a large chunk of memory in a single syscall. Such applications bypass the high limit and can trigger the oom-killer. To make high limit enforcement more robust, this patch makes the limit enforcement synchronous only if the accumulated overcharge becomes larger than MEMCG_CHARGE_BATCH. So, most of the allocations would still be throttled on the return-to-userspace path but only the extreme allocations which accumulates large amount of overcharge without returning to the userspace will be throttled synchronously. The value MEMCG_CHARGE_BATCH is a bit arbitrary but most of other places in the memcg codebase uses this constant therefore for now uses the same one. Link: https://lkml.kernel.org/r/20220211064917.2028469-5-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
1461e8c2b6 |
memcg: unify force charging conditions
Currently the kernel force charges the allocations which have __GFP_HIGH flag without triggering the memory reclaim. __GFP_HIGH indicates that the caller is high priority and since commit 869712fd3de5 ("mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges") the kernel lets such allocations do force charging. Please note that __GFP_ATOMIC has been replaced by __GFP_HIGH. __GFP_HIGH does not tell if the caller can block or can trigger reclaim. There are separate checks to determine that. So, there is no need to skip reclaiming for __GFP_HIGH allocations. So, handle __GFP_HIGH together with __GFP_NOFAIL which also does force charging. Please note that this is a noop change as there are no __GFP_HIGH allocators in the kernel which also have __GFP_ACCOUNT (or SLAB_ACCOUNT) and does not allow reclaim for now. Link: https://lkml.kernel.org/r/20220211064917.2028469-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Chris Down <chris@chrisdown.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
becdf89d77 |
memcg: refactor mem_cgroup_oom
Patch series "memcg: robust enforcement of memory.high", v2. Due to the semantics of memory.high enforcement i.e. throttle the workload without oom-kill, we are trying to use it for right sizing the workloads in our production environment. However we observed the mechanism fails for some specific applications which does big chunck of allocations in a single syscall. The reason behind this failure is due to the limitation of the memory.high enforcement's current implementation. This patch series solves this issue by enforcing the memory.high synchronously if the current process has accumulated a large amount of high overcharge. This patch (of 4): The function mem_cgroup_oom returns enum which has four possible values but the caller does not care about such values and only cares if the return value is OOM_SUCCESS or not. So, remove the enum altogether and make mem_cgroup_oom returns a simple bool. Link: https://lkml.kernel.org/r/20220211064917.2028469-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20220211064917.2028469-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
c857266dca |
mm/memcg: mem_cgroup_per_node is already set to 0 on allocation
kzalloc_node() would set data to 0, so it's not necessary to set it again. Link: https://lkml.kernel.org/r/20220201004643.8391-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yosry Ahmed
|
a8c49af3be |
memcg: add per-memcg total kernel memory stat
Currently memcg stats show several types of kernel memory: kernel stack, page tables, sock, vmalloc, and slab. However, there are other allocations with __GFP_ACCOUNT (or supersets such as GFP_KERNEL_ACCOUNT) that are not accounted in any of those stats, a few examples are: - various kvm allocations (e.g. allocated pages to create vcpus) - io_uring - tmp_page in pipes during pipe_write() - bpf ringbuffers - unix sockets Keeping track of the total kernel memory is essential for the ease of migration from cgroup v1 to v2 as there are large discrepancies between v1's kmem.usage_in_bytes and the sum of the available kernel memory stats in v2. Adding separate memcg stats for all __GFP_ACCOUNT kernel allocations is an impractical maintenance burden as there a lot of those all over the kernel code, with more use cases likely to show up in the future. Therefore, add a "kernel" memcg stat that is analogous to kmem page counter, with added benefits such as using rstat infrastructure which aggregates stats more efficiently. Additionally, this provides a lighter alternative in case the legacy kmem is deprecated in the future [yosryahmed@google.com: v2] Link: https://lkml.kernel.org/r/20220203193856.972500-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20220201200823.3283171-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
086f694a75 |
memcg: replace in_interrupt() with !in_task()
Replace the deprecated in_interrupt() with !in_task() because in_interrupt() returns true for BH disabled even if the call happens in the task context. in_task() is the right interface to differentiate task context from NMI, hard IRQ and softirq contexts. Link: https://lkml.kernel.org/r/20220127162636.3461256-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vasily Averin <vvs@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
3ecb0087ec |
mm/memcg: Convert mem_cgroup_swapout() to take a folio
This removes an assumption that THPs are the only kind of compound pages and removes a couple of hidden calls to compound_head. It also documents that you can't pass a tail page to mem_cgroup_swapout(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> |
||
Eric W. Biederman
|
03248addad |
resume_user_mode: Move to resume_user_mode.h
Move set_notify_resume and tracehook_notify_resume into resume_user_mode.h. While doing that rename tracehook_notify_resume to resume_user_mode_work. Update all of the places that included tracehook.h for these functions to include resume_user_mode.h instead. Update all of the callers of tracehook_notify_resume to call resume_user_mode_work. Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20220309162454.123006-12-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Christoph Hellwig
|
27674ef6c7 |
mm: remove the extra ZONE_DEVICE struct page refcount
ZONE_DEVICE struct pages have an extra reference count that complicates the code for put_page() and several places in the kernel that need to check the reference count to see that a page is not being used (gup, compaction, migration, etc.). Clean up the code so the reference count doesn't need to be treated specially for ZONE_DEVICE pages. Note that this excludes the special idle page wakeup for fsdax pages, which still happens at refcount 1. This is a separate issue and will be sorted out later. Given that only fsdax pages require the notifiacation when the refcount hits 1 now, the PAGEMAP_OPS Kconfig symbol can go away and be replaced with a FS_DAX check for this hook in the put_page fastpath. Based on an earlier patch from Ralph Campbell <rcampbell@nvidia.com>. Link: https://lkml.kernel.org/r/20220210072828.2930359-8-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Christian Knig <christian.koenig@amd.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Christoph Hellwig
|
dc90f0846d |
mm: don't include <linux/memremap.h> in <linux/mm.h>
Move the check for the actual pgmap types that need the free at refcount one behavior into the out of line helper, and thus avoid the need to pull memremap.h into mm.h. Link: https://lkml.kernel.org/r/20220210072828.2930359-7-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> Tested-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Chaitanya Kulkarni <kch@nvidia.com> Cc: Karol Herbst <kherbst@redhat.com> Cc: Lyude Paul <lyude@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: "Pan, Xinhui" <Xinhui.Pan@amd.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Hugh Dickins
|
07ca760673 |
mm/munlock: maintain page->mlock_count while unevictable
Previous patches have been preparatory: now implement page->mlock_count. The ordering of the "Unevictable LRU" is of no significance, and there is no point holding unevictable pages on a list: place page->mlock_count to overlay page->lru.prev (since page->lru.next is overlaid by compound_head, which needs to be even so as not to satisfy PageTail - though 2 could be added instead of 1 for each mlock, if that's ever an improvement). But it's only safe to rely on or modify page->mlock_count while lruvec lock is held and page is on unevictable "LRU" - we can save lots of edits by continuing to pretend that there's an imaginary LRU here (there is an unevictable count which still needs to be maintained, but not a list). The mlock_count technique suffers from an unreliability much like with page_mlock(): while someone else has the page off LRU, not much can be done. As before, err on the safe side (behave as if mlock_count 0), and let try_to_unlock_one() move the page to unevictable if reclaim finds out later on - a few misplaced pages don't matter, what we want to avoid is imbalancing reclaim by flooding evictable lists with unevictable pages. I am not a fan of "if (!isolate_lru_page(page)) putback_lru_page(page);": if we have taken lruvec lock to get the page off its present list, then we save everyone trouble (and however many extra atomic ops) by putting it on its destination list immediately. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Roman Gushchin
|
0764db9b49 |
mm: memcg: synchronize objcg lists with a dedicated spinlock
Alexander reported a circular lock dependency revealed by the mmap1 ltp test: LOCKDEP_CIRCULAR (suite: ltp, case: mtest06 (mmap1)) WARNING: possible circular locking dependency detected 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Not tainted ------------------------------------------------------ mmap1/202299 is trying to acquire lock: 00000001892c0188 (css_set_lock){..-.}-{2:2}, at: obj_cgroup_release+0x4a/0xe0 but task is already holding lock: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&sighand->siglock){-.-.}-{2:2}: __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 __lock_task_sighand+0x90/0x190 cgroup_freeze_task+0x2e/0x90 cgroup_migrate_execute+0x11c/0x608 cgroup_update_dfl_csses+0x246/0x270 cgroup_subtree_control_write+0x238/0x518 kernfs_fop_write_iter+0x13e/0x1e0 new_sync_write+0x100/0x190 vfs_write+0x22c/0x2d8 ksys_write+0x6c/0xf8 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #0 (css_set_lock){..-.}-{2:2}: check_prev_add+0xe0/0xed8 validate_chain+0x736/0xb20 __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 obj_cgroup_release+0x4a/0xe0 percpu_ref_put_many.constprop.0+0x150/0x168 drain_obj_stock+0x94/0xe8 refill_obj_stock+0x94/0x278 obj_cgroup_charge+0x164/0x1d8 kmem_cache_alloc+0xac/0x528 __sigqueue_alloc+0x150/0x308 __send_signal+0x260/0x550 send_signal+0x7e/0x348 force_sig_info_to_task+0x104/0x180 force_sig_fault+0x48/0x58 __do_pgm_check+0x120/0x1f0 pgm_check_handler+0x11e/0x180 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sighand->siglock); lock(css_set_lock); lock(&sighand->siglock); lock(css_set_lock); *** DEADLOCK *** 2 locks held by mmap1/202299: #0: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180 #1: 00000001892ad560 (rcu_read_lock){....}-{1:2}, at: percpu_ref_put_many.constprop.0+0x0/0x168 stack backtrace: CPU: 15 PID: 202299 Comm: mmap1 Not tainted 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Hardware name: IBM 3906 M04 704 (LPAR) Call Trace: dump_stack_lvl+0x76/0x98 check_noncircular+0x136/0x158 check_prev_add+0xe0/0xed8 validate_chain+0x736/0xb20 __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 obj_cgroup_release+0x4a/0xe0 percpu_ref_put_many.constprop.0+0x150/0x168 drain_obj_stock+0x94/0xe8 refill_obj_stock+0x94/0x278 obj_cgroup_charge+0x164/0x1d8 kmem_cache_alloc+0xac/0x528 __sigqueue_alloc+0x150/0x308 __send_signal+0x260/0x550 send_signal+0x7e/0x348 force_sig_info_to_task+0x104/0x180 force_sig_fault+0x48/0x58 __do_pgm_check+0x120/0x1f0 pgm_check_handler+0x11e/0x180 INFO: lockdep is turned off. In this example a slab allocation from __send_signal() caused a refilling and draining of a percpu objcg stock, resulted in a releasing of another non-related objcg. Objcg release path requires taking the css_set_lock, which is used to synchronize objcg lists. This can create a circular dependency with the sighandler lock, which is taken with the locked css_set_lock by the freezer code (to freeze a task). In general it seems that using css_set_lock to synchronize objcg lists makes any slab allocations and deallocation with the locked css_set_lock and any intervened locks risky. To fix the problem and make the code more robust let's stop using css_set_lock to synchronize objcg lists and use a new dedicated spinlock instead. Link: https://lkml.kernel.org/r/Yfm1IHmoGdyUR81T@carbon.dhcp.thefacebook.com Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com> Reviewed-by: Waiman Long <longman@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Jeremy Linton <jeremy.linton@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
f56caedaf9 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ... |
||
Shakeel Butt
|
4e5aa1f4c2 |
memcg: add per-memcg vmalloc stat
The kvmalloc* allocation functions can fallback to vmalloc allocations and more often on long running machines. In addition the kernel does have __GFP_ACCOUNT kvmalloc* calls. So, often on long running machines, the memory.stat does not tell the complete picture which type of memory is charged to the memcg. So add a per-memcg vmalloc stat. [shakeelb@google.com: page_memcg() within rcu lock, per Muchun] Link: https://lkml.kernel.org/r/20211222052457.1960701-1-shakeelb@google.com [akpm@linux-foundation.org: remove cast, per Muchun] [shakeelb@google.com: remove area->page[0] checks and move to page by page accounting per Michal] Link: https://lkml.kernel.org/r/20220104222341.3972772-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20211221215336.1922823-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wang Weiyang
|
06b2c3b08c |
mm/memcg: use struct_size() helper in kzalloc()
Make use of the struct_size() helper instead of an open-coded version, in order to avoid any potential type mistakes or integer overflows that, in the worst scenario, could lead to heap overflows. Link: https://github.com/KSPP/linux/issues/160 Link: https://lkml.kernel.org/r/20211216022024.127375-1-wangweiyang2@huawei.com Signed-off-by: Wang Weiyang <wangweiyang2@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
5b3be698a8 |
memcg: better bounds on the memcg stats updates
Commit 11192d9c124d ("memcg: flush stats only if updated") added tracking of memcg stats updates which is used by the readers to flush only if the updates are over a certain threshold. However each individual update can correspond to a large value change for a given stat. For example adding or removing a hugepage to an LRU changes the stat by thp_nr_pages (512 on x86_64). Treating the update related to THP as one can keep the stat off, in theory, by (thp_nr_pages * nr_cpus * CHARGE_BATCH) before flush. To handle such scenarios, this patch adds consideration of the stat update value as well instead of just the update event. In addition let the asyn flusher unconditionally flush the stats to put time limit on the stats skew and hopefully a lot less readers would need to flush. Link: https://lkml.kernel.org/r/20211118065350.697046-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Michal Koutný" <mkoutny@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dan Schatzberg
|
b6bf9abb0a |
mm/memcg: add oom_group_kill memory event
Our container agent wants to know when a container exits if it was OOM killed or not to report to the user. We use memory.oom.group = 1 to ensure that OOM kills within the container's cgroup kill everything. Existing memory.events are insufficient for knowing if this triggered: 1) Our current approach reads memory.events oom_kill and reports the container was killed if the value is non-zero. This is erroneous in some cases where containers create their children cgroups with memory.oom.group=1 as such OOM kills will get counted against the container cgroup's oom_kill counter despite not actually OOM killing the entire container. 2) Reading memory.events.local will fail to identify OOM kills in leaf cgroups (that don't set memory.oom.group) within the container cgroup. This patch adds a new oom_group_kill event when memory.oom.group triggers to allow userspace to cleanly identify when an entire cgroup is oom killed. [schatzberg.dan@gmail.com: changes from Johannes and Chris] Link: https://lkml.kernel.org/r/20211213162511.2492267-1-schatzberg.dan@gmail.com Link: https://lkml.kernel.org/r/20211203162426.3375036-1-schatzberg.dan@gmail.com Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
17c1736775 |
mm: memcontrol: make cgroup_memory_nokmem static
Commit 494c1dfe855e ("mm: memcg/slab: create a new set of kmalloc-cg-<n> caches") makes cgroup_memory_nokmem global, however, it is unnecessary because there is already a function mem_cgroup_kmem_disabled() which exports it. Just make it static and replace it with mem_cgroup_kmem_disabled() in mm/slab_common.c. Link: https://lkml.kernel.org/r/20211109065418.21693-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
c29b5b3d33 |
mm: slab: make slab iterator functions static
There is no external users of slab_start/next/stop(), so make them static. And the memory.kmem.slabinfo is deprecated, which outputs nothing now, so move memcg_slab_show() into mm/memcontrol.c and rename it to mem_cgroup_slab_show to be consistent with other function names. Link: https://lkml.kernel.org/r/20211109133359.32881-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
4b5f8d9a89 |
mm/memcg: Convert slab objcgs from struct page to struct slab
page->memcg_data is used with MEMCG_DATA_OBJCGS flag only for slab pages so convert all the related infrastructure to struct slab. Also use struct folio instead of struct page when resolving object pointers. This is not just mechanistic changing of types and names. Now in mem_cgroup_from_obj() we use folio_test_slab() to decide if we interpret the folio as a real slab instead of a large kmalloc, instead of relying on MEMCG_DATA_OBJCGS bit that used to be checked in page_objcgs_check(). Similarly in memcg_slab_free_hook() where we can encounter kmalloc_large() pages (here the folio slab flag check is implied by virt_to_slab()). As a result, page_objcgs_check() can be dropped instead of converted. To avoid include cycles, move the inline definition of slab_objcgs() from memcontrol.h to mm/slab.h. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <cgroups@vger.kernel.org> |
||
Vlastimil Babka
|
40f3bf0cb0 |
mm: Convert struct page to struct slab in functions used by other subsystems
KASAN, KFENCE and memcg interact with SLAB or SLUB internals through functions nearest_obj(), obj_to_index() and objs_per_slab() that use struct page as parameter. This patch converts it to struct slab including all callers, through a coccinelle semantic patch. // Options: --include-headers --no-includes --smpl-spacing include/linux/slab_def.h include/linux/slub_def.h mm/slab.h mm/kasan/*.c mm/kfence/kfence_test.c mm/memcontrol.c mm/slab.c mm/slub.c // Note: needs coccinelle 1.1.1 to avoid breaking whitespace @@ @@ -objs_per_slab_page( +objs_per_slab( ... ) { ... } @@ @@ -objs_per_slab_page( +objs_per_slab( ... ) @@ identifier fn =~ "obj_to_index|objs_per_slab"; @@ fn(..., - const struct page *page + const struct slab *slab ,...) { <... ( - page_address(page) + slab_address(slab) | - page + slab ) ...> } @@ identifier fn =~ "nearest_obj"; @@ fn(..., - struct page *page + const struct slab *slab ,...) { <... ( - page_address(page) + slab_address(slab) | - page + slab ) ...> } @@ identifier fn =~ "nearest_obj|obj_to_index|objs_per_slab"; expression E; @@ fn(..., ( - slab_page(E) + E | - virt_to_page(E) + virt_to_slab(E) | - virt_to_head_page(E) + virt_to_slab(E) | - page + page_slab(page) ) ,...) Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <kasan-dev@googlegroups.com> Cc: <cgroups@vger.kernel.org> |
||
Waiman Long
|
a7ebf564de |
mm/memcg: relocate mod_objcg_mlstate(), get_obj_stock() and put_obj_stock()
All the calls to mod_objcg_mlstate(), get_obj_stock() and put_obj_stock() are done by functions defined within the same "#ifdef CONFIG_MEMCG_KMEM" compilation block. When CONFIG_MEMCG_KMEM isn't defined, the following compilation warnings will be issued [1] and [2]. mm/memcontrol.c:785:20: warning: unused function 'mod_objcg_mlstate' mm/memcontrol.c:2113:33: warning: unused function 'get_obj_stock' Fix these warning by moving those functions to under the same CONFIG_MEMCG_KMEM compilation block. There is no functional change. [1] https://lore.kernel.org/lkml/202111272014.WOYNLUV6-lkp@intel.com/ [2] https://lore.kernel.org/lkml/202111280551.LXsWYt1T-lkp@intel.com/ Link: https://lkml.kernel.org/r/20211129161140.306488-1-longman@redhat.com Fixes: 559271146efc ("mm/memcg: optimize user context object stock access") Fixes: 68ac5b3c8db2 ("mm/memcg: cache vmstat data in percpu memcg_stock_pcp") Signed-off-by: Waiman Long <longman@redhat.com> Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
9c3252152e |
mm: Rename folio_test_multi to folio_test_large
This is a better name. Also add kernel-doc. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> |
||
Christoph Hellwig
|
ab2f9d2d36 |
mm: unexport {,un}lock_page_memcg
These are only used in built-in core mm code. Link: https://lkml.kernel.org/r/20210820095815.445392-3-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
913ffbdd99 |
mm: unexport folio_memcg_{,un}lock
Patch series "unexport memcg locking helpers". Neither the old page-based nor the new folio-based memcg locking helpers are used in modular code at all, so drop the exports. This patch (of 2): folio_memcg_{,un}lock are only used in built-in core mm code. Link: https://lkml.kernel.org/r/20210820095815.445392-1-hch@lst.de Link: https://lkml.kernel.org/r/20210820095815.445392-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
512b7931ad |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ... |
||
Mel Gorman
|
69392a403f |
mm/vmscan: throttle reclaim when no progress is being made
Memcg reclaim throttles on congestion if no reclaim progress is made. This makes little sense, it might be due to writeback or a host of other factors. For !memcg reclaim, it's messy. Direct reclaim primarily is throttled in the page allocator if it is failing to make progress. Kswapd throttles if too many pages are under writeback and marked for immediate reclaim. This patch explicitly throttles if reclaim is failing to make progress. [vbabka@suse.cz: Remove redundant code] Link: https://lkml.kernel.org/r/20211022144651.19914-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vasily Averin
|
a4ebf1b6ca |
memcg: prohibit unconditional exceeding the limit of dying tasks
Memory cgroup charging allows killed or exiting tasks to exceed the hard limit. It is assumed that the amount of the memory charged by those tasks is bound and most of the memory will get released while the task is exiting. This is resembling a heuristic for the global OOM situation when tasks get access to memory reserves. There is no global memory shortage at the memcg level so the memcg heuristic is more relieved. The above assumption is overly optimistic though. E.g. vmalloc can scale to really large requests and the heuristic would allow that. We used to have an early break in the vmalloc allocator for killed tasks but this has been reverted by commit b8c8a338f75e ("Revert "vmalloc: back off when the current task is killed""). There are likely other similar code paths which do not check for fatal signals in an allocation&charge loop. Also there are some kernel objects charged to a memcg which are not bound to a process life time. It has been observed that it is not really hard to trigger these bypasses and cause global OOM situation. One potential way to address these runaways would be to limit the amount of excess (similar to the global OOM with limited oom reserves). This is certainly possible but it is not really clear how much of an excess is desirable and still protects from global OOMs as that would have to consider the overall memcg configuration. This patch is addressing the problem by removing the heuristic altogether. Bypass is only allowed for requests which either cannot fail or where the failure is not desirable while excess should be still limited (e.g. atomic requests). Implementation wise a killed or dying task fails to charge if it has passed the OOM killer stage. That should give all forms of reclaim chance to restore the limit before the failure (ENOMEM) and tell the caller to back off. In addition, this patch renames should_force_charge() helper to task_is_dying() because now its use is not associated witch forced charging. This patch depends on pagefault_out_of_memory() to not trigger out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM and cause a global OOM killer. Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
e80216d9f1 |
mm: memcontrol: remove the kmem states
Now the kmem states is only used to indicate whether the kmem is offline. However, we can set ->kmemcg_id to -1 to indicate whether the kmem is offline. Finally, we can remove the kmem states to simplify the code. Link: https://lkml.kernel.org/r/20211025125259.56624-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
6426886811 |
mm: memcontrol: remove kmemcg_id reparenting
Since slab objects and kmem pages are charged to object cgroup instead of memory cgroup, memcg_reparent_objcgs() will reparent this cgroup and all its descendants to its parent cgroup. This already makes further list_lru_add()'s add elements to the parent's list. So it is unnecessary to change kmemcg_id of an offline cgroup to its parent's id. It just wastes CPU cycles. Just remove the redundant code. Link: https://lkml.kernel.org/r/20211025125102.56533-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
58056f7750 |
memcg, kmem: further deprecate kmem.limit_in_bytes
The deprecation process of kmem.limit_in_bytes started with the commit 0158115f702 ("memcg, kmem: deprecate kmem.limit_in_bytes") which also explains in detail the motivation behind the deprecation. To summarize, it is the unexpected behavior on hitting the kmem limit. This patch moves the deprecation process to the next stage by disallowing to set the kmem limit. In future we might just remove the kmem.limit_in_bytes file completely. [akpm@linux-foundation.org: s/ENOTSUPP/EOPNOTSUPP/] [arnd@arndb.de: mark cancel_charge() inline] Link: https://lkml.kernel.org/r/20211022070542.679839-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20211019153408.2916808-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Vasily Averin <vvs@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
38d4ef44ee |
mm/memcg: remove obsolete memcg_free_kmem()
Since commit d648bcc7fe65 ("mm: kmem: make memcg_kmem_enabled() irreversible"), the only thing memcg_free_kmem() does is to call memcg_offline_kmem() when the memcg is still online which can happen when online_css() fails due to -ENOMEM. However, the name memcg_free_kmem() is confusing and it is more clear and straight forward to call memcg_offline_kmem() directly from mem_cgroup_css_free(). Link: https://lkml.kernel.org/r/20211005202450.11775-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
fd25a9e0e2 |
memcg: unify memcg stat flushing
The memcg stats can be flushed in multiple context and potentially in parallel too. For example multiple parallel user space readers for memcg stats will contend on the rstat locks with each other. There is no need for that. We just need one flusher and everyone else can benefit. In addition after aa48e47e3906 ("memcg: infrastructure to flush memcg stats") the kernel periodically flush the memcg stats from the root, so, the other flushers will potentially have much less work to do. Link: https://lkml.kernel.org/r/20211001190040.48086-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Michal Koutný" <mkoutny@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |